Ferienkurs Analysis 3 - Funktionentheorie

Größe: px
Ab Seite anzeigen:

Download "Ferienkurs Analysis 3 - Funktionentheorie"

Transkript

1 Ferienkurs Analysis 3 - Funktionentheorie Ralitsa Bozhanova, Max v. Vopelius Grundbegriffe und Differenzierbarkeit 1.1 R-lineare und C-lineare Abbildungen C C Da C sowohl VR über R als auch über C ist, muß zwischen R und C-linearen Abbildungen unterschieden werden. Jede C-lineare Abbildung hat die Form z λz mit λ C und ist R-linear. Die Konjungierung z z ist R-linear aber nicht C-linear. Allgemein: Eine Abbildung T : C C ist genau dann R-linear, wenn gilt: T (z) = T (1)x + T (i)y 1.2 Skalarprodukt und absoluter Betrag w = u + iv, z = x + iy C < w, z >:= Re(wz) = ux + vy ist das euklidische Skalarprodukt. z := + < z, z > mißt die euklidische Länge, sie heißt Absolutbetrag. 1.3 Winkeltreue Abbildungen T : C C bijektiv (T z = T (z)) w z < T w, T z >= T w T z < w, z > w, z C Dann heißt T Winkeltreu. Definition wird verständlich, wenn man den Winkel (w, z) benutzt: Winkeltreu bedeutet dann gerade, daß (T w, T z) = (w, z) für alle w, z C 1.4 Cauchysches Konvergenzkriterium Eine Folge c n heißt Cauchyfolge, wenn zu jedem ɛ > 0 ein k N existiert, so dass: c m c n < ɛ für alle m, n k. Damit ist c n konvergent. 1

2 1 GRUNDBEGRIFFE UND DIFFERENZIERBARKEIT 2 Beispiel: (x i ) i N = 1 i i N. Sei ɛ > 0 beliebig, wähle N, dass N > 1 ɛ. n m > N beliebig. Dann gilt: d(x m, x n ) = 1 m 1 n = n m mn n mn = 1 n < 1 N < ɛ Für unendliche Reihen: Eine Reihe a ν konvergiert genau dann, wenn zu jedem ɛ > 0 ein n 0 N existiert, so daß gilt: n a ν ɛ für alle m, n, mit n > m n 0 m+1 Besagt gerade, dass die Partialsummenfolge eine Cauchyfolge ist. 1.5 Komplex differenzierbare Funktionen Eine Funktion f : D C heißt komplex differenzierbar in c D, wenn es eine in c stetige Funktion f 1 : D C gibt, so daß gilt: f(z) = f(c) + (z c)f 1 (z) für alle z D Funktion f 1 ist dann eindeutig durch f bestimmt, f 1 ist stetig in c also h := z c: f(c + h) f(c) lim = f 1 c =: f (c) =: df h 0 h dz (c) Die aus dem reellen bekannten Differentiationsregeln gelten analog. Beispiele: (a) Jede Potenz z n, n N ist überall in C komplex differenzierbar. z n = c n + (z c)f 1 (z) mit f 1 (z) = z n 1 + cz n c n 2 z + c n 1 man sieht (z n ) = nz n 1 für alle z C. Allgemeiner sind Polynome überall und rationale Funktionen außerhalb der Nullstellen komplex differenzierbar. (b) Die Konjungierungsfunktion f(z) := z ist nirgends komplex differenzierbar, da der Differenzenquotient f(c + h) f(c) h = h h h 0 hat für h R bzw. hinri den Wert 1 bzw. 1 und also keinen Limes. 1.6 Cauchy-Riemannsche Differenzialgleichungen u x (c) = v y (c), u y (c) = v x (c)

3 1 GRUNDBEGRIFFE UND DIFFERENZIERBARKEIT 3 Sind notwendige Bedingungen für die komplexe Differenzierbarkeit. Damit ist: f (c) = u x (c) + iv x (c) = v y (c) iu y (c) Beispiel: Wo ist die folgende Funktion komplex differenzierbar? (a) f(x + iy) = xy + ixy x u = y! = x = y v und y u = x! = y = x v f ist in (0, 0) komplex differenzierbar 1.7 Holomorphe Funktionen Eine Funktion f : D C heißt holomorph in D, wenn f in jedem Punkt von D komplex differenzierbar ist. Eine in c holomorphe Funktion ist komplex differenzierbar in c, allerdings ist eine in c komplex differenzierbare Funktion nicht notwendigerweise holomorph in c. Beispiel: f(z) = x 3 y 2 + ix 2 y 3 wobei z = x + iy, x, y R ist überall auf den Koordinatenachsen und sonst nirgends komplex differenzierbar; diese Funktion ist nirgends in C holomorph. 1.8 Winkel- und Orientierungstreue / Holomorphie Eine in D reell differenzierbare Funktion f = u + iv heißt orientierungstreu in c D, wenn die Funktionaldeterminante ( det u x u y v x v y in c positiv ist. Damit sind folgende Aussagen über reell stetig differenzierbare Funktionen f : D C äquivalent (a) f ist holomorph in D, und es gilt f (z) 0 überall in D (b) f ist winkeltreu und orientierungstreu in D ) 1.9 Konvergenzradius von Potenzreihen Für eine allgemeine Potenzreihe a r (z c) ν bezeichne R das Supremum aller reellen Zahlen t 0, so daß die Folge a νt ν beschränkt ist. Die hierdurch bestimmte Größe R mit 0 R heißt der Konvergenzradius, die Menge B R (c) heißt Konvergenzkreisscheibe der Potenzreihe. Formel von Cauchy-Hadamard:

4 1 GRUNDBEGRIFFE UND DIFFERENZIERBARKEIT 4 Die Potenzreihe a ν (z c) ν hat den Konvergenzradius 1 R = lim sup ν a ν Beispiele: ν ν zν z ν z ν ν ν 1.10 Logarithmusfunktionen Logarithmusfunktionen sind holomorphe Funktionen l, die in ihrem Definitionsbereich der Gleichung exp l = id genügen. Charakteristisch für solche Funktionen ist die Differentialgleichung l (z) = 1 z. Beispiele: (a) In B 1 (1) die Potenzreiche ( 1) ν 1 (z 1) ν ν ν=1 (b) In der Ebene { z = re iϕ : r > 0, α < ϕ < α + 2π } α R fixiert, die durch l(z) := log r + iϕ erklärte Funktion Die Zahl 0 hat keinen Logarithmus. Jede positive reelle Zahl r > 0 hat genau einen rellen Logarithmus log r. Jede komplexe Zahl c = re iϕ hat genau abzählbar unendlich viele Logarithmen log r + iϕ + i2πn, n Z wobei log r R Da Logarithmen vieldeutig sind, wird definiert: Eine holomorphe Funktion l : G C in einem Gebiet G C heißt eine Logarithmusfunktion in G, wenn gilt: exp (l (z)) = z z ing. Ist l : G C eine Logarithmusfunktion, dann ist auch ˆl = l + 2πiˆn, ˆn Z eine Logarithmusfunktion. Die in der geschlitzten Ebene C := C \ {z C : Re z 0, Im z = 0} definierte Funktion log : C C, z = z e iϕ log z + iϕ wird Hauptzweig des Logarithmus genannt. Es gilt log i = iπ 2.

