Ebene algebraische Kurven

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Ebene algebraische Kurven"

Transkript

1 Ebene algebraische Kurven Tangenten und Singularitäten Meyrer Claudine 4. November 010 Inhaltsverzeichnis 1 Lokale Eigenschaften an-algebraischer Kurven (in C ) 1.1 Denitionen Singularitäten Schnittmultiplizität und Tangenten Globale Eigenschaften algebraischer Kurven in P (C) 9 3 Literatur 1 1

2 In diesem Kapitel, wird es hauptsächlich darum gehen, zu sehen wofür man die Schnittmultiplizität und den Satz von Bézout, die beide schon in Kapitel (vgl. [1]) erwähnt wurden, gebrauchen kann. Wir werden uns zuerst nur auf die lokalen Eigenschaften von Kurven im C beschränken, und sie erst später auf den ganzen projektiven Raum erweitern. 1 Lokale Eigenschaften an-algebraischer Kurven (in C ) 1.1 Denitionen Denition 1. Sei C = V (f) C eine algebraische Kurve, wobei f C[X 1, X ] ein Minimalpolynom ist. C heisst glatt in einem Punkt p C, wenn gilt: grad p (f) (0, 0). Ist C nicht glatt in p, so ist C singulär in p. Es ist wichtig zu verlangen, dass f C[X 1, X ] ein Minimalpolynom ist, weil sonst wäre C in jedem Punkt singulär. Beispiel 1. Sei g = X 1 X, also ist grad p (g) = (X 1 X, X X 1 ). Das passende Minimalpolynom ist f = X 1 X. Der Punkt p = (p 1, p ) gehört zu V (f) genau dann, wenn p 1 = 0 oder p = 0. Also ist für jedes p C = V (f), grad p (g) = (0, 0) Also wäre jedes p C eine Singularität. Man kann dies auch anders interpretieren: Gibt es p V (f), so dass grad p (f) (0, 0) f ist Minimalpolynom. Denition. Sei C C eine algebraische Kurve, die glatt in p ist. Dann ist die Tangente an C in p deniert durch: { T p C = (x 1, x ) C f : (p) x 1 + f } (p) x = c, X wobei c so zu wählen ist, dass p in T p C liegt und es gibt genau eine solche Gerade.

3 Beispiel. Die Neilsche Parabel, C = {(x 1, x ) R : x 3 1 x = 0} besitzt eine Singularität im Punkt (0,0): Abbildung 1: Neilsche Parabel Beispiel 3. Der Newtonsche Knoten C = {(x 1, x ) R : x = x 1(x 1 + 1)} hat im Ursprung eine Singularität: Abbildung : Newtonscher Knoten 1. Singularitäten Natürlich stellt sich die Frage wie viele Singularitäten eine Kurve überhaupt besitzt. Der folgende Satz bringt uns der Antwort ein bisschen näher: Satz 1. Sei C = V (f) C eine algebraische Kurve, mit f C[X 1, X ] ein Minimalpolynom. Dann besitzt C endlich viele Singularitäten. 3

4 Beweis. Seien C 1 := V ( f ) und C := V ( f X ). Dann ist für die Singularitätenmenge, SingC:={p C : C singulär in p}: SingC = C C 1 C. Wir wollen also zeigen, dass SingC = C C 1 C eine endliche Menge ist. Es reicht zu zeigen, dass C C 1 endlich ist. Wir gehen davon aus, dass degc, weil wenn C eine Gerade wäre, hätte C überhaupt keine Singularitäten. Daraus folgt, dass degc 1 1. Somit ist C 1 eine algebraische Kurve. Wir werden für den Beweis dieses Satzes den Satz von Bézout verwenden. Dazu müssen wir aber zuerst zeigen, dass C und C 1 keine gemeinsame Komponente besitzen. Dafür machen wir einen Widerspruchsbeweis: Sei also g ein gemeinsamer Primfaktor von f und f : f = g h und f = g h = g h + g h. Also gilt, dass g ein Teiler von g h ist. Dann hat man zwei Fälle zu unterscheiden: g 1. Fall: 0 : Dann ist g Teiler von h. Das heisst h = g h 1, und deshalb ist f = g h 1. Dies ist ein Widerspruch zu f ist Minimalpolynom. g. Fall: = 0 : Dann ist g = X + c. Wenn wir aber die Koordinaten von Anfang an so wählen, dass C keine achsenparallele Gerade enthält, dann ist dieser Fall überüssig. Aus diesem Satz folgt: degc=n C hat höchstens n(n 1) Singularitäten. Da es nicht sehr interessant ist, Tangenten in glatten Punkten zu betrachten, stellt man sich die Frage wie wohl so eine Tangente in einem singulären Punkt aussieht. Die Antwort auf diese Frage wird erst später geliefert, allerdings ist die folgende Denition wichtig für das spätere Verständnis: Denition 3. Sei f C[X 1, X ] und p = (p 1, p ) C fest gewählt. Dann kann man f schreiben als f(x 1, X ) = f (k), wobei f (k) = a µν (X 1 p 1 ) µ (X p ) ν k µ+ν=k und a µν = 1 µ!ν! µ+ν f X µ 1 (p). Xν Dann ist die Ordnung von f in p deniert durch: ord p (f) := min{k : f (k) 0}. 4

