K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung SS 18: Woche vom

Größe: px
Ab Seite anzeigen:

Download "K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung SS 18: Woche vom"

Transkript

1 Übungsaufgaben 3. Übung SS 18: Woche vom Partielle DGL IV (PDGL 2. O.: Normalform, Separ.-ans.) Aufgaben: s. pdf auf der homepage von Dr. Vanselow vanselow/... (SS18).html 1.) Hinweis zum Übungs- und Begleitheftheft PDGL: kann beides erworben werden bei: Copy Cabana

2 Wdhlg.: Grundform 3 Haupttypen (PDGL 2.O.) parabolisch: u t u xx +... = f(x, t), (allg.: u t x u) hyperbolisch: u tt u xx +... = f(x, t), (allg.: u tt x u) elliptisch: u xx + u yy +... = f(x, y), (allg.: u +...) Physikalisch-technische Prozesse parabolisch: Wärmeleitgleichung, Diffusionsgleichung instationär hyperbolisch: instation. Schwingungsgleichung: elastische Saite, Schall, elektromagnetische Felder,... elliptisch: Wärmeleitgleichung, Diffusionsgleichung stationär, Schwingungsgleichung stationär (zeitharmonisch), lineare Elastizität (statisch)

3 Wdhlg.: Physikalische Grundphänomene parabolisch: Maximumprinzip, unendlich glättend, augenblickliche Fernwirkung hyperbolisch: endliche Ausbreitungsgeschwindigkeit, Wellenfronten, unstetige Lösungen ( Transport und Entstehung von Schocks bzw. Singularitäten ) elliptisch: homogene Laplacegleichung (z.b. elektrostatisches Potential) ebenfalls unendlich glättend Multiskaleneffekte: Navier-Stokes-Gleichung ( formal parabolisch) - reicht abhängig von Reynoldszahl von hochviskosen Kriechströmungen ( rein parabolisch) bis zu Hochgeschwindigkeitsströmungen (Windkanal) und bis zu Turbulenz (Wirbelsturm) (de facto hyperbolisch)

4 Die Wärmeleitungsgleichung (parabol.) Unendlich langer, dünner Stab, homogen, isotrop (k = λ cρ = const.), θ - Temperatur (zur Zeit t am Ort x), f(x, t) - Wärmezuführung Die Vorgabe einer Anfangstemperaturverteilung θ 0 (x) legt (zusammen mit der PDGL) die Lösung fest (AWA). θ t [kθ x ] x = f(x, t), θ = θ(x, t), θ(x, 0) = θ 0 (x), x R Die Fundamentallösung der Wärmeleitungsgleichung H(x, t) = 4πkt 1 e x2 /4kt, x R, t > 0. θ(x, t) = θ(x, t) = H(x y, t)θ 0 (y)dy + R } {{ } Anteil AB t H(x y, t s)f(y, s)dsdy 0 } R {{ } Anteil Quelle

5 Drei Hauptphänomene (mathematische Eigenschaften): Maximumprinzip (physikalisch wichtig) Glättung von (unstetigen) Anfangstemperaturprofilen (sofort für t > 0 - bei f 0) unendliche Fernwirkung (unkritisch für technische Anwendg. im Normalbereich, besonders auf endlichen Bereichen) Diffusionsprozesse haben gleiche PDGL Die Schwingungsgleichung (hyperbol.) Lange, dünne (elastische) Saite (homogen, isotrop), u(x, t) - Auslenkung (Zeit/Ort) Anfangswertproblem (AWP): u tt = c 2 u xx, u(x, 0) = h 1 (x), u t (x, 0) = h 2 (x) h 1 (x): Anfangsauslenkung; h 2 (x): -Geschwindigkeit

6 Die D Alembertsche Lösungsformel Keine Erregung durch Quellen/Senken, nur Transport der Anfangssituation : AWA: u tt = c 2 u xx, u(x, 0) = h 1 (x), u t (x, 0) = h 2 (x) u(x, t) = h 1(x + ct) + h 1 (x ct) 2 Speziell für u t 0, u(x, 0) = h(x): + 1 2c x+ct x ct h 2 (y)dy u(x, t) = 1 2 [h(x + ct) + h(x ct)] Interpretation: 2 (mit Geschwindigkeit c) nach rechts/links laufende Wellen der Anfangsauslenkung Charakteristischer Informationskegel : Erhaltung von Wellenfronten; endliche Ausbreitungsgeschwindigkeit.