5 2 KOMPLEXE INTEGRALRECHNUNG 5 2 Komplexe Integralrechnung 2.1 Integration längs Wegen Mann nennt fdz das Wegintegral oder Kurvenintegral. Sei : [a, b] U C eine differenzierbare Kurve. Dann gilt: fdz = b 2.2 Die Integrale B (ξ c)n dξ a f ( (t)) d dt Für n Z und alle Kreisscheiben B = B r (c), r > 0 gilt: B (ξ c) n dξ = { (t) = x(t) + iy(t) 0 für n 1 2πi für n = Cauchyscher Integralsatz für Sterngebiete Sterngebiete: Eine Menge M C heißt sternartig, wenn es einen Punkt z 1 M gibt, so daß für jeden Punkt z M die Strecke [z, z 1 ] in M liegt. z 1 heißt ein Zentrum von M. Es sei G ein Sterngebiet mit Zentrum c, es sei f : G C holomorph in G. Dann ist f integrabel in G: die Funktion F (z) := fdξ, z G ist eine Stammfunktion von f in G. Speziell gilt [c,z] für jeden geschlossenen Weg in G. fdξ = Cauchysche Integralformel für Kreisscheiben Mit Hilfe des Integralsatzes lassen sich Integrale durch Änderung des Integrationswegs berechnen. Es sei f holomorph im Bereich D; es sei B := B r (c), r > 0 eine Kreisscheibe, die nebst Rand B in D liegt. Dann gilt für alle z B : f(z) = 1 f(ξ) 2πi B ξ z dξ 2.5 Prinzip der analytischen Fortsetzung Seien U 1, U 2 nichtleere, abgeschlossene Mengen mit U 1 U 2. f 1 : U 1 C, f 2 : U 2 C seien holomorph. f 1 = f 2 auf U 1 U 2. Dann ist f 2 die analytische Fortsetzung von f 1. f 2 ist eindeutig festgelegt über dan Identitätssatz: f 1 = f 2 auf U 1 U 2

6 3 RESIDUENKALKÜL 6 Beispiel: Sei f : [a, b] R Potenzreihe um x 0 f(x) = c n (x x 0 ) n n=0 c n R analytische Fortsetzung auf B r (x 0 ): 2.6 Die Intexfunktion ind (z) f(z) = c n (z x 0 ) n n=0 Ist ein geschlossener Weg in C und z C ein Punkt, der nicht auf liegt, so sucht man ein Maß dafür, wie oft der Weg den Punkt z umläuft. Die Funktion ind := 1 dξ 2πi ξ z liefert eine ganze Zahl und mißt die Umläufe sehr gut. So gilt zum Beispiel: 3 Residuenkalkül 3.1 Laurentreihen ind B (z) = { 1 für z B 0 für z C \ B Die in C offene Menge A r,s (c) := {zmathbbc : r < z c < s} heißt Kreisring um c mit innerem Radius r und äußerem Radius s. Es gilt A 0, (0) = C. Jede im Kreisring A um c mit den Radien r, s holomorphe Funktion ist in A eindeutig in eine Laurentreihe f(z) = a ν (z c) ν entwickelbar, die in A normal gegen f konvergiert. Es gilt: a ν = 1 f(ξ) dξ für r < ρ < s, ν Z 2πi ρ (ξ c) ν+1 Bestimmung mit Integralformel ist nur in selenen Fällen möglich. Man zieht nach Möglichkeit bekannte Taylorreihe heran. 3.2 Riemannscher Hebbarkeitssatz Eine Singularität kann genau dann entfernt ( gehoben ) werden, wenn ein Gebiet um die Singularität existiert, auf dem die holomorphe Funktion beschränkt ist. z 0 sei Punkt des Gebietes G, f sei auf G \ {z 0 } holomorph. Ist f auf einer punktierten Umgebung

7 3 RESIDUENKALKÜL 7 von z 0 beschränkt, so gibt es eine auf ganz G holomorphe Funktion ˆf mit ˆf (G\{zo}) = f 3.3 Einfach geschlossene Wege Ein geschlossener Weg heißt einfach geschlossen, wenn: Int und int (z) = 1 z Int wobei ind die Indexfunktion ist und Int = {z C \ : ind g amma(z) 0} 3.4 Residuum Ist f holomorph in D\c und ist a ν(z c) ν die Laurententwicklung von f in einer punktierten Kreisscheibe B um c, so gilt a 1 = 1 f(ξdξ 2πi S für jede Kreislinie S B um c. Von allen Laurentkoeffizienten bleibt also bei Integration von f um c nur a 1 übrig. Dieses heißt das Residuum. Res c f := a 1 Das Residuum ist in allen isolierten Singularitäten von f definiert. Berechnung von Residuen (a) f(z) hat einen Pol der Ordnung k Res a f = ( ) k 1 1 d g(z) z=a (k 1)! dz (z a) k f(z) = g(z) (b) Seien g(z), h(z) holomorph und h habe einfache Nullstellen bei z = a f(z) = g(z) h(z) Für das Residuum folgt: Beispiel: f(z) = Res a ( g h ) = g(a) h (a) z2 iπ 1 ist c : e z4 = 2 (1 + i)

8 4 RESIDUENSATZ 8 ein einfacher Pol, daher gilt nach Regel 2: Für die anderen Pole (ic, c, ic) findet man: Res c f = c2 4c 3 = 1 4c = 1 4 (1 i) 2 Res ic f = i 4 c, Res c f = 1 4 c, Res ic f = i 4 c 4 Residuensatz Es sei ein nullhomologer Weg in einem Bereich D, und es sei A eine endliche Menge in D, so daß kein Punkt von A auf liegt. Dann gilt hdξ = 2πi für jede in D \ A holomorphe Funktion h. Beispiel: c Int ind (c) Res c h f(z) = z2 von eben. Funktion fällt mindestens quadratisch ab und die Pole in der oberen 1+z 4 Halbebene liefern die folgenden Residuen: Res c1 f = (1 i), Res c 2 f = 1 4 ( 1 i) 2 z z 4 dz = z z 4 dz = 2πi c Res ci f = 2πi 4 2 ( 2i) = π 2