5 Analog deniert man die Ordnung von C in p, für eine Kurve C C und deren Minimalpolynom f: ord p (C) := ord p (f). Eigenschaften der Ordnung von C in p. a) 0 ord p C degc, b) p C ord p C > 0, c) C glatt in p ord p C=1, d) C singulär in p ord p C > 1. Beispiel 4. Sei C eine algebraische Kurve mit deg(c) = n. ord p C = n, genau dann wenn f = f (n). f (n) ist homogen und kann deshalb wie folgt zerlegt werden: f (n) = (b 1 X 1 a 1 X )... (b m X 1 a m X ) Diese Faktoren haben alle die Potenz 1, weil f Minimalpolynom ist. Ausserdem gilt m = n, da die Summe der Potenzen gleich n sein muss (vgl. [1, Seite 3]). Da die Punkte (a ν, b ν ) für ν = 1,..., n alle verschieden sind, sind diese n Faktoren alle verschieden. Daraus folgt, dass die n Geraden, welche durch diese Faktoren beschrieben sind, verschiedene Steigungen (a ν : b ν ) haben, und deshalb besteht C aus n Geraden durch den Punkt p: Abbildung 3: ord p C = deg(c) Beispiel 5. Alle irreduziblen Kubiken besitzen die Ordnung in singulären Punkten. Das kann man wie folgt zeigen: Sei C eine Kubik und p C ein singulärer Punkt; degc = 3. Mit den Eigenschaften a) und d) hat man, dass 3 = degc ord p C > 1. Weil C irreduzibel ist, kann C nicht aus 3 verschiedenen Geraden durch p bestehen, deshalb ist ord p C < degc. Daher gilt, dass ord p C =. 5

6 Beispiel 6. Das Ovoid C = V ((X 1 + X ) X 3 1 ) besitzt im Ursprung die Ordnung 3. Abbildung 4: Ovoid Wenden wir die obige Rechnung an, um die Ordnung herauszunden: f (0) = f(0, 0) = 0 f (1) = f (0, 0) X 1 + f (0, 0) X X } 1 X {{}} {{} f () = 1 f (0, 0) X + f (0, 0) X 1 X + 1 f X } X (0, 0) X1 {{}}{{} X } 1 {{} f (3) = 1 3 f 6 3 (0, 0) X f (0, 0) X 1 X f X } X {{} 1 X }{{ X (0, 0) X1 X } 1 X }{{ } =1 3 f (0, 0) } {{ } = 6 X 3 1 f (3) = X 3 X Also ist ord (0,0) f = ord (0,0) C = Schnittmultiplizität und Tangenten In diesem Kapitel wird es darum gehen zu sehen, wie die Schnittmultiplizität zwischen zwei Kurven deniert ist. Wir wollen uns aber zunächst einem Spezialfall zuwenden, dem Schnitt zwischen einer Kurve und einer Geraden. Sei f C[X 1, X ] das Minimalpolynom von C, einer algebraischen Kurve, ord p f = r und degf = n und sei L eine Gerade. In Kapitel haben wir gesehen wie die Schnittmultiplizität zwischen einer Kurve und einer Gerade beschrieben wird: mult p (C L) = ord p (g), (vgl.[1, Seite 5]) wobei g(t ) = f(ϕ(t )) = n k=r f (k)(λ 1, λ )T k und ϕ(t ) = (λ 1 T, λ T ) die Parametrisierung von L ist. 6

7 Es gilt: Ist C C eine algebraische Kurve und L eine Gerade durch den Punkt p C, dann ist: ord p C mult p (C L). Das bedeutet, dass der Schnitt einer Kurve und einer Geraden mit Multiplizität gezählt, grösser oder gleich die Ordnung der Kurve ist. Es gilt ausserdem, dass dies fast immer eine Gleichung ist, ausser für höchstens ord p C Stück Geraden. Der Spezialfall, mult p (C L) =, gilt genau dann, wenn p L C, und wird hier nicht weiter beachtet. Die folgende Denition soll verdeutlichen in welchen Fällen die obige Formel eine echte Ungleichung ist. Denition 4. Sei C C eine algebraische Kurve, L eine Gerade, und p C L. L ist Tangente an C in p genau dann, wenn ord p C < mult p (C L). Diese Denition ermöglicht also zum ersten, Tangenten in singulären Punkten zu denieren, und zum zweiten, da diese Ungleichung nur für höchstens ord p C Stück Geraden gilt, eine Schranke für die mögliche Anzahl der Tangenten an die Kurve zu setzen. Beispiel 7. Sei die Quartik V ((X 1 + X ) + 3X 1 X X 3 ) das dreiblättrige Kleeblatt. Diese hat im Ursprung die Ordnung 3 (das kann man genau so nachrechnen wie oben beim Ovoid). Nach der obigen Bemerkung und der Denition 4, gilt also, dass es höchstens 3 Tangenten im Ursprung gibt. Es gilt sogar, dass es genau 3 Tangenten gibt: Abbildung 5: Dreiblättriges Kleeblatt Denition 5. Ist r = ord p (C), dann nennt man p einen gewöhnlichen r- fachen Punkt, genau dann wenn es r verschiedene Tangenten in p gibt. Der Ursprung des dreiblättrigen Kleeblattes ist also ein gewöhnlicher 3-facher Punkt. Beim Ovoid ist der Ursprung kein gewöhnlicher Punkt. Hier gilt: Es gibt genau eine Tangente, die aber dreifach zu zählen ist. 7

8 Kommen wir nun zu einem nützlichen Lemma über die Darstellung der Gleichung von C, das hier nur schnell erwähnt wird, für die Polare und Hesse-Kurven aber sehr oft angewendet wird: Lemma 1. Sei C = V (f) C glatt in p = (0, 0) und T = V (X ) die Tangente an p. Sei k := mult p (C T ) < die Kontaktordnung, dann ist mit g(0) 0 und h(0,0) 0. f(x 1, X ) = X k 1 g(x 1 ) + X h(x 1, X ) Beweis Diese Aussage folgt direkt aus der Taylorentwicklung von f in p. Denition 6. Sei T die Tangente an C in einem glatten Punkt p. Dann nennt man T einfache Tangente, wenn mult p (C T ) =, und Wendetangente, wenn mult p (C T ) 3. Im letzten Fall heisst p Wendepunkt. Ein Wendepunkt heisst einfach, wenn mult p (C T ) = 3. Von einer Doppeltangente wird verlangt, dass sie in mindestens zwei verschiedenen glatten Punkten von C Tangente ist. Abbildung 6: Wendetangente + Wendepunkt Abbildung 7: Doppeltangente Wir wollen uns nun vom Spezialfall abwenden, und schauen wie die Schnittmultiplizität zwischen zwei Kurven errechnet werden kann. 8