7 Randwertaufgaben für die Laplacegleichung Geometrie: Gebiet Ω mit Rand Ω = Γ; Bsp.: Einheitskreis Ω = {(x, y) x 2 + y 2 < 1}, Γ = {(x, y) x 2 + y 2 = 1} 1. RWA (Dirichlet-Problem) u = u xx + u yy = f, x Ω, u(x) = g(x), x Γ 2. RWA (Neumann-Problem) u = f, x Ω, 3. RWA (Robin-Problem) u n = u n = g(x), x Γ u = f, x Ω, α u + βu = g(x), x Γ n Möglich: Auf Teilbereichen des Randes jeweils andere Randbedingung vorgeben.

8 Separationsansätze für PDGL Wärmeleitung: θ t = kθ xx, θ(x, t) = T (t) X(x) θ(x, t) = ν>0 e ν2 kt [A ν cos νx + B ν sin νx] Wellengleichung: u tt = a 2 u xx, u(x, t) = T (t) X(x) u(x, t) = ν>0[a ν cos νat + B ν sin νat][c ν cos νx + D ν sin νx] u = 1 r u = u xx + u yy = 0, in Polarkoordinaten: u [r r r ] + 1 r 2 u φφ = u rr + 1 r u r + 1 r 2 u φφ = 0 u(r, φ) = λ>0[cr λ + Dr λ ][A cos(λφ) + B sin(λφ)] Weitere partikuläre Lösungen für ν = λ = 0 sind

9 Separationsansätze (Fortsetzg.) Wärmeleitung: θ 0 (x, t) = 1 (A + Bx), Wellengleichung: u 0 (x, t) = (C + Dt) (A + Bx), A, B R A, B, C, D R Laplacegleichung: u 0 (r, φ) = (A ln r+b) (C+Dφ), A, B, C, D R Häufig nicht relevant sind Lsg. zu (z.b.) T /kt = X /X = +ν 2 : Wärmeleitung: θ (x, t) = ν>0 e +ν2 kt [A ν e νx + B ν e νx ] bzw. analog nicht relevant sind Lsg. zu T /a 2 T = X /X = +ν 2 : Wellengleichung: u (x, t) = ν>0[a ν e +νat +B ν e νat ][C ν e νx +D ν e νx ] Ähnliche (häufig nicht relevante) Lösungen existieren auch für die Laplacegleichung (z.b. in Polarkoordinaten).

10 Lsg. lin. RWA/ARWA 2. Ordng.: Superposition 1.) Wärmeleitproblem im endlichen Stab der Länge l (homogen): u t ku xx = f(x, t), (x, t) (0, l) (0, T ], RB: u(0, t) = g 1 (t), u x (l, t) = α(u(l, t) g 2 (t)), t (0, T ], AB: u(x, 0) = u 0 (x), x [0, l]. Superposition: u(x, t) = u 1 (x, t) + u 2 (x, t) + u 3 (x, t), mit: u 1 t ku 1 xx = f, u 1 (0, t) = 0, u 1 x(l, t) = αu 1 (l, t), u 1 (x, 0) = 0, u 3 t ku 3 xx = 0, u 3 (0, t)=0, u 3 x(l, t)=αu 3 (l, t), u 3 (x, 0)=u 0 (x), u 2 t ku 2 xx = 0, u 2 (0, t) = g 1 (t), u 2 x(l, t) = α(u 2 (l, t) g 2 (t)), und homogener Anf.-Bedg. für u 2 : u 2 (x, 0) = 0.