Ferienkurs Analysis 3 - Übungen Funktionentheorie - Musterlösung

Ferienkurs Analysis 3 - Übungen Funktionentheorie - Musterlösung Ferienkurs Analysis 3 - Übungen Funktionentheorie - Musterlösung Ralitsa Bozhanova, Ma v. Vopelius.8.9 Differenzierbarkeit (a Sei A (a ij i,j, R. Zeigen Sie, dass die von A durch die Matrimultiplikation

Mehr

Potenzreihenentwicklung im Reellen und Komplexen

Potenzreihenentwicklung im Reellen und Komplexen Potenzreihenentwicklung im Reellen und Komplexen Christoph Lassnig 26. Januar 20 Zusammenfassung Dieses Dokument bietet einen kleinen Überblick über Potenzreihen, sowie auf ihnen aufbauenden Sätzen und

Mehr

Themen Potenzreihen Laurentreihen Residuenkalkül

Themen Potenzreihen Laurentreihen Residuenkalkül 5 Reihenentwicklungen und der Residuensatz Themen Potenzreihen Laurentreihen Residuenkalkül folgen 5.1 Potenzreihen und Taylorreihen Satz Sei und sei f(z) = a n (z z 0 ) n, a n, n=0 R = 1 lim sup n a n,

Mehr

4 Anwendungen des Cauchyschen Integralsatzes

4 Anwendungen des Cauchyschen Integralsatzes 4 Anwendungen des Cauchyschen Integralsatzes Satz 4. (Cauchysche Integralformel) Es sei f : U C komplex differenzierbar und a {z C; z z 0 r} U. Dann gilt f(a) = z z 0 =r z a dz. a z 0 9 Beweis. Aus dem

Mehr

Lösungen zur Klausur Funktionentheorie I SS 2005

Lösungen zur Klausur Funktionentheorie I SS 2005 Universität Karlsruhe 29 September 25 Mathematisches Institut I Prof Dr M von Renteln Dr C Kaiser Aufgabe en zur Klausur Funktionentheorie I SS 25 Sei S die Möbiustransformation, die durch S(z) = i i z

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Funktionentheorie Marco Boßle Jörg Hörner Mathematik Online Frühjahr 20 PV-Kurs HM 3 Funktionentheorie - Zusammenfassung Grundlagen Komplexe Funktion f (z)

Mehr

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi Funktionentheorie, Woche 7 Eigenschaften holomorpher Funktionen 7.1 Ganze Funktionen Definition 7.1 Eine Funktion f : C C, die holomorph ist auf C, nennt man eine ganze Funktion. Bemerkung 7.1.1 Als Folge

Mehr

Einige Standard-Aufgabentypen der Funktionentheorie I

Einige Standard-Aufgabentypen der Funktionentheorie I Matthias Stemmler SS 6 stemmler@mathematik.uni-marburg.de Einige Standard-Aufgabentypen der Funktionentheorie I I. Untersuchung von Funktionen auf komplexe Differenzierbarkeit/Holomorphie gegeben: gesucht:

Mehr

Proseminar Komplexe Analysis 1

Proseminar Komplexe Analysis 1 Proseminar Komplexe Analysis 1 Bernhard Lamel und Gerald Teschl SS27 Bemerkung: Die meisten Beispiel sind aus dem Buch von K. Jähnich, Funktionentheorie, Springer. 1. Beweise folgende Eigenschaften des

Mehr

2. Klausur zur Funktionentheorie SS 2009

2. Klausur zur Funktionentheorie SS 2009 Aufgabe : Finden Sie ein Beispiel für eine meromorphe Funktion f M(C), die auf den Kreisringen A 0, (0) und A,2 (0) unterschiedliche Laurentreihenentwicklungen besitzt. Beweisen Sie, dass Ihr Beispiel

Mehr

Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 214 Dr K Rothe Komplexe Funktionen für Studierende der Ingenieurwissenschaften Aufgaben und Theoriehinweise zu Blatt 6 Komplexe Funktionen, K Rothe,

Mehr

ÜBUNGSBEISPIELE ZUR KOMPLEXEN ANALYSIS. Komplexe Zahlen. (x, y) + (u, v) := (x + u, y + v) (x, y) (u, v) := (xu yv, xv + yu)

ÜBUNGSBEISPIELE ZUR KOMPLEXEN ANALYSIS. Komplexe Zahlen. (x, y) + (u, v) := (x + u, y + v) (x, y) (u, v) := (xu yv, xv + yu) ÜBUNGSBEISPIELE ZUR KOMPLEXEN ANALYSIS ARMIN RAINER Sommersemester 05 Komplexe Zahlen Sei z = i und w = 3 + 4i. Berechne: (a) z + w, zw, z w, w z, z 3, w. (b) z, z, w, w, z, w. Zeige, dass R mit der Addition

Mehr

4 Isolierte Singularitäten und Laurentreihen

4 Isolierte Singularitäten und Laurentreihen 35 4 Isolierte Singularitäten und Laurentreihen Wir beginnen mit einer lokalen Beschreibung der Nullstellen holomorpher Funktionen. 4. Lokale Beschreibung von Nullstellen. Sei U C offen, f : U C holomorph

Mehr

23 Laurentreihen und Residuen

23 Laurentreihen und Residuen 23 Laurentreihen und Residuen 23. Laurentreihen Ist eine Funktion f in einem Punkt z nicht holomorph (oder nicht einmal definiert), so läßt sich f nicht durch eine Potenzreihe mit Entwicklungspunkt z darstellen.

Mehr

Mathematik III für Physiker. Vorlesung

Mathematik III für Physiker. Vorlesung Mathematik III für Physiker Wintersemester /3 Vorlesung..3 Satz 6 (iduensatz) Sei f holomorph in G := C \ {z,..., z N } und G ein geschlossener, stückweise stetig dierenzierbarer Weg. Dann gilt f(ξ)dξ

Mehr

Funktionentheorie I. M. Griesemer

Funktionentheorie I. M. Griesemer Funktionentheorie I M. Griesemer Übersicht der wichtigsten Definitionen und Sätze der Vorlesung Funktionentheorie I, SS 2001, Fachbereich Mathematik, Johannes Gutenberg - Universität Mainz. Inhalt der

Mehr

Funktionentheorie Nachholklausur

Funktionentheorie Nachholklausur Prof. Dr. Thomas Vogel Sommersemester 2014 Robert Schmidt 6.10.2014 Funktionentheorie Nachholklausur Nachname: Matrikelnr.: Vorname: Fachsemester: Abschluss: Bachelor, PO 2007 2010 2011 Master, PO 2010

Mehr

6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und

6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und Funktionentheorie, Woche 6 Analytische Funktionen 6. Holomorphe Funktionen und Potenzreihen Definition 6. Eine Funktion f : U C C nennt man analytisch in z 0 U, wenn es r > 0 gibt mit B r (z 0 ) U derart,

Mehr

(b) Folgern Sie, dass f auf C \{±i} keine Stammfunktion besitzt, indem Sie f entlang einer passenden Kreislinie mit Mittelpunkt in i integrieren.