9 Theorem 1. Seien C 1 und C C algebraische Kurven, ohne gemeinsame Komponente und p C 1 C. Dann gilt: mult p (C 1 C ) ord p C 1 ord p C. Dies ist genau dann eine Gleichung, wenn die beiden Kurven keine gemeinsame Tangente besitzen. Dieses Theorem wird erst in Kapitel 8 (vgl. [1, Seite 1]) bewiesen. Beispiel 8. Seien die zwei Neilschen Parabeln: Abbildung 8: Neilsche Parabeln Diese zwei Parabeln haben die X 1 -Achse als gemeinsame Tangente. Wegen Theorem 1, ist die Schnittmultiplizität im Ursprung grösser als ord p C 1 ord p C. Eine einfache Rechnung zeigt, dass beide Kurven im Ursprung die Ordnung haben, also ist mult p (C 1 C ) > 4. Wenn man nun die beiden Parabeln mit kleinen Störungen versieht, ändern sich zwar die Kurven ein wenig, allerdings hat dies keinen Einuss auf die Schnittmultiplizität; im Gegensatz es hilft uns zu verstehen wieso die Schnittmultiplizität gleich 6 ist: Abbildung 9: Neilsche Parabeln mit kleinen Störungen Globale Eigenschaften algebraischer Kurven in P (C) Wir werden uns im Folgenden im projektiven Raum bewegen, also von den lokalen zu den globalen Eigenschaften algebraischer Kurven übergehen. 9

10 Zunächst kommen wir zu einer wichtigen Formel, um die Eigenschaften aus C zu generalisieren. Formel von Euler.Sei F C[X 0, X 1, X ] homogen vom Grad n. Dann gilt: X 0 F X 0 + X 1 F + X F X = n F. Mit Hilfe dieser Formel kann man das folgende Lemma beweisen. Lemma. Sei C=V(F) P (C) eine algebraische Kurve, wobei F ein Minimalpolynom ist, und sei p C. Dann ist C glatt in p, wenn ( F grad p F = (p), F (p), F ) (p) (0, 0, 0). X 0 X Ausserdem gilt: Ist C glatt in p, so ist die projektive Tangente T p C in p gegeben durch die lineare Gleichung X 0 F X 0 (p) + X 1 F (p) + X F X (p) = 0. Daraus ergibt sich, dass eine algebraische Kurve C P (C) nur endlich viele Singularitäten besitzt. Im Fall wo C eine irreduzible Kurve ist, gilt sogar: Satz. Sei C P (C) eine irreduzible algebraische Kurve vom Grad n. Dann besitzt C höchstens γ(n) := 1 (n 1)(n ) Singularitäten. Für den Beweis dieses Satzes, benötigen wir noch folgendes Lemma: Lemma 3. Durch 1 n(n+3) Punkte in P (C) geht mindestens eine algebraische Kurve vom Grad n. Beweisidee. Sei V n = { ν 0+ν 1+ν =n a ν0ν 1ν X ν0 0 Xν1 1 Xν a ν0ν 1ν C} C[X 0, X 1, X ] der Vektorraum der homogenen Polynome vom Grad n in drei Variablen. Dann ist zu zeigen: ( ) n + dimv n =. n Dann denieren wir die folgende Äquivalenzrelation auf V n : Für P 1, P V n gilt: P 1 P P 1 = λ P, wobei λ C. 10

11 Also ist die Menge dieser Äquivalenzklassen ein projektiver Raum P ( n+ (C) = C(n+ n ) / n ) 1 = Vn Es gilt: ( ) n+ n 1 = 1 n(n + 3). Also geht durch 1 n(n + 3) Punkte in P (C) mindestens eine algebraische Kurve vom Grad n, da die Punkte aus P (C) in P ( n+ (C) Hyperebenen n ) 1 denieren, und diese sich in mindestens einem Punkt schneiden. Beweis vom Satz. Da γ(1) = γ() = 0, können wir annehmen, dass n 3 ist. Wir machen einen Widerspruchsbeweis: Wir nehmen also an, dass C γ(n) + 1 Singularitäten besitzt. Wir nehmen noch n 3 Punkte dazu, dann sind es insgesamt γ(n) n 3 = 1 (n )(n + 1) Punkte. Wegen Lemma 3, können wir hier eine Kurve C vom Grad m n nden, die durch diese 1 (n )(n + 1) Punkte geht. Da mult p (C C ) für die γ(n) + 1 Singularitäten von C, und mult p (C C ) 1 für die restlichen n 3 Punkte von C, ist mult p (C C ) (γ(n) + 1) + n 3 = n(n ) + 1. (1) p C C Da C irreduzibel ist und degc n, kann C keine Komponente von C sein. Daher kann man den Satz von Bézout anwenden: p C C mult p (C C ) = n m n(n ). Diese Ungleichung steht allerdings im Widerspruch zu (1). Aus diesem Satz folgt Korollar 1. Eine beliebige algebraische Kurve C P (C) vom Grad n besitzt höchstens 1 n(n 1) Singularitäten. Wir haben also eine bessere Schranke für die Anzahl der Singularitäten einer beliebigen algebraischen Kurve gefunden wie im Satz 1. Sei hier noch kurz ein Satz erwähnt über die Tangenten in P (C), der aber erst in Kapitel 8 (vgl. [1, Seite 115]) bewiesen wird: Satz 3. Sei p C P (C) und L P (C) eine Gerade. L ist genau dann Tangente an C in p, wenn es eine gegen p konvergente Folge von glatten Punkten p ν C gibt, mit L = lim ν T p ν C. 11

12 3 Literatur Literatur [1] G. Fischer, Ebene algebraische Kurven. 1

Geometrie von Flächen und Algebraischen Kurven Der Satz von Pascal

Geometrie von Flächen und Algebraischen Kurven Der Satz von Pascal Geometrie von Flächen und Algebraischen Kurven Der Satz von Pascal Laura Hinsch November 005 Inhaltsverzeichnis 1 Einleitung 1 Algebraische Kurven 1 3 Singularitäten 3 4 Der Satz von Pascal 5 i 1 Einleitung