11 2.) Schwingende Saite (fest eingespannt) der Länge l (homogen): u tt a 2 u xx = f(x, t), (x, t) (0, l) (0, T ], RB: u(0, t) = 0 = u(l, t), t (0, T ], AB: u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), x [0, l]. Hier Superposition aus 2 Anteilen: u(x, t) = u 1 (x, t) + u 2 (x, t) u 1 (x, t): inhomogene Quelle, homogene AB (beide); u 2 (x, t): homogene Quelle, inhomogene AB (beide). Analog für Lösung der Laplacegleichung - z.b. Dirichlet-RWA: u = f, u Γ = g u(x) = u 1 (x) + u 2 (x) u 1 = f, u 1 Γ = 0, u 2 = 0, u 2 Γ = g

12 Wdhlg.: Randwertaufgaben für GDGL Erinnerung (VL im SS 17): Ein linearer Differentialoperator L[y] ist eine Abbildung Funktion: y L[y] (auch Funktion) Lineare RWA 2.Ordnung (x [a, b], a 0 > 0): (DGL + RB(!)) L[y] = a 0 (x)y + a 1 (x)y + a 2 (x)y = h(x), β 1 y(a) + α 1 y (a) = d 1, β 2 y(b) + α 2 y (b) = d 2 Nichtentartung: α β 2 1 > 0, α β 2 2 > 0 Homogene Randbedingung: d 1 = d 2 = 0

13 Wdhlg.: Lösbarkeit von RWA Wiederholung: AWA (2. Ordnung - 2AB) besitzt eindeutige Lösung; dagegen: Für RWA sind folgende 3 Fälle möglich (speziell auch 2.O.): genau eine keine unendlich viele Lösungen Das hängt vom Differentialoperator L[y], von der rechten Seite h(x), von den RB und von der Intervalllänge ab. Bemerkung: Auch für GDGL höherer (z.b., 4. Ordnung) existieren RWA (Balkengleichungen) und auch Eigenwertaufgaben (s. nächste Folie)

14 Wdhlg.: Das Eigenwertproblem Untersuchung des Randwertproblems: L[y] = a 0 (x)y + a 1 (x)y + a 2 (x)y = λy, x (a, b) β 1 y(a) + α 1 y (a) = 0, β 2 y(b) + α 2 y (b) = 0 Dabei ist λ R frei wählbar. Definition: Falls für ein λ R die obige RWA eine nichttriviale Lsg. ȳ(x) 0 besitzt, so heißt λ Eigenwert der RWA und ȳ(x) Eigenfunktion zum EW λ. analog zum EW-Problem für Matrizen y(x) 0 ist immer eine Lösung (aber uninterssant) (homogene) RW gehören mit zum EW-Problem!

15 Eigenwertaufgaben bei Randwertproblemen Beispiel 1: y = λy, y(0) = y(π) = 0, Fallunterscheidung: λ = 0, > 0, < 0 a) λ = 0 : y(x) = c 1 x + c 2, RB: y 0 λ = 0 kein EW b) λ < 0 : y = c 1 e λx + c 2 e λx, RB: y 0 λ < 0 kann kein EW sein (nur triviale Lösung möglich.) c) λ > 0 : y(x) = c 1 cos λx + c 2 sin λx,... Das RW-Problem besitzt die Eigenwerte λ n = n 2 (aus Fall c) und die Eigenfunktionen y n (x) = sin nx. Beispiel 2: y = λy, y(0) = y (1) = 0 (andere RW!) Das EW-Problem 2 besitzt die EW λ n = (n )2 π 2 und die EF y n (x) = sin[n ]πx

Klassifikation von partiellen Differentialgleichungen

Klassifikation von partiellen Differentialgleichungen Kapitel 2 Klassifikation von partiellen Differentialgleichungen Die meisten partiellen Differentialgleichungen sind von 3 Grundtypen: elliptisch, hyperbolisch, parabolisch. Betrachte die allgemeine Dgl.