(b) Folgern Sie, dass f auf C \{±i} keine Stammfunktion besitzt, indem Sie f entlang einer passenden Kreislinie mit Mittelpunkt in i integrieren. Musterlösung noch: Funktionentheorie Aufgabe 2.5 (Holomorphe Stammfunktion. Sei f : C \{±i} C gegeben durch f( + 2. (a Zeigen Sie, dass f ( + i eine Stammfunktion auf K 2 (i besitt. Hinweis: Zeigen Sie

Mehr

Proseminar Komplexe Analysis 1

Proseminar Komplexe Analysis 1 Proseminar Komplexe Analysis 1 Michael Kunzinger und Gerald Teschl WS215/16 Bemerkung: Die meisten Beispiele sind aus dem Buch von K. Jänich, Funktionentheorie, Springer. 1. Bereiten Sie eine Kurzpräsentation

Mehr

3 Meromorphe Funktionen und der Residuenkalkül

3 Meromorphe Funktionen und der Residuenkalkül $Id: mero.tex,v 1.3 2016/06/22 16:12:36 hk Exp $ 3 Meromorphe Funktionen und der Residuenkalkül 3.3 Hauptteile und Residuen Am Ende der letzten Sitzung hatten wir die Laurententwicklung einer holomorphen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. D. Castrigiano Dr. M. Prähofer Zentralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik 6. Hauptzweig des Logarithmus Mathematik für Physiker 4 (Analysis 3) http://www.ma.tum.de/hm/ma9204

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 11. Übungsblatt

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 11. Übungsblatt Institut für Analysis SS17 PD Dr. Peer Christian Kunstmann 7.7.17 Dipl.-Math. Leonid Chaichenets, Johanna Richter, M.Sc. Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung

Mehr

Kapitel 24. Entwicklungen holomorpher Funktionen Taylor-Reihen (Potenzreihen und holomorphe Funktionen;

Kapitel 24. Entwicklungen holomorpher Funktionen Taylor-Reihen (Potenzreihen und holomorphe Funktionen; Kapitel 24 Entwicklungen holomorpher Funktionen Reihenentwicklungen spielen in der Funktionentheorie eine ganz besodere Rolle. Im Reellen wurden Potenzreihen in Kapitel 5.2 besprochen, das komplexe Gegenstück

Mehr

D-MATH Funktionentheorie HS 2018 Prof. Michael Struwe. Lösungen Serie 5. Korollare der Integralformel von Cauchy

D-MATH Funktionentheorie HS 2018 Prof. Michael Struwe. Lösungen Serie 5. Korollare der Integralformel von Cauchy D-MATH Funktionentheorie HS 08 Prof. Michael Struwe Lösungen Serie 5 Korollare der Integralformel von Cauchy. (a) Berechnen Sie für folgende Funktionen die Taylorreihe bei z 0 und bestimmen Sie den Konvergenzradius.

Mehr

Lösungskizze zu Übungsblatt 2 (Funktionentheorie und gewöhnliche Differentialgleichungen für Lehramt Gymnasium)

Lösungskizze zu Übungsblatt 2 (Funktionentheorie und gewöhnliche Differentialgleichungen für Lehramt Gymnasium) Mathematisches Institut der Universität München skizze zu Übungsblatt 2 (Funktionentheorie und gewöhnliche Differentialgleichungen für Lehramt Gymnasium) Aufgabe 166 (1 Punkte) Berechnen Sie in den folgenden

Mehr

Übungen zur Funktionentheorie

Übungen zur Funktionentheorie Mathematisches Institut SS 29 Universität München Prof. Dr. M. Schottenloher C. Paleani M. Schwingenheuer A. Stadelmaier Übungen zur Funktionentheorie Lösungen zu Übungsblatt. Sei fz) = z ) z 2) 2 eine

Mehr

Kapitel 22. Einführung in die Funktionentheorie

Kapitel 22. Einführung in die Funktionentheorie Kapitel 22 Einführung in die Funktionentheorie In Kapitel 17 wurde die Differentialrechnung von Funktionen f: R m R n mehrerer Veränderlicher besprochen. Der Ableitungsbegriff war dabei nicht als Verallgemeinerung

Mehr

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen Kapitel 7 Funktionentheorie In diesem Kapitel geht es meistens um Funktionen, die auf einem Gebiet G C definiert sind und komplexe Werte annehmen. Nach Lust, Laune und Bedarf wird C mit R identifiziert,

Mehr

13. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss

13. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss Fachbereich Mathematik Prof. Dr. H.-D. Alber Dr. N. Kraynyukova Dipl.-Ing. A. Böttcher WS / 3. Januar 3. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss Gruppenübung Aufgabe

Mehr

28: Holomorphe Funktionen, Potenzreihen und Laurentreihen

28: Holomorphe Funktionen, Potenzreihen und Laurentreihen Einleitung 28: Holomorphe Funktionen, Potenzreihen und Laurentreihen 28.1 Einleitung Wir wissen bereits, dass eine holomorphe Funktion f : M C unendlich oft komplex differenzierbar ist. Für jedes z 0 M

Mehr

Kapitel 1. Holomorphe Funktionen

Kapitel 1. Holomorphe Funktionen Kapitel 1 Holomorphe Funktionen Zur Erinnerung: I IR sei ein offenes Intervall, und sei z 0 I. Eine Funktion f : I IR heißt differenzierbar in z 0, falls der Limes fz fz 0 lim =: f z 0 z z 0 z z 0 existiert.

Mehr

Funktionentheorie. Wolfram Decker

Funktionentheorie. Wolfram Decker Funktionentheorie Wolfram Decker Inhaltsverzeichnis Kapitel. Grundlagen 7 1. Komplexe Zahlen 7 1.1. Der Körper C 7 1.2. Konjugation 7 1.3. Euklidischer Abstand, C als metrischer Raum 8 1.4. Zusammenhang

Mehr

Examenskurs Analysis Probeklausur I

Examenskurs Analysis Probeklausur I Georg Tamme Sommersemester 14 Examenskurs Analysis Probeklausur I 5.6.14 F1II1. Sei f : C C eine ganze Funktion. Entscheiden Sie, ob die folgenden Behauptungen wahr sind. Begründen Sie Ihre Antwort jeweils

Mehr

Studienbegleitende Prüfung / Modulprüfung / Diplomprüfung Funktionentheorie I SS 2010 Lösungsvorschläge Version vom

Studienbegleitende Prüfung / Modulprüfung / Diplomprüfung Funktionentheorie I SS 2010 Lösungsvorschläge Version vom Studienbegleitende Prüfung / Modulprüfung / Diplomprüfung Funktionentheorie I SS 2010 svorschläge Version vom 2382010 Aufgabe 1 (2+2 Punkte) a) Sei f : C C gegeben durch f(z) := 5 5i 1 2i + ez z Geben

Mehr

9 Ergänzungen zur Funktionentheorie

9 Ergänzungen zur Funktionentheorie 9 Ergänzungen zur Funktionentheorie 9. Herausziehen von Polen und Nullstellen Das folgende Lemma hatten wir an zahlreichen Stellen verwendet, ohne es jemals streng bewiesen zu haben. Lemma 9. Die Funktion

Mehr

5.1 Anwendung auf die Berechnung uneigentlicher

5.1 Anwendung auf die Berechnung uneigentlicher Kapitel 5 Anwendungen des Residuenkalküls Wie sich am Ende des vorigen Kapitels in Beispiel 4.17 bereits angedeutet hat, bietet der Residuenkalkül ein mächtiges Werkzeug, um uneigentliche Integrale mit

Mehr

6.8 Residuenkalkül. Ziel: Weitere Verallgemeinerung auf mehrere Löcher L 1,..., L N. Kapitel 6: Komplexe Integration Γ 1

6.8 Residuenkalkül. Ziel: Weitere Verallgemeinerung auf mehrere Löcher L 1,..., L N. Kapitel 6: Komplexe Integration Γ 1 6.8 Residuenkalkül Erinnerung: Sei f analytisch auf einem zweifach zusammenhängenden Gebiet G, d.h. G besitzt genau ein Loch L. Weiterhin seien und zwei positiv orientierte geschlossene Wege, die das Loch

Mehr

Ferienkurs Analysis 3 für Physiker. Laurentreihen und Residuensatz

Ferienkurs Analysis 3 für Physiker. Laurentreihen und Residuensatz Ferienkurs Analysis 3 für Physiker Laurentreihen und Residuensat Autor: Benjamin Rüth Stand:. Mär 204 Inhaltsvereichnis Inhaltsvereichnis Inhaltsvereichnis Singularitäten 3 2 Laurentreihen 4 2. Laurententwicklung...............................

Mehr

6. VORLESUNG,

6. VORLESUNG, 27 6. VORLESUNG, 1.5.217 2.2.9. Beispiel. Die Funktion f : C C, f(z) = 1 hat keine Stammfuntkion, da z dz (2.9) z =. B 1 () B 1 () Hätte f eine Stammfunktion, so wäre das Integral Null. Die Formel (2.9)

Mehr

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass

Mehr

AUFGABEN ZUR FUNKTIONENTHEORIE. von. Prof. Dr. H.-W. Burmann

AUFGABEN ZUR FUNKTIONENTHEORIE. von. Prof. Dr. H.-W. Burmann AUFGABEN ZUR FUNKTIONENTHEORIE von Prof. Dr. H.-W. Burmann Bei den folgenden Aufgaben handelt es sich um Reste, die bei der Erstellung der Aufgabenblätter übriggeblieben sind. Der Schwierigkeitsgrad der

Mehr

Sätze der Funktionentheorie. Daniel Jaud

Sätze der Funktionentheorie. Daniel Jaud Sätze der Funktionentheorie Daniel Jaud August 2, 2013 2 Contents 1 Komplexe Differenzierbarkeit und Holomorphie 7 1.1 Körper der komplexen Zahlen.................... 7 1.2 Algebraische Abgeschlossenheit...................

Mehr

Ferienkurs Analysis 3 für Physiker. Funktionentheorie

Ferienkurs Analysis 3 für Physiker. Funktionentheorie Ferienkurs Analysis 3 für Physiker Funktionentheorie Autor: Benjamin Rüth, Korbinian Singhammer Stand: 28. Februar 25 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Was ist Funktionentheorie?

Mehr

f heißt komplex differenzierbar oder holomorph auf Ω, wenn f in allen z Ω komplex differenzierbar

f heißt komplex differenzierbar oder holomorph auf Ω, wenn f in allen z Ω komplex differenzierbar 2 Komplexe Analysis n diesem Abschnitt wollen wir einen kurzen Ausflug in die komplexe Analysis die sogenannte Funktionentheorie unternehmen, und zwar wollen wir jetzt komplexe Kurvenintegrale betrachten.

Mehr

Lösungen zum 11. Übungsblatt Funktionentheorie I

Lösungen zum 11. Übungsblatt Funktionentheorie I Universität Karlsruhe SS 2005 Mathematisches Institut I Prof. Dr. M. von Renteln Dr. C. Kaiser Lösungen zum 11. Übungsblatt Funktionentheorie I Aufgabe 11.1 a) Nach dem Maximumprinzip nimmt die Funktion

Mehr

Funktionentheorie, Woche 11. Funktionen mit Singularitäten Meromorphe Funktionen

Funktionentheorie, Woche 11. Funktionen mit Singularitäten Meromorphe Funktionen Funktionentheorie, Woche Funktionen mit Singularitäten. Meromorphe Funktionen Definition. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P = f ( hat keine

Mehr

Klausur zur Vorlesung Mathematik III (Differentialgleichungen und Funktionentheorie)

Klausur zur Vorlesung Mathematik III (Differentialgleichungen und Funktionentheorie) Universität Kassel Fakutät 0/6 PD Dr. Sebastian Petersen 2.09.207 Klausur zur Vorlesung Mathematik III (Differentialgleichungen und Funktionentheorie) Version mit Lösungsskizzen Es können 30 Punkte erreicht

Mehr

Kapitel 4. Der globale Cauchysche Integralsatz

Kapitel 4. Der globale Cauchysche Integralsatz Kapitel 4 Der globale Cauchysche Integralsatz Die Ergebnisse, die wir im vorigen Kapitel gewonnen haben, leben in der Regel davon, dass über einfach geschlossene Kurven integriert wird. Wie sich die Aussagen

Mehr

10 Logarithmus- und Potenzfunktion

10 Logarithmus- und Potenzfunktion 4 Logarithmus- und Potenzfunktion. Satz: Sei G einfach zusammenhängend, f H(G) und z G. Dann existiert genau eine Stammfunktion F von f mit F(z ) =. Für z G sei γ z ein beliebiger Integrationsweg in G,

Mehr

Funktionentheorie - Zusammenfassung

Funktionentheorie - Zusammenfassung Funktionentheorie - Zusammenfassung Diese Zusammenfassung erhebt keinen Anspruch auf Vollständigkeit oder Korrektheit. Solltet ihr Fehler finden oder Ergänzungen haben, teilt sie mir bitte mit: richard.gebauer@student.kit.edu

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Klausurvorbereitungsblatt Lösungsvorschläge

Übungen zur Vorlesung Funktionentheorie Sommersemester Klausurvorbereitungsblatt Lösungsvorschläge UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Dr. Tobias Mai M.Sc. Felix Leid Übungen zur Vorlesung Funktionentheorie Sommersemester 7 Klausurvorbereitungsblatt Lösungsvorschläge (5) Bestimmen

Mehr

Ferienkurs Analysis 3 für Physiker. Funktionentheorie

Ferienkurs Analysis 3 für Physiker. Funktionentheorie Ferienkurs Analysis 3 für Physiker Funktionentheorie Autor: Benjamin Rüth, Maximilian Jokel Stand: 9. März 26 Inhaltsverzeichnis Inhaltsverzeichnis Grundlagen der Funktionentheorie 3. Holomorphe Funktionen............................

Mehr

: C C, z = x + iy z = x iy.

: C C, z = x + iy z = x iy. Komplexe Zahlen (C, +, ): Körper der komplexen Zahlen mit C = R 2, R C Unterkörper, und z C mit z 2 + 1 = 0. genannt ±i. z, w C, z = x + iy, w = u + iv, (x, y), (u, v) R 2 : z + w = (x + u) + i(y + v),

Mehr

1. Aufgabe 9 Punkte. Musterlösung Analysis III f. Ing., 09. Oktober Partialbruchzerlegung: 4 z 1 1. (z 1)(z +3) =

1. Aufgabe 9 Punkte. Musterlösung Analysis III f. Ing., 09. Oktober Partialbruchzerlegung: 4 z 1 1. (z 1)(z +3) = Musterlösung Analysis III f. Ing., 09. Oktober 0. Aufgabe 9 Punkte Partialbruchzerlegung: (z )(z +3) z z +3 Um eine im Ringgebiet < z < 5 konvergente Laurent-Reihe zu erhalten, entwickelt man den Term

Mehr

Komplexe Analysis D-ITET. Serie 8

Komplexe Analysis D-ITET. Serie 8 Dr. T. Bühler M. Wellershoff Frühlingssemester 206 Komplexe Analysis D-ITET Serie 8 ETH Zürich D-MATH Aufgabe 8. Umlaufzahlen Berechnen - Teil I Das Ziel der Aufgabe ist es die Umlaufzahlen in vier Zyklen

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Analytische Zahlentheorie

Analytische Zahlentheorie 4. April 005. Übungsblatt Aufgabe (4 Punkte Sei k N. Beweisen Sie, dass f : N C mit f(n := n k streng multiplikativ ist. Sei τ die Funktion, die der natürlichen Zahl n die Anzahl der Teiler von n zuordnet

Mehr

4.4 Die Potentialgleichung

4.4 Die Potentialgleichung Beispiel 29. f(z) = exp( 1 ) H(C {}) z 1 w : z n = log w + 2πin, n N lim z n = n f(z n ) = exp(log w + 2πin) = w + exp(2πin) }{{} =1 In jeder Umgebung von Null nimmt f jeden Wert w (unendlich oft) an wesentliche

Mehr

16. Januar 2010 Pascal Gollin ( ) dz z + 1 = 1 2π. ie it 1 + e it + 1 dt = = j( 1, γ) f( 1) 2πi = 1 8 2πi = π 4 i

16. Januar 2010 Pascal Gollin ( ) dz z + 1 = 1 2π. ie it 1 + e it + 1 dt = = j( 1, γ) f( 1) 2πi = 1 8 2πi = π 4 i Übungsblatt 10 zur Funktionentheorie im WiSe 09/10 Prof. Dr. Christoph Schweigert Übungsgruppe 1 Aufgabe 1 1.a) (t) = 1 + exp(it) für 0 t 2 π. (z+1)(z 1) = π 3 4 i Ich betrachte f(z) = 1 (z 1) 3. Als Quotient

Mehr

Funktionentheorie. Daniel Scholz im Sommer Überarbeitete Version vom 19. September 2007.

Funktionentheorie. Daniel Scholz im Sommer Überarbeitete Version vom 19. September 2007. Funktionentheorie Daniel Scholz im Sommer 25 Überarbeitete Version vom 9. September 27. Inhaltsverzeichnis Komplexe Zahlen 4. Grundlegende Definitionen.................... 4.2 Anordnung in C.........................

Mehr

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden

Mehr

Lösungen zum 9. Übungsblatt Funktionentheorie I

Lösungen zum 9. Übungsblatt Funktionentheorie I Universität Karlsruhe SS 25 Mathematisches Institut I Prof Dr M von nteln Dr C Kaiser Lösungen zum 9 Übungsblatt Funktionentheorie I Aufgabe 9 K a) Wir verwenden bei diesem Integranden die Partialbruchzerlegung

Mehr

Residuum. Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als.

Residuum. Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als. Residuum Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als Res Res f = 1 f (z) dz, z=a a 2πi wobei C : t a + re it, 0 t 2π, ein entgegen

Mehr

Typ der Residuum Funktion Test Singularität bei a bei a. ; a = i, Res(f; i) = lim z 2 +1 (z i)(z+i) z i 2i

Typ der Residuum Funktion Test Singularität bei a bei a. ; a = i, Res(f; i) = lim z 2 +1 (z i)(z+i) z i 2i A: Berechnung von Residuen (f Singularität in a, meist f = g, g, h analytisch in a) h Typ der Residuum Funktion Test Singularität bei a bei a. f(z) lim(z a)f(z) = hebbar z a f(z) = sin z, a = ; lim zf(z)

Mehr

86 Klassifizierung der isolierten Singularitäten holomorpher

86 Klassifizierung der isolierten Singularitäten holomorpher 86 Klassifizierung der isolierten Singularitäten holomorpher Funktionen 86. Isolierte Singulariäten holomorpher Funktionen 86.3 Klassifizierung der isolirerten Singularitäten 86.5 Charakterisierung hebbarer