Mehr

Algebraische Kurven - Vorlesung 29. Projektion weg von einem Punkt

Algebraische Kurven - Vorlesung 29. Projektion weg von einem Punkt Algebraische Kurven - Vorlesung 29 Definition 1. Die Abbildung P n K Projektion weg von einem Punkt {(1, 0,..., 0)} Pn 1 K, (x 0, x 1...,x n ) (x 1,..., x n ), heißt die Projektion weg vom Punkt (1, 0,...,

Mehr

Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche" Punkte mit inhomogenen K

Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche Punkte mit inhomogenen K Kapitel IV Projektive Geometrie In diesem Kapitel wird eine kurze Einführung in die projektive Geometrie gegeben. Es sollen unendlich ferne Punkte mit Hilfe von homogene Koordinaten eingeführt werden und

Mehr

8 Tangenten an Quadriken

8 Tangenten an Quadriken 8 Tangenten an Quadriken A Geraden auf Quadriken: Sei A 0 eine symmetrische n n Matri und Q : t A + b t + c = 0 eine nicht leere Quadrik im R n, b R n, c R. g = p + R v R n ist die Gerade durch p mit Richtung

Mehr

Inhaltsverzeichnis INHALTSVERZEICHNIS 1

Inhaltsverzeichnis INHALTSVERZEICHNIS 1 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Die Parabel 2 1.1 Definition................................ 2 1.2 Bemerkung............................... 3 1.3 Tangenten................................ 3 1.4

Mehr

Die projektive Ebene Was sind unendlich ferne Punkte?

Die projektive Ebene Was sind unendlich ferne Punkte? Die projektive Ebene Was sind unendlich ferne Punkte? Prof. Dr. Hans-Georg Rück Fachbereich Mathematik/Informatik Universität Kassel Heinrich-Plett-Str. 40 34132 Kassel Zusammenfassung: Wir konstruieren

Mehr

Das Singularitätentheorem von Hawking Teil 2

Das Singularitätentheorem von Hawking Teil 2 Das Singularitätentheorem von Hawking Teil Jakob Hedicke 0.06.06 In diesem Vortrag werden wir den Beweis des Singularitätentheorems von Stephen Hawking vervollständigen. Im letzten Vortrag wurde bereits

Mehr

1.6 Implizite Funktionen

1.6 Implizite Funktionen 1 1.6 Implizite Funktionen Wir werden uns jetzt mit nichtlinearen Gleichungen beschäftigen, f(x) = 0, wobei f = (f 1,..., f m ) stetig differenzierbar auf einem Gebiet G R n und m < n ist. Dann hat man

Mehr

Mathematik III. Vorlesung 74. Folgerungen aus dem Satz von Fubini. (( 1 3 x3 1 2 x2 y +2y 3 x) 1 2)dy. ( y +2y y +4y3 )dy

Mathematik III. Vorlesung 74. Folgerungen aus dem Satz von Fubini. (( 1 3 x3 1 2 x2 y +2y 3 x) 1 2)dy. ( y +2y y +4y3 )dy Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 74 Folgerungen aus dem Satz von Fubini Beispiel 74.1. Wir wollen das Integral der Funktion f :R 2 R, (x,y) x 2 xy +2y 3, über dem Rechteck

Mehr

Dem Anschein nach werden diese Zahlen kleiner und kleiner und streben gegen Null. Was sollen sie sonst auch tun? Aber der Begriff

Dem Anschein nach werden diese Zahlen kleiner und kleiner und streben gegen Null. Was sollen sie sonst auch tun? Aber der Begriff 47 5 Irrationales 5.1 Folgen, Konvergenz und Vollständigkeit Eine Abbildung a : N R definiert eine Folge von reellen Werten a 1 = a(1), a 2 = a(2), a 3 = a(3),... Solche Zahlenfolgen werden uns dazu dienen,

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 26 Die Schnittmultiplizität Es seien zwei ebene algebraische Kurven C,D A 2 K gegeben, die keine Komponente gemeinsam haben. Dann besteht

Mehr

Summen und direkte Summen

Summen und direkte Summen Summen und direkte Summen Sei V ein K-Vektorraum. Wie früher erwähnt, ist für beliebige Teilmengen M, N V die Teilmenge M +N V wie folgt definiert M +N = {v+w : v M, w N}. Man sieht leicht, dass i.a. M

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

Das Quadratische Reziprozitätsgesetz. Stefanie Beule Sebastian Schrage

Das Quadratische Reziprozitätsgesetz. Stefanie Beule Sebastian Schrage Das Quadratische Rezirozitätsgesetz Stefanie Beule Sebastian Schrage 06. November 007 Inhaltsverzeichnis 3 Das Quadratische Rezirozitätsgesetz Notation.............................................. A Das

Mehr

Konvergenz im quadratischen Mittel - Hilberträume

Konvergenz im quadratischen Mittel - Hilberträume CONTENTS CONTENTS Konvergenz im quadratischen Mittel - Hilberträume Contents 1 Ziel 2 1.1 Satz........................................ 2 2 Endlich dimensionale Vektorräume 2 2.1 Defintion: Eigenschaften

Mehr

3 Vollständige Induktion

3 Vollständige Induktion 3.1 Natürliche Zahlen In den vorherigen Kapiteln haben wir die Menge der natürlichen Zahlen schon mehrfach als Beispiel benutzt. Das Konzept der natürlichen Zahlen erscheint uns einfach, da wir es schon

Mehr

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 014/015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 7 Abgabetermin: Freitag, 05.1.014, 11 Uhr Aufgabe 7.1 (Vektorräume

Mehr

Konstruktion der reellen Zahlen 1 von Philipp Bischo

Konstruktion der reellen Zahlen 1 von Philipp Bischo Konstruktion der reellen Zahlen 1 von Philipp Bischo 1.Motivation 3 1.1. Konstruktion von R im allgemeine 3 2.Voraussetzung 3 2.1Die Menge Q zusammen mit den beiden Verknüpfungen 3 2.2Die Rationalen Zahlen

Mehr

10 Untermannigfaltigkeiten

10 Untermannigfaltigkeiten 10. Untermannigfaltigkeiten 1 10 Untermannigfaltigkeiten Definition. Eine Menge M R n heißt k-dimensionale Untermannigfaltigkeit des R n, 1 k n, falls es zu jedem a M eine offene Umgebung U R n von a und