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

Thema 10 Gewöhnliche Differentialgleichungen

Thema 10 Gewöhnliche Differentialgleichungen Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr

gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her)

gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her) Mechanik Wellen 16. Wellen 16.1. Einleitung Beispiele: gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her) Was passiert? Das schwingende Medium/Teilchen bewegt sich nicht fort, sondern schwingt

Mehr

6 Eigenlösungen der eindimensionalen Wellengleichung

6 Eigenlösungen der eindimensionalen Wellengleichung 39 Kontinuierliche Systeme lassen sich als Schwinger mit unendlich vielen Freiheitsgraden interpretieren. Daher ist ein ähnliches ösungsverhalten wie bei linearen diskreten Systemen zu erwarten, d.h. die

Mehr

12. Vorlesung. I Mechanik

12. Vorlesung. I Mechanik 12. Vorlesung I Mechanik 7. Schwingungen 8. Wellen transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen 9. Schallwellen, Akustik Versuche: Wellenwanne: ebene

Mehr

Differenzialgleichungen

Differenzialgleichungen Differenzialgleichungen Fakultät Grundlagen Februar 2016 Fakultät Grundlagen Differenzialgleichungen Übersicht Definitionen, Beispiele 1 Definitionen, Beispiele 2 Geometrische Deutung Numerik Einfache

Mehr

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS Aufgabe 1. a) Gegeben sei die Gleichung 2x 2 4xy +y 2 3x+4y = 0. Verifizieren Sie, dass diese Gleichung

Mehr

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1 . H Atom Grundlagen.1 Schrödingergleichung mit Radial-Potenzial V(r). Kugelflächen-Funktionen Y lm (θ,φ).3 Radial-Wellenfunktionen R n,l (r).4 Bahn-Drehimpuls l.5 Spin s Physik IV SS 005. H Grundl..1 .1

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 3 Dr. Ana Cannas Serie 3: Online Test Einsendeschluss: 3. Januar 4 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Testvorbereitung: Integrierender Faktor

Testvorbereitung: Integrierender Faktor Testvorbereitung: Integrierender Faktor Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien,.02.2007 Voraussetzung: Kenntnis der exakten Differentialgleichungen! Theoretische Grundlagen Eine nicht exakte

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Partielle Differentialgleichungen Carsten Timm Sommersemester 23 Version vom 4. Juli 23 Dieses Skript wurde für eine zweistündige Vorlesung über partielle Differentialgleichungen für Studierende der Physik

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

Ü b u n g s b l a t t 11

Ü b u n g s b l a t t 11 Mathe für Physiker I Wintersemester 0/04 Walter Oevel 8. 1. 004 Ü b u n g s b l a t t 11 Abgabe von Aufgaben am 15.1.004 in der Übung. Aufgabe 91*: (Differentialgleichungen, Separation. 10 Bonuspunkte

Mehr

Skript zur Vorlesung Partielle Differentialgleichungen, klassische Methoden

Skript zur Vorlesung Partielle Differentialgleichungen, klassische Methoden Skript zur Vorlesung Partielle Differentialgleichungen, klassische Methoden Christian Meyer basierend auf der Vorlesung Theorie partieller Differentialgleichungen von Prof. F. Tröltzsch, TU Berlin Material

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

EPI WS 2008/09 Dünnweber/Faessler

EPI WS 2008/09 Dünnweber/Faessler 11. Vorlesung EP I Mechanik 7. Schwingungen gekoppelte Pendel 8. Wellen (transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen) Versuche: Schwebung gekoppelte

Mehr

Differentialgleichung.

Differentialgleichung. Kapitel 6 Differentialgleichungen erster Ordnung 0.7.0 Beispiel 6.: Durch Verzinsung wächst ein Kapital Kx im Laufe der Zeit x. Der Zuwachs K zum Zeitpunkt x im kleinen Zeitraum x ist proportional zum

Mehr

Anhang A1. Schwingungen. A1.1 Freie Schwingung ohne Dämpfung. A1.2 Freie Schwingung mit Dämpfung PN0907

Anhang A1. Schwingungen. A1.1 Freie Schwingung ohne Dämpfung. A1.2 Freie Schwingung mit Dämpfung PN0907 Anhang A1 Schwingungen Am Beispiel eines Drehschwingers werden im Folgenden die allgemeinen Eigenschaften schwingfähiger Systeme zusammengestellt und diskutiert. A1.1 Freie Schwingung ohne Dämpfung Idealisierter

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

4. Vektorräume und Gleichungssysteme

4. Vektorräume und Gleichungssysteme technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof Dr H M Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 41 und 42 4 Vektorräume

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen XIV Gewöhnliche Differentialgleichungen Definition 4. : Sei n IN, F : D(F IR n+2 IR. Gewöhnliche DGL n ter Ordnung a F (x, y, y,..., y (n = heißt gewöhnliche Differentialgleichung (DGL n ter Ordnung. Läßt