Mehr

Elemente der Funktionentheorie

Elemente der Funktionentheorie Mitteilung sd98027, August 2010 1 Elemente der Funktionentheorie Die wichtigsten Sätze und Hilfsmittel für Anwendungen in der physikalischen Feldtheorie Übersicht Einige Sätze der mathematischen Funktionentheorie,

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

Kapitel I. Holomorphe Funktionen. 1 Potenzreihen

Kapitel I. Holomorphe Funktionen. 1 Potenzreihen Kapitel I Holomorphe Funktionen Potenzreihen Definition. Sei f a (z) = c n (z a) n eine Potenzreihe mit Entwicklungspunkt a. Die Zahl R := sup{r 0 z C, so daß f a (z) konvergent und r = z a ist.} heißt

Mehr

c r Addiert man nun beide Reihendarstellungen, so folgt f (ζ) Nach dem Cauchyschen Integralsatz gilt dann auch

c r Addiert man nun beide Reihendarstellungen, so folgt f (ζ) Nach dem Cauchyschen Integralsatz gilt dann auch Residuen V Beweis Einsetzen in das Kurvenintegral über c r ergibt demnach f (ζ) 2πi ζ z dζ = f (ζ) 2πi (ζ z 0 ) c r k= c r k+ dζ Addiert man nun beide Reihendarstellungen, so folgt a k (z z 0 ) k, r z

Mehr

: C C, z = x + iy z = x iy.

: C C, z = x + iy z = x iy. Komplexe Zahlen (C, +, ): Körper der komplexen Zahlen mit C = R 2, i 2 = 1, R C Unterkörper z, w C, z = x + iy, w = u + iv, (x, y), (u, v) R 2 : z + w = (x + u) + i(y + v), z w = (xu yv) + i(xv + yu).

Mehr

Cauchys Integralsatz und Cauchys Integralformel

Cauchys Integralsatz und Cauchys Integralformel Kapitel 23 Cauchys Integralsatz und Cauchys Integralformel 23. Der Cauchysche Integralsatz (einfach zusammenhängend; einfache geschlossene Kurven; Fresnelsche Integrale) Wird die Voraussetzung f habe eine

Mehr

Elemente der Funktionentheorie

Elemente der Funktionentheorie Astrophysikalisches Institut Neunhof Mitteilung sd98027, August 2010 1 Elemente der Funktionentheorie Die wichtigsten Sätze und Hilfsmittel für Anwendungen in der physikalischen Feldtheorie Übersicht Einige

Mehr

10. Isolierte Singularitäten

10. Isolierte Singularitäten 0. Isolierte Singularitäten 57 0. Isolierte Singularitäten Der wichtigste Spezialfall von Laurent-Reihen (und in der Tat auch der, den wir ab jetzt nur noch betrachten werden) ist der, bei dem der innere

Mehr

Mathematik III für Physiker. Übungsblatt 15 - Musterlösung

Mathematik III für Physiker. Übungsblatt 15 - Musterlösung Aufgabe 5.. a) Mathematik III für Physiker Wintersemester /3 Übungsblatt 5 - Musterlösung sin n n n j j+ j +)! )j 3 3! + 5 5!... ) n 3! +... n 3 5! n 5 Die Funktion hat einen Pol der Ordnung n. Der Hauptteil

Mehr

D-MATH Funktionentheorie HS 2018 Prof. Michael Struwe. Lösungen Serie 8. Laurentreihen, isolierte Singularitäten, meromorphe Funktionen

D-MATH Funktionentheorie HS 2018 Prof. Michael Struwe. Lösungen Serie 8. Laurentreihen, isolierte Singularitäten, meromorphe Funktionen D-MATH Funktionentheorie HS 208 Prof. Michael Struwe Lösungen Serie 8 Laurentreihen, isolierte Singularitäten, meromorphe Funktionen. Bestimmen Sie die Laurentreihenentwicklung der folgenden Funktionen:

Mehr

8. Die Nullstellen der Zeta-Funktion

8. Die Nullstellen der Zeta-Funktion 8.. Wie vorher sei ( s ξ(s = π s/ Γ ζ(s. ξ ist meromorph in ganz C, hat Pole (erster Ordnung nur bei s = und s = und genügt der Funktionalgleichung ξ(s = ξ( s. Daraus folgt: Für Re s < hat die Zeta-Funktion

Mehr

Aufgabe 1.1 (Hilberträume). Sei H ein Hilbertraum und V H ein beliebiger Unterraum. Kreuzen Sie an, welche der folgenden Aussagen zutreffen:

Aufgabe 1.1 (Hilberträume). Sei H ein Hilbertraum und V H ein beliebiger Unterraum. Kreuzen Sie an, welche der folgenden Aussagen zutreffen: Musterlösung 1 Hilberträume Aufgabe 1.1 (Hilberträume). Sei H ein Hilbertraum und V H ein beliebiger Unterraum. Kreuzen Sie an, welche der folgenden Aussagen zutreffen: Die durch das Skalarprodukt induzierte

Mehr

Formelsammlung Analysis III - Funktionentheorie für Physiker und Mathematiker

Formelsammlung Analysis III - Funktionentheorie für Physiker und Mathematiker Formelsammlung Analysis III - Funktionentheorie für Physiker und Mathematiker Stand: 2.07.2006 - Version:.0. Erhältlich unter http://privat.macrolab.de Diese Formelsammlung

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Michael Wolf Daniel Stilck França Stefan Huber Zentralübung Z7.. Komplexe Wegintegrale TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Berechnen Sie die folgenden Integrale: (a cos(z e z z

Mehr

Höhere Mathematik II für die Fachrichtung Physik. 12. Übungsblatt

Höhere Mathematik II für die Fachrichtung Physik. 12. Übungsblatt Institut für Analysis SS207 PD Dr. Peer Christian Kunstmann 4.07.207 Dipl.-Math. Leonid Chaichenets, Johanna Richter, M.Sc., Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung

Mehr

4 Der globale Cauchysche Integralsatz 56

4 Der globale Cauchysche Integralsatz 56 Inhaltsverzeichnis Vorbemerkung ii 0 Abbildungen f : U lc lc, (x, y) f(x, y) 2 1 Holomorphe Funktionen 10 2 Kurvenintegrale 18 3 Die Stammfunktion 27 3.1 Stammfunktionen und der Cauchysche Integralsatz........