Mehr

Algebra. 10. Übung mit Lösungshinweisen. TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/ Dezember 2008

Algebra. 10. Übung mit Lösungshinweisen. TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/ Dezember 2008 Fachbereich Mathematik Prof. Dr. Nils Scheithauer Walter Reußwig TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/09 6. Dezember 008 Algebra 0. Übung mit Lösungshinweisen Aufgabe 7 Es sei K ein Körper und f K[X]

Mehr

Tropische Kurven zählen. Enumerative Geometrie. Alg. Geometrie. Beispiel Strategie. Geometrie. Kurven Multiplizität Correspondence Theorem Ergebnisse

Tropische Kurven zählen. Enumerative Geometrie. Alg. Geometrie. Beispiel Strategie. Geometrie. Kurven Multiplizität Correspondence Theorem Ergebnisse Alg. Ebene e Hannah Markwig Technische Universität Kaiserslautern 6. Juli 2006 Alg. Inhalt 1 () 2 3 Der Algorithmus zum Zählen ebener 4 Der Algorithmus Alg. Algebraische Geometrische Objekte sind Nullstellengebilde

Mehr

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1)

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) Eigenwerte 1 Eigenwerte und Eigenvektoren Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) für einen Vektor x 0. Vektor x heißt ein

Mehr

Vorlesung 27. Der projektive Raum. Wir werden den projektiven Raum zunehmend mit mehr Strukturen versehen.

Vorlesung 27. Der projektive Raum. Wir werden den projektiven Raum zunehmend mit mehr Strukturen versehen. Vorlesung 27 Der projektive Raum Definition 1. Sei K ein Körper. Der projektive n-dimensionale Raum P n K besteht aus allen Geraden des A n+1 K durch den Nullpunkt, wobei diese Geraden als Punkte aufgefasst

Mehr

a i x i, (1) Ein Teil der folgenden Betrachtungen gilt auch, wenn man den Körper durch einen Ring ersetzt.

a i x i, (1) Ein Teil der folgenden Betrachtungen gilt auch, wenn man den Körper durch einen Ring ersetzt. Polynome Definition 1. Ein Polynom f über einem Körper K mit der Unbestimmten x ist eine formale Summe f(x) = i 0 a i x i, (1) wobei nur endlich viele der Koeffizienten a i K von Null verschieden sind.

Mehr

Die Unlösbarkeit der Gleichung fünften Grades durch Radikale. Teilnehmer: Gruppenleiter:

Die Unlösbarkeit der Gleichung fünften Grades durch Radikale. Teilnehmer: Gruppenleiter: Die Unlösbarkeit der Gleichung fünften Grades durch adikale Teilnehmer: Max Bender Marcus Gawlik Anton Milge Leonard Poetzsch Gabor adtke Miao Zhang Gruppenleiter: Jürg Kramer Andreas-Oberschule Georg-Forster-Oberschule

Mehr

Algebraische Kurven. Holger Grzeschik

Algebraische Kurven. Holger Grzeschik Algebraische Kurven Holger Grzeschik 29.04.2004 Inhaltsübersicht 1.Einführung in die Theorie algebraischer Kurven 2.Mathematische Wiederholung Gruppen, Ringe, Körper 3.Allgemeine affine Kurven 4.Singuläre

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015 Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum

Mehr

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante

Mehr

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG MATHEMATISCHES INSTITUT SEMINAR: QUADRATISCHE FORMEN ÜBER DEN RATIONALEN ZAHLEN SOMMERSEMESTER 2007 DOZENT: PROF. DR. KAY WINGBERG ASSISTENT: JOHANNES BARTELS KAPITEL

Mehr

8 Extremwerte reellwertiger Funktionen

8 Extremwerte reellwertiger Funktionen 8 Extremwerte reellwertiger Funktionen 34 8 Extremwerte reellwertiger Funktionen Wir wollen nun auch Extremwerte reellwertiger Funktionen untersuchen. Definition Es sei U R n eine offene Menge, f : U R

Mehr

ALGEBRAISCHE VARIETÄTEN. gute Funktionen auf den offenen Mengen von V definieren. Dabei orientieren wir uns an folgenden Gegebenheiten: (1) Die

ALGEBRAISCHE VARIETÄTEN. gute Funktionen auf den offenen Mengen von V definieren. Dabei orientieren wir uns an folgenden Gegebenheiten: (1) Die ALGEBRAISCHE VARIETÄTEN MARCO WEHNER UND MAXIMILIAN KREMER 1. Strukturgarben Sei V k n. Wir wollen nur gute Funktionen auf den offenen Mengen von V definieren. Dabei orientieren wir uns an folgenden Gegebenheiten:

Mehr

Zur Berechnung ganzer Punkte auf Mordellkurven über globalen Körpern

Zur Berechnung ganzer Punkte auf Mordellkurven über globalen Körpern Zur Berechnung ganzer Punkte auf Mordellkurven über globalen Körpern Michael E. Pohst Institut für Mathematik Technische Universität Berlin 4. Februar, 2015 Mordells Gleichung ist y 2 = x 3 + κ mit einer

Mehr

1 Geometrie - Lösungen von linearen Gleichungen

1 Geometrie - Lösungen von linearen Gleichungen Übungsmaterial Geometrie - Lösungen von linearen Gleichungen Lineare Gleichungen sind von der Form y = f(x) = 3x + oder y = g(x) = x + 3. Zwei oder mehr Gleichungen bilden ein Gleichungssystem. Ein Gleichungssystem

Mehr

Vorkurs Mathematik 2016

Vorkurs Mathematik 2016 Vorkurs Mathematik 2016 Natürliche Zahlen Der grundlegende Zahlenbereich ist die Menge der natürlichen Zahlen N = {1, 2, 3,...}. In vielen Fällen ist es sinnvoll die Zahl 0 mit einzubeziehen: N 0 = N [