Mehr

Dynamische Systeme eine Einführung

Dynamische Systeme eine Einführung Dynamische Systeme eine Einführung Seminar für Lehramtstudierende: Mathematische Modelle Wintersemester 2010/11 Dynamische Systeme eine Einführung 1. Existenz und Eindeutigkeit von Lösungen 2. Flüsse,

Mehr

Einführung in die Physik I. Schwingungen und Wellen 3

Einführung in die Physik I. Schwingungen und Wellen 3 Einführung in die Physik Schwingungen und Wellen 3 O. von der Lühe und U. Landgraf Elastische Wellen (Schall) Elastische Wellen entstehen in Flüssigkeiten und Gasen durch zeitliche und räumliche Veränderungen

Mehr

Punktprozesse. Andreas Frommknecht Seminar Zufällige Felder Universität Ulm

Punktprozesse. Andreas Frommknecht Seminar Zufällige Felder Universität Ulm Einführung in Beispiele für Andreas Seminar Zufällige Felder Universität Ulm 20.01.2009 Inhalt Einführung in Beispiele für Definition Markierte 1 Einführung in Definition Markierte 2 Beispiele für Homogener

Mehr

Aufgaben für die 6. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010

Aufgaben für die 6. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010 Aufgaben für die 6. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 00 6. Wie hat man eine reelle Zahl α > 0 so in a b 3 positive Summanden x, y, z zu zerlegen, damit fx, y x y

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

1. Vorlesung Partielle Differentialgleichungen

1. Vorlesung Partielle Differentialgleichungen 1. Vorlesung Partielle ifferentialgleichungen Wolfgang Reichel Übersee-Vorlesung aus Oaxaca, Mexiko, 19. Oktober 2010 Institut für Analysis KIT University of the State of Baden-Wuerttemberg and National

Mehr

Formelzusammenstellung

Formelzusammenstellung Übung zu Mechanik 4 - ormelsammlung Seite 4 ormelzusammenstellung. Grundbegriffe Harmonische Schwingung Sinusschwingung: (t) sin ( t + ϕ) Schwingungsamplitude: Kreisfrequenz: Phasenwinkel: requenz: f Schwingungsdauer,

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

Lösungen der Übungsaufgaben von Kapitel 4

Lösungen der Übungsaufgaben von Kapitel 4 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 4 zu 4.1 4.1.1 Eine Funktion f : R R sei als Nullfunktion für x 0 und als x x für x 0 definiert.

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Experimentalphysik II

Experimentalphysik II Experimentalphysik II Wellenlehre und Optik: Wellen und Wellengleichung, Welle-Teilchen-Dualismus, Licht als Welle (Huygenssches Prinzip, Reflexion, Brechung und Beugung), Optik 3.1. Wellen und Wellengleichung

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

4.3 Anwendungen auf Differentialgleichungen

4.3 Anwendungen auf Differentialgleichungen 7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,

Mehr

Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie 10 (Lineare Abbildungen)

Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie 10 (Lineare Abbildungen) Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie (Lineare Abbildungen) Dozent/in: R. Burkhardt Büro:.6 Klasse: Semester: Datum: HS 8/9. Aufgabe Zeige, dass die folgenden Abbildungen

Mehr

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 11 Blatt 2

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 11 Blatt 2 Höhere Mathematik III WS 5/6 Lösungshinweis Aufgabe G 11 Blatt Die zu optimierende Zielfunktion ist der Abstand zum Ursprung. Ein bekannter Trick (Vereinfachung der Rechnung) besteht darin, das Quadrat

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 12 Gewöhnliche Differentialgleichungen 121 Einführende Beispiele und Grundbegriffe Beispiel 1 ( senkrechter Wurf ) v 0 Ein Flugkörper werde zum Zeitpunkt t = 0 in der Höhe s = 0 t = 0 s = 0 mit der Startgeschwindigkeit