Mehr

Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 12. Übungsblatt Karlsruher Institut für Technologie KIT) Institut für Analysis Priv.-Do. Dr. P. C. Kunstmann Dipl.-Math. D. Roth SS 0 5.07.0 Aufgabe 60 Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge

Mehr

Klausur zur Vorlesung Funktionentheorie Sommersemester Mittwoch, , 9:00 12:00 Uhr

Klausur zur Vorlesung Funktionentheorie Sommersemester Mittwoch, , 9:00 12:00 Uhr UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Klausur zur Vorlesung Funktionentheorie Sommersemester 2012 Mittwoch, 1.8.2012, 9:00 12:00 Uhr Willkommen

Mehr

3. VORLESUNG,

3. VORLESUNG, 1.3.9. Satz (Parametrisierung der Kreislinie). 3. VORLESUNG, 23.04.2009 (i) Die Abbildung p : R S 1, p(ϕ) = e iϕ = cosϕ+isinϕ ist ein Gruppenmorphismus der additiven Gruppe (R,+) auf die multiplikative

Mehr

falls falls Satz v. Cauchy: falls analytisch ist auf einfach zusammenhängendem Gebiet, gilt: Geschlossener Weg liefert 0: Wegunabhängigkeit:, mit

falls falls Satz v. Cauchy: falls analytisch ist auf einfach zusammenhängendem Gebiet, gilt: Geschlossener Weg liefert 0: Wegunabhängigkeit:, mit Zusammenfassung: Analytische Funktionen Def: Komplexe Funktion ist analytisch in, falls überall in existiert. Cauchy-Riemann- Differentialgleichungen: Def: Komplexes Wegintegral: Substitution: Wichtiges

Mehr

Analysis III für Physik

Analysis III für Physik Analysis III für Physik Prof Dr Uwe Jannsen Wintersemester 2014/15 Inhaltsverzeichnis 0 Erinnerung/Einstimmung 1 1 Komplexe Funktionen 4 2 Komplexe Differenzierbarkeit 6 3 Komplexe Potenzreihen 10 4 Der

Mehr

Ferienkurs Analysis 3. Ari Wugalter März 2011

Ferienkurs Analysis 3. Ari Wugalter März 2011 Ari Wugalter 07. - 08. März 2011 1 1 Hilberträume Im ersten Kapitel wollen wir uns mit den grundlegenden Eigenschaften von Hilberträumen beschäfitgen. Hilberträume habe die herausragende Eigenschaft, dass

Mehr

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen 1 Einleitung Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis 1 aus dem Wintersemester 2008/09

Mehr

X. Funktionentheorie. Übersicht über den Inhalt von Kapitel X: 57. Holomorphe Funktionen. 58. Cauchy-Formeln und Anwendungen

X. Funktionentheorie. Übersicht über den Inhalt von Kapitel X: 57. Holomorphe Funktionen. 58. Cauchy-Formeln und Anwendungen 56 Integralsätze im Raum 273 X. Funktionentheorie Übersicht über den Inhalt von Kapitel X: 57. Holomorphe Funktionen 58. Cauchy-Formeln und Anwendungen 59. Laurent-Entwicklungen und Residuensatz 274 X.

Mehr

3.4 Analytische Fortsetzung

3.4 Analytische Fortsetzung 3.4 Analytische Fortsetzung 3.4. Analytische Fortsetzung 49 Es kann vorkommen, dass eine holomorphe Funktion f, definiert durch eine Potenzreihe um den Punkt z 0 mit Konvergenzradius R, über den Rand der

Mehr

Übungen zur Funktionentheorie Lösungen zu Übungsblatt 6

Übungen zur Funktionentheorie Lösungen zu Übungsblatt 6 Mathematisches Institut SS 29 Universität München Prof. Dr. M. Schottenloher C. Paleani A. Stadelmaier M. Schwingenheuer Übungen zur Funktionentheorie Lösungen zu Übungsblatt 6. Gegeben sei folgende konforme

Mehr

3 Meromorphe Funktionen und der Residuenkalkül

3 Meromorphe Funktionen und der Residuenkalkül $Id: mero.tex,v.5 203/05/4 3:0:42 hk Exp hk $ 3 Meromorphe Funktionen und der Residuenkalkül 3.2 Isolierte Singularitäten In der letzten Sitzung hatten wir die drei Typen isolierter Singularitäten und

Mehr

Anhang. ν=1,...,n z ν.

Anhang. ν=1,...,n z ν. Komplexe Analysis von mehreren Veränderlichen 121 Anhang Komplexe Analysis von mehreren Veränderlichen 1 Holomorphe Funktionen Definition. Die euklidische Norm eines Vektors z C n wird gegeben durch z

Mehr

Kapitel 6. Exponentialfunktion

Kapitel 6. Exponentialfunktion Kapitel 6. Exponentialfunktion 6.1. Potenzreihen In Kap. 4 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

Einführung in die Funktionentheorie 1

Einführung in die Funktionentheorie 1 Einführung in die Funktionentheorie Martin Ziegler Freiburg, WS 994/95, WS 2000/0, SS 2006 Literatur [] Klaus Jänich. Funktionentheorie. Springer Verlag, 993. [2] H.Behnke und F.Sommer. Theorie der analytischen

Mehr

Aufgabe 1 Berechnen Sie folgende Integrale mit Hilfe des Residuensatzes: e z a) f(z) dz = 2πi Res(f, 1) = eπi. Res(f, 1) = (z 1)f(z) =

Aufgabe 1 Berechnen Sie folgende Integrale mit Hilfe des Residuensatzes: e z a) f(z) dz = 2πi Res(f, 1) = eπi. Res(f, 1) = (z 1)f(z) = Karlsruher Institut für Technologie (KIT) SS 3 Institut für Analysis 73 Prof Dr Tobias Lamm Dr Patrick Breuning Höhere Mathematik II für die Fachrichtung Physik Übungsblatt Aufgabe Berechnen Sie folgende

Mehr

Holomorphe Funktionen

Holomorphe Funktionen 1 Kapitel 1 Holomorphe Funktionen 1 Komplexe Differenzierbarkeit Ist z = (z 1,..., z n ) ein Element des C n und z ν = x ν + i y ν, so können wir auch schreiben: z = x + i y, mit x = (x 1,..., x n ) und

Mehr

3 Windungszahlen und Cauchysche Integralformeln

3 Windungszahlen und Cauchysche Integralformeln 3 3 Windungszahlen und Cauchysche Integralformeln 3. Definition: Sei geschlossener Integrationsweg oder Zyklus mit z 0 C \ Sp. Dann heißt n(, z 0 ) := dz z z 0 Windungszahl (oder: Index, Umlaufszahl) von

Mehr

6 Komplexe Integration

6 Komplexe Integration 6 Komplexe Integration Ziel: Berechne für komplexe Funktion f : D W C Integral der Form f(z)dz =? wobei D C ein Weg im Definitionsbereich von f. Fragen: Wie ist ein solches komplexes Integral sinnvollerweise

Mehr