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie Prof. Dr. Sebastian Iwanowski DM4 Folie 1 Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 4: Zahlentheorie Beutelspacher 5 Lang 7, Biggs 20, 22, 23 (jeweils teilweise,

Mehr

Universität Zürich HS , Vorlesung #3

Universität Zürich HS , Vorlesung #3 Algebraic Number Theory P. Habegger Universität Zürich HS 2010 6.10.2010, Vorlesung #3 1.4 Diskriminante Die primitivste Invariante eines Zahlkörpers ist sein Grad. Die Diskriminante eines Zahlkörpers

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Lösungen - Serie 2 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie

Lösungen - Serie 2 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie Lösungen - Serie zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie Aufgabe : Berechnen Sie für die folgenden Elemente x in einer Körpererweiterung L K die Norm Nm L K (x) und die Spur T r

Mehr

9. Primitivwurzeln. O. Forster: Einführung in die Zahlentheorie

9. Primitivwurzeln. O. Forster: Einführung in die Zahlentheorie 9. Primitivwurzeln 9.1. Satz. Sei G eine zyklische Gruppe der Ordnung m und g G ein erzeugendes Element. Das Element a := g k, k Z, ist genau dann ein erzeugendes Element von G, wenn k zu m teilerfremd

Mehr

Aufgabe 1. Aufgabe 2. Lineare Algebra I Gruppe 09 - Daniel Heiß Zusatzaufgaben

Aufgabe 1. Aufgabe 2. Lineare Algebra I Gruppe 09 - Daniel Heiß Zusatzaufgaben Ich wünsche euch nochmal ein frohes ruhiges Weihnachten und einen Guten Rutsch! Für diejenigen, die ein paar algebraische Fragezeichen killen möchten habe ich ein paar Aufgaben zusammengestellt, die mir

Mehr

Klausur zu Analysis II - Lösungen

Klausur zu Analysis II - Lösungen Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Dr. Axel Grünrock WS 1/11 11..11 Klausur zu Analysis II - Lösungen 1. Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind.

Mehr

Trennende Markov Ketten

Trennende Markov Ketten Trennende Markov Ketten (in Zusammenarbeit mit A. Martinsson) Timo Hirscher Chalmers Tekniska Högskola Seminarvortrag KIT 8. Mai 206 Übersicht Der Seminarvortrag ist wie folgt gegliedert: Einleitung Denitionen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I Wintersemester 3/ Aufgabenblatt 6. Januar Präsenzaufgaben

Mehr

1 Angeordnete Körper. 1.1 Anordnungen und Positivbereiche

1 Angeordnete Körper. 1.1 Anordnungen und Positivbereiche 1 1 Angeordnete Körper 1.1 Anordnungen und Positivbereiche Definition 1.1. Eine zweistellige Relation auf einer Menge heißt partielle Ordnung, falls für alle Elemente a, b, c der Menge gilt: (i) a a (ii)

Mehr

Musterlösung zu Blatt 6, Aufgabe 2

Musterlösung zu Blatt 6, Aufgabe 2 Musterlösung zu Blatt 6, Aufgabe 2 I Aufgabenstellung Es sei F = R N der Raum aller reellen, mit N induzierten Folgen. Weiter bezeichne N alle Nullfolgen, K alle konvergenten Folgen und B alle beschränkten

Mehr

Die Taylorreihe einer Funktion

Die Taylorreihe einer Funktion Kapitel 6 Die Taylorreihe einer Funktion Dieser Abschnitt beschäftigt sich mit Taylorreihen, Taylorpolynomen und der Restgliedabschätzung für Taylorpolynome. Die Taylorreihe einer reellen Funktion ist

Mehr

Kapitel 13. Lineare Gleichungssysteme und Basen

Kapitel 13. Lineare Gleichungssysteme und Basen Kapitel 13. Lineare Gleichungssysteme und Basen Matrixform des Rangsatzes Satz. Sei A eine m n-matrix mit den Spalten v 1, v 2,..., v n. A habe den Rang r. Dann ist die Lösungsmenge L := x 1 x 2. x n x

Mehr

Kapitel 11. Bilinearformen über beliebigen Bilinearformen

Kapitel 11. Bilinearformen über beliebigen Bilinearformen Kapitel 11 Bilinearformen über beliebigen Körpern Wir können in diesem Kapitel rasch vorgehen, weil die meisten Konzepte im Zusammenhang mit Sesquilinearformen bereits eingeführt wurden. In diesem Abschnitt

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 6. Semester ARBEITSBLATT 5. Kurvendiskussion

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 6. Semester ARBEITSBLATT 5. Kurvendiskussion ARBEITSBLATT 5 Kurvendiskussion Die mathematische Untersuchung des Graphen einer Funktion heißt Kurvendiskussion. Die Differentialrechnung liefert dabei wichtige Dienste. Intuitive Erfassung der Begriffe

Mehr

Übungsaufgaben zum Aufstellen von ganzrationalen Funktionsgleichungen

Übungsaufgaben zum Aufstellen von ganzrationalen Funktionsgleichungen Übungsaufgaben zum Aufstellen von ganzrationalen Funktionsgleichungen Aufgabe : Eine zum Ursprung symmetrische ganzrationale Funktion.Ordnung hat im Ursprung die Tangente mit der Gleichung y = 7x und in

Mehr

2. Der Grad von Körpererweiterungen

2. Der Grad von Körpererweiterungen 2. Der Grad von Körpererweiterungen 15 2. Der Grad von Körpererweiterungen Wenn wir untersuchen wollen, ob eine gegebene Konstruktion in der Ebene mit Zirkel und Lineal durchführbar ist, haben wir im vorigen

Mehr

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i 3 Kompaktheit In der Analysis I zeigt man, dass stetige Funktionen f : [a, b] R auf abgeschlossenen, beschränkten Intervallen [a, b] gleichmäßig stetig und beschränkt sind und dass sie ihr Supremum und

Mehr

Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat

Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat Vortrag von Kristina Rupp und Benjamin Letschert am 29.01.2008 Inhaltsverzeichnis 13 Speziallfälle des Satzes von Fermat 1 13.1 Der Große Satz