Mehr

2.5 Aufgabe Aufgabe Aufgabe Aufgabe 8

2.5 Aufgabe Aufgabe Aufgabe Aufgabe 8 4 7 3 / 4 m 5 / 8 x (81) = 4 α f(x) = 3x 2 6x + 9 f(x) = x 2 10x + 9 (x + 2y) 2 =? ( 36m2 ) 9m 5n 2 (5x+y) (2+6) 4 / 7 7 / 7 336 = 4 7 x = 7 7 x 4 7 = 336 : 7 4 Kehrbruch! x = 588 3 / 4 m 5 / 8 x 5 / 8

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

Analysis II WS 11/12 Serie 9 Musterlösung

Analysis II WS 11/12 Serie 9 Musterlösung Analysis II WS / Serie 9 Musterlösung Aufgabe Bestimmen Sie die kritischen Punkte und die lokalen Extrema der folgenden Funktionen f : R R: a fx, y = x + y xy b fx, y = cos x cos y Entscheiden Sie bei

Mehr

Übung 22: Gradient und Richtungsableitung; Extremwertaufgaben für Funktionen mehrerer Veränderlicher

Übung 22: Gradient und Richtungsableitung; Extremwertaufgaben für Funktionen mehrerer Veränderlicher Technische Universität Chemnitz 1. Juli 20 Fakultät für Mathematik Höhere Mathematik I.2 Übung 22: Gradient und Richtungsableitung; Extremwertaufgaben für Funktionen mehrerer Veränderlicher 1. Durch ein

Mehr

Stabilität mittels Ljapunov Funktion

Stabilität mittels Ljapunov Funktion Stabilität mittels Ljapunov Funktion Definition Eine C 1 Funktion V : D R, D R, heißt eine Ljapunov Funktion auf K r (0) D für f(y), falls gilt: 1) V(0) = 0, V(y) > 0 für y 0 2) V,f(y) 0 ( y, y r) Gilt

Mehr

1. Klausur. für bau immo tpbau

1. Klausur. für bau immo tpbau 1. Klausur Höhere Mathematik I/II für bau immo tpbau Wichtige Hinweise Die Bearbeitungszeit beträgt 120 Minuten. Verlangt und gewertet werden alle 6 Aufgaben. Bei Aufgabe 1 2 sind alle Lösungswege und

Mehr

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren Aufgabe Gegeben seien die Punkte A(,,, B(,,, C(,,. (a Geben Sie die Hesse-Normalform der Ebene E, welche die drei Punkte A, B und C enthält, an. (b Bestimmen Sie den Abstand des Punktes P (,, 5 zur Ebene

Mehr

Zahlen und Gleichungen

Zahlen und Gleichungen Kapitel 2 Zahlen und Gleichungen 21 Reelle Zahlen Die Menge R der reellen Zahlen setzt sich zusammen aus den rationalen und den irrationalen Zahlen Die Mengen der natürlichen Zahlen N, der ganzen Zahlen

Mehr

Formelanhang Mathematik II

Formelanhang Mathematik II Formelanhang Mathematik II Mechatronik 2. Sem. Prof. Dr. K. Blankenbach Wichtige Formeln: - Euler: e j = cos() + j sin() ; e -j = cos() - j sin() - Sinus mit Phase: Übersicht Differentialgleichungen (DGL)

Mehr

6. Übungsblatt zur Mathematik I für Maschinenbau

6. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 6. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 2/ 25..-.2. Aufgabe G (Lineare Gleichungssysteme)

Mehr

Differenzengleichungen

Differenzengleichungen Universität Basel Wirtschaftswissenschaftliches Zentrum Differenzengleichungen Dr. Thomas Zehrt Inhalt: 1. Einführungsbeispiele 2. Definition 3. Lineare Differenzengleichungen 1. Ordnung (Wiederholung)

Mehr

Differentialgleichungen

Differentialgleichungen Karl-Franzens-Universität Graz Institut für Mathematik und Wissenschaftliches Rechnen Heinrichstr 36, A-81 Graz, Österreich Differentialgleichungen für LAK Vorlesungsmitschrift von Gerald Groicher aus

Mehr

6 Elektromagnetische Schwingungen und Wellen

6 Elektromagnetische Schwingungen und Wellen 6 Elektroagnetische Schwingungen und Wellen Elektroagnetischer Schwingkreis Schaltung it Kondensator C und Induktivität L. Kondensator wird periodisch aufgeladen und entladen. Tabelle 6.1: Vergleich elektroagnetischer

Mehr

Lösung zur Übung 19 SS 2012

Lösung zur Übung 19 SS 2012 Lösung zur Übung 19 SS 01 69) Beim radioaktiven Zerfall ist die Anzahl der pro Zeiteinheit zerfallenden Kerne dn/dt direkt proportional zur momentanen Anzahl der Kerne N(t). a) Formulieren Sie dazu die

Mehr

Übungen zu Funktionen mehrerer Veränderlicher. Lösungen zu Übung Betrachten Sie die durch. y 1 + x 2. z = gegebene Fläche.

Übungen zu Funktionen mehrerer Veränderlicher. Lösungen zu Übung Betrachten Sie die durch. y 1 + x 2. z = gegebene Fläche. Übungen zu Funktionen mehrerer Veränderlicher 5.1 Betrachten Sie die durch Lösungen zu Übung 5 gegebene Fläche. z = y 1 + x 2 (a) Zeichnen Sie die Höhenlinien in ein Koordinatensystem. (b) Veranschaulichen

Mehr

6. Erzwungene Schwingungen

6. Erzwungene Schwingungen 6. Erzwungene Schwingungen Ein durch zeitveränderliche äußere Einwirkung zum Schwingen angeregtes (gezwungenes) System führt erzwungene Schwingungen durch. Bedeutsam sind vor allem periodische Erregungen

Mehr

4 Elementare Vektorraumtheorie

4 Elementare Vektorraumtheorie 4. ELEMENTARE VEKTORRAUMTHEORIE 51 4 Elementare Vektorraumtheorie Im folgenden sei K stets ein Körper. Definition. (i) Eine homogene Gleichung in den Unbekannten ξ 1,..., ξ n ist ein Ausdruck der Gestalt

Mehr

Vertiefung NWI: 13. Vorlesung zur Wahrscheinlichkeitstheorie

Vertiefung NWI: 13. Vorlesung zur Wahrscheinlichkeitstheorie Fakultät für Mathematik Prof. Dr. Barbara Gentz SS 2013 Vertiefung NWI: 13. Vorlesung zur Wahrscheinlichkeitstheorie Mittwoch, 10.7.2013 13. Markoffketten 13.1 Beispiele 1. Irrfahrt auf dem zweidimensionalen

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

Kann man die Form einer Trommel hören? Prof. Dr. Daniel Grieser

Kann man die Form einer Trommel hören? Prof. Dr. Daniel Grieser Kann man die Form einer Trommel hören? Prof. Dr. Daniel Grieser Grundlagen der Schwingungslehre 1. Frequenz = Tonhöhe Amplitude = Lautstärke Grundlagen der Schwingungslehre 1. Frequenz = Tonhöhe Amplitude

Mehr

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird,

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird, Determinanten Wir entwickeln eine Lösungsformel für Gleichungssysteme mit zwei Variablen. ax + cy = e b bx + y = f a } abx bcy = be + abx + ay = af ya bc = af be Man schreibt y = af be a bc = a e b f analog

Mehr

[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0.

[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0. Wellen ================================================================== 1. Transversal- und Longitudinalwellen ------------------------------------------------------------------------------------------------------------------

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 9: Mehrdimensionale Integrale Prof. Dr. Erich Walter Farkas Mathematik I+II, 9. Mehrdim. Int. 1 / 39 1 Doppelintegrale 2 Prof.

Mehr

Formelsammlung Elektrodynamik

Formelsammlung Elektrodynamik Formelsammlung Elektrodynamik SS 2006 RWTH Aachen Prof. Kull Skript Simon Sawallich Inhaltsverzeichnis 1 Allgemeines 3 1.1 Funktionen............................................ 3 Trigonometrische Funktionen..................................

Mehr

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Ähnlichkeitstheorie Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Verringerung der Anzahl der physikalischen Größen ( Anzahl der Experimente) Experimentelle Ergebnisse sind unabhängig

Mehr

Ergänzungen zur Physik I: Wellen (Zusammenfassung)

Ergänzungen zur Physik I: Wellen (Zusammenfassung) Ergänzungen zu Physik I Inhaltsverzeichnis Ergänzungen zur Physik I: Wellen (Zusammenfassung) U. Straumann, 28. Dezember 2013 Physik - Institut Universität Zürich Inhaltsverzeichnis 1 Wellengleichung 2

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

3.3 Klassifikation quadratischer Formen auf R n

3.3 Klassifikation quadratischer Formen auf R n 3.3. Klassifikation quadratischer Formen auf R n 61 3.3 Klassifikation quadratischer Formen auf R n Wir können den Hauptsatz über symmetrische Matrizen verwenden, um uns einen Überblick über die Lösungsmengen

Mehr

14.3 Berechnung gekrümmter Flächen

14.3 Berechnung gekrümmter Flächen 4.3 Berechnung gekrümmter Flächen Gekrümmte Flächen werden berechnet, indem sie als Graph einer Funktion zweier Veränderlicher aufgefasst werden. Fläche des Graphen einer Funktion zweier Veränderlicher

Mehr

Ebene algebraische Kurven

Ebene algebraische Kurven Ebene algebraische Kurven Tangenten und Singularitäten Meyrer Claudine 4. November 010 Inhaltsverzeichnis 1 Lokale Eigenschaften an-algebraischer Kurven (in C ) 1.1 Denitionen..............................

Mehr

Betriebsanleitung für gewöhnliche lineare Differentialgleichungen. Prof. Dr. Dirk Ferus

Betriebsanleitung für gewöhnliche lineare Differentialgleichungen. Prof. Dr. Dirk Ferus Betriebsanleitung für gewöhnliche lineare Differentialgleichungen Prof. Dr. Dirk Ferus Version vom 30.10.2005 Inhaltsverzeichnis 1 Homogene skalare Gleichungen. 1 1.1 Einfache reelle Nullstellen.............................

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

Primzahlen Darstellung als harmonische Schwingung

Primzahlen Darstellung als harmonische Schwingung Primzahlen Darstellung als harmonische Schwingung Die natürliche Sinusschwingung wird hier in Zusammenhang mit der Zahlentheorie gebracht um einen weiteren theoretischen Ansatz für die Untersuchung der

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas Serie 9: Satz von Stokes und Divergenzsatz Bemerkungen: Die Aufgaben der Serie 9 bilden den Fokus der Übungsgruppen vom 28./30. April. 1. Berechnen

Mehr

Thermodynamik II Musterlösung Rechenübung 8

Thermodynamik II Musterlösung Rechenübung 8 Thermodynamik II Musterlösung Rechenübung 8 Aufgabe a) Annahmen: (a) stationärer Zustand (b) -dimensionale Wärmeleitung (x-richtg.) (c) λ = konst., α = konst. (d) keine Wärmequellen (e) keine Wärmestrahlung

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

Kevin Caldwell. 18.April 2012

Kevin Caldwell. 18.April 2012 im Rahmen des Proseminars Numerische Lineare Algebra von Prof.Dr.Sven Beuchler 18.April 2012 Gliederung 1 2 3 Mathematische Beschreibung von naturwissenschaftlich-technischen Problemstellungen führt häufig

Mehr

19.3 Oberflächenintegrale

19.3 Oberflächenintegrale 19.3 Oberflächenintegrale Definition: Sei D R 2 ein Gebiet und p : D R 3 eine C 1 -Abbildung x = p(u) mit x R 3 und u = (u 1, u 2 ) T D R 2 Sind für alle u D die beiden Vektoren und u 1 linear unabhängig,

Mehr

Elektrische Schwingungen und Wellen

Elektrische Schwingungen und Wellen Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #4 am 0.07.2007 Vladimir Dyakonov Elektrische Schwingungen und Wellen Wechselströme Wechselstromgrößen

Mehr

Studiengänge) Beispiele

Studiengänge) Beispiele Grundkurs Höhere Mathematik I (für naturwissenschaftliche Studiengänge) Beispiele Prof. Dr. Udo Hebisch Diese Beispielsammlung ergänzt das Vorlesungsskript und wird ständig erweitert. DETERMINANTEN Determinanten

Mehr