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr

5 Potenzreihenansatz und spezielle Funktionen

5 Potenzreihenansatz und spezielle Funktionen 5 Potenzreihenansatz und spezielle Funktionen In diesem Kapitel betrachten wir eine Methode zur Lösung linearer Differentialgleichungen höherer Ordnung, die sich anwenden läßt, wenn sich alle Koeffizienten

Mehr

1 2. Körpererweiterungen

1 2. Körpererweiterungen 1 2. Körpererweiterungen 1 2. 1. Definition: Sind K, L Körper und i: K L ein Ringhomomorphismus, so ist i injektiv, wir fassen K vermöge i als Unterkörper von L auf, schreiben dafür L K und nennen L eine

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Konstruktion reeller Zahlen aus rationalen Zahlen

Konstruktion reeller Zahlen aus rationalen Zahlen Konstruktion reeller Zahlen aus rationalen Zahlen Wir nehmen an, daß der Körper der rationalen Zahlen bekannt ist. Genauer wollen wir annehmen: Gegeben ist eine Menge Q zusammen mit zwei Verknüpfungen

Mehr

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie Notation Die in dieser Arbeit verwendete Notation ist im Wesentlichen Standard, so wie sie beispielsweise in [As] zu nden ist. Einige Abweichungen hiervon, Klarstellungen und zusätzliche Notationen (sofern

Mehr

Definition 1.2. Eine kontinuierliche Gruppe mit einer endlichen Menge an Parametern heißt endliche kontinuierliche Gruppe. x cosξ sinξ y sinξ cosξ

Definition 1.2. Eine kontinuierliche Gruppe mit einer endlichen Menge an Parametern heißt endliche kontinuierliche Gruppe. x cosξ sinξ y sinξ cosξ 8 Gruppentheorie 1 Lie-Gruppen 1.1 Endliche kontinuierliche Gruppe Definition 1.1. Eine Menge G mit einer Verknüpfung m heißt Gruppe, falls folgende Axiome erfüllt sind: (i) Die Operation m, genannt Multiplikation,

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil

Mehr

Beziehungen zwischen Vektorräumen und ihren Dimensionen

Beziehungen zwischen Vektorräumen und ihren Dimensionen Beziehungen zwischen Vektorräumen und ihren Dimensionen Lineare Algebra I Kapitel 9 20. Juni 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz

Mehr

5. Die Liouville'schen Sätze

5. Die Liouville'schen Sätze 5. Die Liouville'schen Sätze In diesem Vortrag wird eine Unterklasse der meromorphen Funktionen betrachtet, die Menge der elliptischen Funktionen. Diese werden zunächst formal eingeführt, es folgen die

Mehr

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann Abiturvorbereitung Mathematik -Dierentialrechnungc Max Hoffmann 1 Ganzrationale Funktionen Im Folgenden wollen wir uns mit ganzrationale Funktionen und der Untersuchung solcher beschäftigen. Dabei werden

Mehr

Von Skalarprodukten induzierte Normen

Von Skalarprodukten induzierte Normen Von Skalarprodukten induzierte Normen Niklas Angleitner 4. Dezember 2011 Sei ein Skalarproduktraum X,, gegeben, daher ein Vektorraum X über C bzw. R mit einer positiv definiten Sesquilinearform,. Wie aus

Mehr

4 Affine Koordinatensysteme

4 Affine Koordinatensysteme 4 Affine Koordinatensysteme Sei X φ ein affiner Raum und seien p,, p r X Definition: Nach ( c ist der Durchschnitt aller affinen Unterräume Z X, welche die Menge {p,,p r } umfassen, selbst ein affiner

Mehr

4. Vortrag - Garben. Ling Lin, Kristijan Cule Datum: 26. April 2009

4. Vortrag - Garben. Ling Lin, Kristijan Cule Datum: 26. April 2009 4. Vortrag - Garben Datum: 26. April 2009 1 Graduierte Ringe Definition 4.1.1. Eine k-algebra R heißt graduiert, wenn sie dargestellt werden kann als eine direkte Summe R = R n, wobei die R n als k-unterräume

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 25 J ai décidé d être heureux parce que c est bon pour la santé Voltaire Trigonalisierbare Abbildungen

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33

Mehr

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung Kapitel 3 Lineare Abbildungen Lineare Abbildungen sind eine natürliche Klasse von Abbildungen zwischen zwei Vektorräumen, denn sie vertragen sich per definitionem mit der Struktur linearer Räume Viele

Mehr

Ganze algebraische Zahlen

Ganze algebraische Zahlen Seminarvortrag Ganze algebraische Zahlen gehalten von Johannes Hölken an der Universität Duisburg-Essen im Sommersemester 2012 im Rahmen des Seminars über Elementrare Zahlentheorie. Kontakt: johannes.hoelken@stud.uni-due.de

Mehr

Vektorräume. Kapitel Definition und Beispiele

Vektorräume. Kapitel Definition und Beispiele Kapitel 3 Vektorräume 3.1 Definition und Beispiele Sei (V,,0) eine abelsche Gruppe, und sei (K, +,, 0, 1) ein Körper. Beachten Sie, dass V und K zunächst nichts miteinander zu tun haben, deshalb sollte

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

Vollständige Induktion

Vollständige Induktion Schweizer Mathematik-Olympiade smo osm Vollständige Induktion Aktualisiert: 1 Dezember 01 vers 100 Eine der wichtigsten Beweistechniken der Mathematik überhaupt ist die (vollständige) Induktion Wir nehmen

Mehr

Homogene und inhomogene Koordinaten und das Hyperboloid

Homogene und inhomogene Koordinaten und das Hyperboloid Seminararbeit zum Seminar aus Reiner Mathematik Homogene und inhomogene Koordinaten und das Hyperboloid Gernot Holler 1010674 WS 2012/13 28.November 2012 1 Inhaltsverzeichnis 1 Einleitung 3 2 Homogene

Mehr

Elemente von S n = Aut([1, n]) heißen Permutationen. Spezielle Permutationen sind Transpositionen und Zyklen. (Vergl. Skript S

Elemente von S n = Aut([1, n]) heißen Permutationen. Spezielle Permutationen sind Transpositionen und Zyklen. (Vergl. Skript S Begriffe Faser: Es sei f : M N eine Abbildung von Mengen. Es sei n N. Die Menge f 1 ({n}) M nennt man die Faser in n. (Skript Seite 119). Parallel: Zwei Vektoren v und w heißen parallel, wenn für einen

Mehr

1. Gruppen. 1. Gruppen 7

1. Gruppen. 1. Gruppen 7 1. Gruppen 7 1. Gruppen Wie schon in der Einleitung erläutert wollen wir uns in dieser Vorlesung mit Mengen beschäftigen, auf denen algebraische Verknüpfungen mit gewissen Eigenschaften definiert sind.

Mehr

2.3 Basis und Dimension

2.3 Basis und Dimension Lineare Algebra I WS 205/6 c Rudolf Scharlau 65 2.3 Basis und Dimension In diesem zentralen Abschnitt werden einige für die gesamte Lineare Algebra fundamentale Grundbegriffe eingeführt: Lineare Abhängigkeit

Mehr

10.6. Implizite ebene Kurven und Tangenten

10.6. Implizite ebene Kurven und Tangenten 0.6. Implizite ebene Kurven und Tangenten Im Gegensatz zu expliziten Darstellungen sind weder implizite noch Parameterdarstellungen einer Kurve eindeutig. Der Übergang von impliziten zu expliziten Darstellungen

Mehr

So genannte. Steckbriefaufgaben. für ganzrationale Funktionen. Teil 2: Ganzrationale Funktionen 3. Grades

So genannte. Steckbriefaufgaben. für ganzrationale Funktionen. Teil 2: Ganzrationale Funktionen 3. Grades Analysis Funktionsgleichungen aufstellen So genannte Steckbriefaufgaben für ganzrationale Funktionen Teil 2: Ganzrationale Funktionen 3. Grades Lösungen teilweise auch mit ausführlicher Beschreibung des

Mehr

Taylor-Entwicklung der Exponentialfunktion.

Taylor-Entwicklung der Exponentialfunktion. Taylor-Entwicklung der Exponentialfunktion. Betrachte die Exponentialfunktion f(x) = exp(x). Zunächst gilt: f (x) = d dx exp(x) = exp(x). Mit dem Satz von Taylor gilt um den Entwicklungspunkt x 0 = 0 die

Mehr

(Unvollständige) Zusammenfassung Analysis Grundkurs

(Unvollständige) Zusammenfassung Analysis Grundkurs (Unvollständige) Zusammenfassung Analysis Grundkurs. Ableitungs und Integrationsregeln (Folgende 0 Funktionen sind alles Funktionen aus dem Zentralabitur Grundkurs.) a) f(t) = 0,0t e 0,t b) f(t) = t 3

Mehr

Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe

Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe Sebastian Dobrzynski 17042014 1 Grundsätzliches zu Idealen Vorab legen wir fest: Alle im Vortrag betrachteten Ringe sind

Mehr

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der

Mehr

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik

Mehr

Thema: Klassifikation von 1-Mannigfaltigkeiten (mit Beweis) und von abgeschlossenen 2-Mannigfaltigkeiten (ohne Beweis)

Thema: Klassifikation von 1-Mannigfaltigkeiten (mit Beweis) und von abgeschlossenen 2-Mannigfaltigkeiten (ohne Beweis) Westfälische Wilhelms-Universität Münster Thema: Klassifikation von 1-Mannigfaltigkeiten (mit Beweis) und von abgeschlossenen 2-Mannigfaltigkeiten (ohne Beweis) Ausarbeitung im Rahmen des Seminars Einführung

Mehr

Lineare Differenzengleichungen

Lineare Differenzengleichungen Lineare Differenzengleichungen Die Fibonacci-Zahlen F n sind definiert durch F 0 = 0 F 1 = 1 F n = F n 1 +F n 2 für n >= 2 Die letzte Zeile ist ein Beispiel für eine homogene lineare Differenzengleichung

Mehr

Definition 7.1. Der Coxeter Graph zu W ist der ungerichtete gewichtete Graph Γ W = (V, E), mit Eckenmenge V und Kantenmenge E, gegeben durch V = und

Definition 7.1. Der Coxeter Graph zu W ist der ungerichtete gewichtete Graph Γ W = (V, E), mit Eckenmenge V und Kantenmenge E, gegeben durch V = und 7. Coxeter Graphen Um die endlichen Spiegelungsgruppen zu klassifizieren, wollen wir ihnen nun Graphen zuordnen, die die Gruppen bis auf Isomorphie eindeutig bestimmen. Im Folgenden sei wie vorher Π Φ

Mehr

Lineare Schieberegisterfolgen

Lineare Schieberegisterfolgen Lineare Schieberegisterfolgen Sei K ein endlicher Körper. Man nehme zwei Vektoren x 0 a0 x n 1, a n 1 K n n 1 x n := a i x i und betrachte die lineare Abbildung : K n K n, die durch i=0, berechne x 0 x

Mehr

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.

Mehr

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0. Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales

Mehr

Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f.

Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f. 3 Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f 4 Auf der Menge aller Restklassen [f] g kann man Addition und

Mehr

2. Symmetrische Gruppen

2. Symmetrische Gruppen 14 Andreas Gathmann 2 Symmetrische Gruppen Im letzten Kapitel haben wir Gruppen eingeführt und ihre elementaren Eigenschaften untersucht Wir wollen nun eine neue wichtige Klasse von Beispielen von Gruppen

Mehr

a) Prüfen Sie, ob die Graphen der Funktionen f und g orthogonal sind: f(x) = 1,5x 1; g(x) =

a) Prüfen Sie, ob die Graphen der Funktionen f und g orthogonal sind: f(x) = 1,5x 1; g(x) = 50 Kapitel 2: Rationale Funktionen und ihre Anwendungen 2.2.5 Orthogonale Geraden Geraden, die senkrecht aufeinander stehen, werden als zueinander orthogonale Geraden bezeichnet. Der Graph von g entsteht

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr