7 Vektorräume und Körperweiterungen

Größe: px
Ab Seite anzeigen:

Download "7 Vektorräume und Körperweiterungen"

Transkript

1 $Id: vektor.tex,v /05/28 16:37:16 hk Exp $ 7 Vektorräume und Körperweiterungen Bisher haben wir zwar die Existenz und Eindeutigkeit von Tensorprodukten bewiesen, und auch einige ihrer Eigenschaften hergeleitet, aber alles auf einer recht abstrakten Ebene. Wie ein Tensorprodukt konkret aussieht wissen wir bisher nicht. Der Schlüssel zur konkreten Beschreibung von Tensorprodukten liegt nun in der sogenannten Distributivität des Tensorprdoukts, die besagt das ein Tensorprodukt mit einer direkten Summe einfach die direkte Summe der Tensorprodukte mit den einzelnen Summanden ist. Lemma 7.3 (Distributivität des Tensorprodukts) Seien K ein Körper, (V i ) eine Familie von Vektorräumen über K und W ein weiterer Vektorraum über K. Dann existiert ein eindeutiger Isomorphismus ( ) ϕ : V i W (V i W ) mit ϕ(v w) = (v i w) für alle v V i, v W. Beweis: Schreibe V := V i und T := (V i W ). Dann ist die Abbildung t : V W T ; (v, w) (v i w) offenbar bilinear, und wir wollen zeigen, dass sie die universelle Eigenschaft eines Tensorprodukts besitzt. Seien also U ein Vektorraum über K und f : V W U eine bilineare Abbildung. Sei i I. Dann ist auch f V i W : V i W U bilinear, und wir erhalten eine eindeutige lineare Abbildung F i : V i W U mit F i (v w) = f(v, w) für alle v V i, w W. Damit ist auch F : T U; x F i (x i ) eine lineare Abbildung. Für v V, w W gilt dabei F (t(v, w)) = F ((v i w) ) = F i (v i w) = ( ) f(v i, w) = f v i, w = f(v, w). Dies zeigt F t = f. Da t(v W ) den Vektorraum T erzeugt, ist F hierdurch auch eindeutig festgelegt. Somit ist (T, t) ein Tensorprodukt von V und W. Die Eindeutigkeit des Tensorprodukts liefert jetzt die Behauptung. 13-1

2 Eine entsprechende Aussage gilt auch für direkte Summen auf der rechten Seite des Tensorprodukts. Dies kann man entweder durch einen analogen Beweis einsehen oder mittels der Kommutativität des Tensorprodukts auf die Aussage des Lemmas zurückführen. Letzteres Argument wollen wir hier kurz vorführen. Gegeben seien also ein Vektorraum V sowie eine Familie (W i ) von Vektorräumen über dem Körper K. Mit dem Lemma und der Kommutativität des Tensorproduktes haben wir dann eine Kette von Isomorphismen V ( W ) ( i W ) i V (W i V ) (V W i) v w w v (w i v) (v w i ). Alternativ kann man das Lemma auch als eine Aussage über Zerlegungen in Teilräume lesen, ist V = V i in eine direkte Summe von Teilräumen zerlegt, so ist auch V W die direkte Summe der Teilräume V i W (i I). Lemma 7.4: Seien K ein Körper, V, W zwei Vektorräume über K und sei (v i ) eine Basis von V. Dann hat jedes x V W eine eindeutige Darstellung x = v i w i mit w i W für i I und w i 0 nur für endlich viele i I. Beweis: Es ist V = (Kv i) und somit nach Lemma 3 auch V W = (Kv i ) W. Für jedes i I ist Kv i K bezüglich des Isomorphismus cv i c (c K), und tensorieren wir diesen Isomorphismus mit id W, so haben wir auch einen Isomorphismus (Kv i ) W K W, der (cv i ) w für c K, w W auf c w abbildet. Andererseits ist nach einer Übungsaufgabe auch K W W bezüglich eines Isomorphismus der c w für c K, w W auf cw abbildet. Damit ist (Kv i ) W W wobei (cv i ) w für c K, w W gerade dem Element cw entspricht. Insbesondere läst sich jedes Element x (Kv i ) W eindeutig in der Form v i w = (1 v i ) w mit einem w W schreiben. Dies ergibt die Behauptung. Mit diesem Lemma kann man vielen Tensorprodukten eine sehr konkrete Form geben. Nehmen wir einmal ein Tensorprodukt K 2 V mit einem Vektorraum V über K und bezeichne e 1, e 2 die kanonische Basis des K 2. Nach dem Lemma kann man die Elemente von K 2 V in der Form x = e 1 v 1 + e 2 v 2 schreiben, also K 2 V mit V V identifizieren. Die zum Tensorprodukt gehörende Bilinearform ist dann (x, y) v = (xe 1 + ye 2 ) v = e 1 (xv) + e 2 (yv) = (xv, yv). 13-2

3 Haben wir eine bilineare Abbildung f : K 2 V W, so ist die zugehörige lineare Abbildung F : V V W gegeben als F (v, w) = F (e 1 v + e 2 w) = F (e 1 v) + F (e 2 w) = f(e 1, v) + f(e 2, w). Wir wollen noch ein weiteres Beispiel behandeln. Der Polynomring K[t] hat die Basis (t n ) n N0, und damit hat jedes x K[t] V eine eindeutige Darstellung x = t n v n n=0 mit v n V und v n 0 nur für endlich viele n N 0. In anderen Worten ist K[t] V so etwas wie der Polynomring mit Koeffizienten aus dem Vektorraum V. Als ein letztes Beispiel betrachten wir eine Teilmenge X R d und den Vektorraum C(X) der stetigen Funktionen auf X. Jedes x R n C(X) kann dann eindeutig als x = e 1 f e n f n mit stetigen Funktionen f 1,..., f n : X R geschrieben werden, und da ein solches Tupel von Funktionen gerade einer stetigen Abbildung f : X R n entspricht können wir R n C(X) = C(X, R n ) als den Vektorraum der vektorwertigen stetigen Funktionen auf X mit Werten im R n auffassen. Statt einer Teilmenge des R d kann man für X natürlich auch einen beliebigen metrischen (oder auch topologischen, wenn Sie wissen was das ist) Raum nehmen. Mit unendlichdimensionalen Vektorräumen funktioniert das so nicht mehr, die Theorie kann man aber auch auf diese Situation erweitern. Dies ist aber keine Algebra mehr, sondern ein Thema der Funktionalanalysis. Kombinieren wir Distributivität und Kommutativität des Tensorprodukts, so ergibt sich: Lemma 7.5: Seien K ein Körper und (V i ), (W j ) zwei Familien von Vektorräumen über K. Dann existiert ein eindeutiger Isomorphismus ( ) ( ) ϕ : V i W j (V i W j ) mit ϕ(v w) = (v i w j ), für alle v V i, w W j. Beweis: Dies ergibt sich durch Kombination der Isomorphismen ( ) ( ) V i W j ( ) V i W j ( ) V i W j V i W j. 13-3

4 Wenden wir dies wieder auf eindimensionale Teilräume an, so ergibt sich das Lemma über Basen von Tensorprodukten. Lemma 7.6 (Basen von Tensorprodukten) Seien V, W zwei Vektorräume über einem Körper K, (v i ) eine Basis von V und (w j ) eine Basis von W. Dann ist (v i w j ), eine Basis von V W. Insbesondere gilt dim V W = (dim V ) (dim W ). Beweis: Nach Lemma 5 gilt U V = (Kv i ) (Kw j ) = Kv i w j, und wie im Beweis von Lemma 3 ergibt sich für alle i I, j J stets (Kv i ) (Kw j ) K unter einem Isomorphismus bei dem (av i ) (bw j ) für a, b K gerade ab K entspricht. Insbesondere sind v i w j 0 und (Kv i ) (Kw j ) = K(v i w j ), d.h. (v i w j ), ist eine Basis von V W. Insbesondere folgt dim V W = I J = I J = dim(v ) dim(w ). Betrachten wir als ein konkretes Beispiel einmal die Vektorräume V = K n und W = K m jeweils mit den kanonischen Basen e 1,..., e n und e 1,..., e m ausgestattet. Dann hat das Tensorprodukt K n K m die Basis e 1 e 1,..., e 1 e m,..., e n e 1,..., e n e m, und wir können K n K m = K nm identifizieren. Für x K n, y K m ist dabei ( n ) ( m ) x i e i y j e j = x i y j e i y j, i=1 also in Koordinatenschreibweise j=1 1 i n 1 j m (x 1,..., x n ) (y 1,..., y m ) = (x 1 y 1,..., x 1 y m,..., x n y 1,..., x n y m ). Man könnte dies überhaupt als Definition des Tensorprodukts endlichdimensionaler Vektorräume verwenden. Das sieht zwar auf den ersten Blick verführerisch einfach aus, hat aber den Nachteil von der Wahl der jeweiligen Basen abhängig zu sein. Dann muss man sich auf einmal um Koordinatentransformationen und all diese Dinge sorgen, was diesen Standpunkt eher unbequem werden läßt. 13-4

5 Wir wollen noch eine kurze Bemerkung zum Zusammenhang mit dem Tensorbegriff etwa in der Physik machen. Dort betrachtet man einen endlichdimensionalen Vektorraum V, meist über R oder C, sowie seinen Dualraum V, und bildet Tensorprodukte V } {{ V } V } {{ V }. p mal q mal Die Elemente dieses Produkts werden dann p-fach covariante und q-fach kontravariante Tensoren genannt. Weiter ist auf V eine nicht ausgeartete, symmetrische Bilinearform g gegeben. Haben wir dann eine Basis e 1,..., e n von V, so gehört zu dieser eine bezüglich g duale Basis e 1,..., e n von V, und bezüglich dieser Basen haben die Elemente des obigen Tensorprodukts eine Basisdarstellung 1 i 1,...,i p n 1 j 1,...,j q n a j 1...j q i 1...i p e i1 e ip e j 1 e j q. Bei einem Basiswechsel kann man dann die zugehörige Transformation der obigen Koeffizienten eines Tensors berechnen. Dann vergisst man die e i1 e j q und betrachtet nur noch das Zahlenschema (a j 1...j q i 1...i p ). Der eben erwähnte Basiswechsel definiert dann eine Transformation dieser Zahlenschemata, und man sagt das sie sich wie ein Tensor transformieren. Die Details will ich hier nicht ausführen, da all dies für uns keine Rolle spielen wird. Das Urbeispiel eines Tensors war ein solches Zahlenschema, der sogenante Spannungstensor in der Elastizitätstheorie, dem die Tensoren ihren Namen verdanken. Das reicht nun an allgemeiner Theorie, zumindest für unsere Zwecke. Wir betrachten jetzt einen Vektorraum V über einem Körper K und einen Erweiterungskörper L von K. Wir wollen den Vektorraum V zu einem Vektorraum V L über L erweitern. Hierzu fassen wir L als einen Vektorraum über K auf, und bilden das Tensorprodukt V L := L V. Dies ist zunächst nur ein Vektorraum über K, aber wir können dies leicht als Vektorraum über L auffassen. Beachte hierzu, dass die Multiplikation L L L des Körpers L über K bilinear ist, wir erhalten also eine über K lineare Abbildung µ : L L L mit µ(a b) = ab für alle a, b L. Mit Lemma 2 erhalten wir damit eine über K lineare Abbildung µ V : L V L = L (L V ) Konkret gilt für v V, a, b L dann ϕ (L L) V µ id V L V = V L. µ V (a (b v)) = µ id V (ϕ(a (b v))) = µ id V ((a b) v) = µ(a b) v = (ab) v. 13-5

6 Damit erhalten wir eine über K bilineare Abbildung : L V L V L ; (λ, x) µ V (λ x). Auf Elementartensoren ist die Multiplikation λ a v = (λa) v für alle λ, a L, v V, die Multiplikation findet sozusagen in der ersten Komponente statt. Wir behaupten, dass V L durch die Multiplikation zu einem Vektorraum über dem Körper L wird. Die additiven Eigenschaften und die beiden Distributivgesetze sind dabei klar, da V L ein Vektorraum über K ist, und über K bilinear ist. Da jedes Element von V L eine Summe von Elementartensoren ist, reicht es die beiden anderen Vektorraumaxiome auf Elementartensoren nachzurechnen. Für λ, µ, a L, v V haben wir nun 1 (a v) = (1 a) v = a v und λ (µ (a v)) = λ ((µa) v) = (λ(µa)) v = ((λµ)a) v = (λµ) (a v). Damit ist V L tatsächlich ein Vektorraum über L. Beachte das die vom L-Vektorraum V L induzierte K-Vektorraumstruktur gerade die von vornherein gegebene Struktur von V L als K-Vektorraum ist, denn für alle x V L, λ K gilt ja λ x = µ V (λ x) = µ V (λ 1 x) = µ V (1 (λx)) = 1 (λx) = λx. Die Konstruktion von V L ist in dem Sinne natürlich, dass wir auch alle linearen Abbildungen zwischen Vektorräumen über K zu linearen Abbildungen zwischen den entsprechenden Vektorräumen über L machen können. Seien nämlich V, W zwei Vektorräume über K und T : V W eine lineare Abbildung. Dann ist das Tensorprodukt T L := id L V : V L = L V L W = W L eine über K lineare Abbildung, und wir behaupten das T L auch über L linear ist. Hierzu ist nur noch T L (λ x) = λ T L x für λ L, x V L, wobei wir uns für x wieder auf Elementartensoren beschränken können. Für λ, a L, v V gilt jetzt T L (λ (a v)) = T L ((λa) v) = (λa) (T v) = λ (a (T v)) = λ T L (a v), und damit ist T L auch über L linear. Diese Konstruktion verträgt sich mit Hintereinanderausführungen, d.h. sind T : V V, S : V V zwei lineare Abbildungen, so haben wir S L T L = (id L S) (id L T ) = id L (ST ) = (ST ) L. Da für jeden Vektorraum V über K auch (id V ) L = id L id V = id L V = id VL gilt, ist insbesondere für jeden Isomorphismus T : V W auch T L : V L W L ein Isomorphismus mit T 1 L = (T 1 ) L. Dies folgt wie üblich durch die Rechnung T L (T 1 ) L = (T T 1 ) L = (id W ) L = id WL und ebenso (T 1 ) L T L = id VL. 13-6

7 Vektorräume und Körperweiterungen

7 Vektorräume und Körperweiterungen $Id: vektor.tex,v 1.3 2009/05/25 15:03:47 hk Exp $ 7 Vektorräume und Körperweiterungen Wir sind gerade bei der Besprechung derjenigen Grundeigenschaften des Tensorprodukts, die mit vergleichsweise wenig

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 56 Basiswechsel bei Tensorprodukten Lemma 56.1. Es sei K ein Körper und seien V 1,...,V n endlichdimensionale

Mehr

Tutorium 4. 1 Bilinearformen. Definition. Seien U, V, W Vektorräume. Eine Abbildung Φ : V W U heißt bilinear: Bemerkung. Dies ist äquivalent zu:

Tutorium 4. 1 Bilinearformen. Definition. Seien U, V, W Vektorräume. Eine Abbildung Φ : V W U heißt bilinear: Bemerkung. Dies ist äquivalent zu: 1 Bilinearformen Tutorium 4 Definition. Seien U, V, W Vektorräume. Eine Abbildung Φ : V W U heißt bilinear: Φ(αv + w, x) = α Φ(v, x) + Φ(w, x) und Φ(v, βx + y) = β Φ(v, x) + Φ(v, y) Bemerkung. Dies ist

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 13 Projektionen Zu einer direkten Summenzerlegung V = U 1 U 2 nennt man die Abbildung p 1 : V U 1, v 1

Mehr

4 Rein transzendente Körpererweiterungen

4 Rein transzendente Körpererweiterungen $Id: transzendent.tex,v 1.7 29/5/6 13:34:24 hk Exp $ $Id: trgrad.tex,v 1.3 29/5/6 13:2:32 hk Exp $ 4 Rein transzendente Körpererweiterungen Wir hatten den rationalen Funktionenkörper K(T ) in der Hoffnung

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 10 (SS 2011) Abgabetermin: Donnerstag, 23. Juni.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 10 (SS 2011) Abgabetermin: Donnerstag, 23. Juni. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 10 (SS 2011) Abgabetermin: Donnerstag, 23. Juni http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Das

Mehr

10. TENSORPRODUKTE. Lesen Sie den Text sorgfältig und lösen Sie möglichst viele der Übungsaufgaben. Diskutieren Sie die Lösungen.

10. TENSORPRODUKTE. Lesen Sie den Text sorgfältig und lösen Sie möglichst viele der Übungsaufgaben. Diskutieren Sie die Lösungen. Algebra 2 Daniel Plaumann Technische Universität Dortmund Sommersemester 2017 10. TENSORPRODUKTE Arbeitsblatt Lesen Sie den Text sorgfältig und lösen Sie möglichst viele der Übungsaufgaben. Diskutieren

Mehr

$Id: matrix.tex,v /12/02 21:08:55 hk Exp $ $Id: vektor.tex,v /12/05 11:27:45 hk Exp hk $

$Id: matrix.tex,v /12/02 21:08:55 hk Exp $ $Id: vektor.tex,v /12/05 11:27:45 hk Exp hk $ $Id: matrixtex,v 14 2008/12/02 21:08:55 hk Exp $ $Id: vektortex,v 12 2008/12/05 11:27:45 hk Exp hk $ II Lineare Algebra 6 Die Matrixmultiplikation 63 Inverse Matrizen und reguläre lineare Gleichungssysteme

Mehr

Kapitel 4. Multilineare Abbildungen. 4.4 Tensorprodukte

Kapitel 4. Multilineare Abbildungen. 4.4 Tensorprodukte Kapitel 4 c M. Roczen und H. Wolter Lineare Algebra individuell Online Ver. 0.52, 3.5.2005 Multilineare Abbildungen In diesem Kapitel werden Abbildungen von Vektorräumen untersucht, die in mehreren Argumenten

Mehr

Lösung 7: Bilinearformen

Lösung 7: Bilinearformen D-MATH Lineare Algebra II FS 207 Dr. Meike Akveld Lösung 7: Bilinearformen. a). Seien u, u 2 V, λ K, dann gelten nach Voraussetzung: L v (u + λu 2 ) =β(v, u + λu 2 ) = β(v, u ) + β(v, λu 2 ) =β(v, u )

Mehr

2 Riemannsche Flächen

2 Riemannsche Flächen $Id: flaechen.tex,v 1.5 2016/11/10 16:04:56 hk Exp $ 2 Riemannsche Flächen 2.1 Definition und erste Beispiele Riemannscher Flächen Am Ende der letzten Sitzung hatten wir schließlich den Begriff einer Riemannschen

Mehr

Projektive Räume und Unterräume

Projektive Räume und Unterräume Projektive Räume und Unterräume Erik Slawski Proseminar Analytische Geometrie bei Prof. Dr. Werner Seiler und Marcus Hausdorf Wintersemester 2007/2008 Fachbereich 17 Mathematik Universität Kassel Inhaltsverzeichnis

Mehr

Teil 1, Definitionen, Sätze und Fragen

Teil 1, Definitionen, Sätze und Fragen Teil 1, Definitionen, Sätze und Fragen Aufgabe 1 (Definitionen) Geben Sie die Definitionen der folgenden Begriffe an (1) Kompositionsreihen und Länge l(g) einer Gruppe G. (2) Algebraisch unabhängige Teilmengen

Mehr

Kapitel 4. Multilineare Abbildungen. 4.4 Tensorprodukte

Kapitel 4. Multilineare Abbildungen. 4.4 Tensorprodukte Kapitel 4 Lineare Algebra individuell Online-Fassung, Ver. 0.42 Internes Material, 25.4.2004 c M. Roczen und H. Wolter, W. Pohl, D.Popescu, R. Laza Multilineare Abbildungen In diesem Kapitel werden Abbildungen

Mehr

Basis und Dimension. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Basis und Dimension. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren Basis und Dimension Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren aus V. 1) (v i ) i I heißt ein Erzeugendensystem von V, wenn Span(v i ) = V. 2) (v i ) i I heißt Basis von

Mehr

5 Lineare Abbildungen

5 Lineare Abbildungen 5 Lineare Abbildungen Pink: Lineare Algebra HS 2014 Seite 56 5 Lineare Abbildungen 5.1 Definition Gegeben seien Vektorräume U, V, W über einem Körper K. Definition: Eine Abbildung f : V W heisst K-linear,

Mehr

5 Vektorräume. (V1) für alle x, y V : x + y = y + x; (V2) für alle x, y, z V : (x + y) + z = x + (y + z);

5 Vektorräume. (V1) für alle x, y V : x + y = y + x; (V2) für alle x, y, z V : (x + y) + z = x + (y + z); 5 Vektorräume Was wir in den vorangegangenen Kapiteln an Matrizen und Vektoren gesehen haben, wollen wir nun mathematisch abstrahieren. Das führt auf den Begriff des Vektorraumes, den zentralen Begriff

Mehr

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau 312 LinAlg II Version 0 20. Juni 2006 c Rudolf Scharlau 4.3 Bilinearformen Bilinearformen wurden bereits im Abschnitt 2.8 eingeführt; siehe die Definition 2.8.1. Die dort behandelten Skalarprodukte sind

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 12 (SS 2011) Abgabetermin: Donnerstag, 7. Juli.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 12 (SS 2011) Abgabetermin: Donnerstag, 7. Juli. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 12 (SS 2011) Abgabetermin: Donnerstag, 7. Juli http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Hier

Mehr

1 Grundlagen zur Darstellungstheorie

1 Grundlagen zur Darstellungstheorie Seminar Gruppen in der Physik SS 06 Vortrag 1 Gruppen und ihr Darstellung Matthias Nagl 1 Grundlagen zur Darstellungstheorie In diesem Vortrag wird es nur um lineare Darstellungen endlicher Gruppen in

Mehr

5.1 Affine Räume und affine Abbildungen

5.1 Affine Räume und affine Abbildungen 402 LinAlg II Version 1.2 21. Juli 2006 c Rudolf Scharlau 5.1 Affine Räume und affine Abbildungen Ein affiner Raum besteht aus zwei Mengen P und G zusammen mit einer Relation der Inzidenz zwischen ihnen.

Mehr

5 Lineare Abbildungen

5 Lineare Abbildungen 5 Lineare Abbildungen Pink: Lineare Algebra 2014/15 Seite 59 5 Lineare Abbildungen 5.1 Definition Gegeben seien Vektorräume U, V, W über einem Körper K. Definition: Eine Abbildung f : V W heisst K-linear,

Mehr

3 Topologische Gruppen

3 Topologische Gruppen $Id: topgr.tex,v 1.2 2010/05/26 19:47:48 hk Exp hk $ 3 Topologische Gruppen Als letztes Beispiel eines topologischen Raums hatten wir die Zariski-Topologie auf dem C n betrachtet, in der die abgeschlossenen

Mehr

2.1 Vektorräume. 1. für alle x, y U ist x + y U und. 2. für alle x U und alle λ R ist λx U. O V (= O U) U, und dass ( 1) x U, also x U.

2.1 Vektorräume. 1. für alle x, y U ist x + y U und. 2. für alle x U und alle λ R ist λx U. O V (= O U) U, und dass ( 1) x U, also x U. Vektorräume Definition Eine nicht leere Menge V, für die eine Addition (dh eine Rechenvorschrift + derart, dass a + b V für alle a, b V ist und eine skalare Multiplikation (dh λa V für alle λ R (λ ist

Mehr

4 Rein transzendente Körpererweiterungen

4 Rein transzendente Körpererweiterungen $Id: transzendent.tex,v 1.5 2009/05/04 14:59:47 hk Exp $ 4 Rein transzendente Körpererweiterungen Wie bereits angekündigt wollen wir nun einsehen, dass wir den rationalen Funktionenkörper K(t 1,..., t

Mehr

Lineare Schieberegisterfolgen

Lineare Schieberegisterfolgen Lineare Schieberegisterfolgen Sei K ein endlicher Körper. Man nehme zwei Vektoren x 0 a0 x n 1, a n 1 K n n 1 x n := a i x i und betrachte die lineare Abbildung : K n K n, die durch i=0, berechne x 0 x

Mehr

$Id: vektor.tex,v /01/21 14:35:13 hk Exp $

$Id: vektor.tex,v /01/21 14:35:13 hk Exp $ Mathematik für Physiker I, WS 2/2 Freitag 2 $Id: vektortex,v 5 2//2 4:35:3 hk Exp $ Vektorräume 2 Untervektorräume und Erzeugendensysteme Am Ende der letzten Sitzung hatten wir wieder einmal den Lösungsraum

Mehr

4.2 Die adjungierte Abbildung

4.2 Die adjungierte Abbildung 4.2. DIE ADJUNGIERTE ABBILDUNG 177 4.2 Die adjungierte Abbildung Die Vektorräume dieses Paragraphen seien sämtlich euklidisch, die Norm kommt jetzt also vom inneren Produkt her, v = v v. Zu f Hom R (V,

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 57 Lineare Abbildungen bei Körperwechsel Definition 57.1. Zu einer linearen Abbildung ϕ: V W zwischen K-Vektorräumen

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 205/206 Lineare Algebra und analytische Geometrie I Vorlesung 9 Basiswechsel Wir wissen bereits, dass in einem endlichdimensionalen Vektorraum je zwei Basen die gleiche Länge

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 23 Die Gradformel Satz 1. Seien K L und L M endliche Körperweiterungen. Dann ist auch K M eine endliche Körpererweiterung und

Mehr

5 Der Transzendenzgrad

5 Der Transzendenzgrad $Id: trgrad.tex,v 1.7 2009/05/13 13:23:45 hk Exp $ $Id: algab.tex,v 1.2 2009/03/24 14:45:49 hk Exp hk $ 5 Der Transzendenzgrad Jetzt können wir endlich die, schon mehrfach angekündigte, Eindeutigkeit des

Mehr

Algebraische Körpererweiterungen I

Algebraische Körpererweiterungen I Algebraische Körpererweiterungen I Thomas Schmalfeldt, Florian Schuler Seminar über Galoistheorie, 18. Februar 2009 Inhaltsverzeichnis 1 Charakteristik und Primkörper 2 2 Grad einer Körpererweiterung 3

Mehr

$Id: vektor.tex,v /01/16 15:50:24 hk Exp $ $Id: cartesisch.tex,v /01/19 11:05:27 hk Exp $

$Id: vektor.tex,v /01/16 15:50:24 hk Exp $ $Id: cartesisch.tex,v /01/19 11:05:27 hk Exp $ $Id: vektortex,v 125 2015/01/16 15:50:24 hk Exp $ $Id: cartesischtex,v 116 2015/01/19 11:05:27 hk Exp $ 9 Vektorräume 94 Koordinatentransformationen Am Ende der letzten Sitzung hatten wir die sogenannten

Mehr

2 Riemannsche Flächen

2 Riemannsche Flächen $Id: flaechen.tex,v 1.6 2016/11/16 12:37:19 hk Exp $ 2 Riemannsche Flächen 2.2 Karten und holomorphe Funktionen auf Flächen Am Ende der letzten Sitzung hatten wir einige der Grundeigenschaften holomorpher

Mehr

3 Topologische Gruppen

3 Topologische Gruppen $Id: topgr.tex,v 1.4 2010/05/31 08:41:53 hk Exp hk $ 3 Topologische Gruppen Nachdem wir jetzt gezeigt haben das Quotienten G/H topologischer Gruppen wieder topologische Gruppen sind, wollen wir das Ergebnis

Mehr

Analysis III, WS 2011/2012 Montag $Id: masse.tex,v /10/31 15:48:07 hk Exp $

Analysis III, WS 2011/2012 Montag $Id: masse.tex,v /10/31 15:48:07 hk Exp $ $Id: masse.tex,v 1.8 2011/10/31 15:48:07 hk Exp $ 2 Maßräume 2.2 Meßbare Abbildungen Der nächste Grundbegriff sind die meßbaren Abbildungen. Erinnern Sie sich daran das wir eigentlich einen Integralbegriff

Mehr

Lösung 5: Gram-Schmidt Orthogonalisierung, adjungierte Abbildungen

Lösung 5: Gram-Schmidt Orthogonalisierung, adjungierte Abbildungen D-MATH Lineare Algebra II FS 7 Dr. Meike Akveld Lösung 5: Gram-Schmidt Orthogonalisierung, adjungierte Abbildungen. a) Wegen der Linearität im ersten Argument gilt sicherlich w S :, w =. Somit ist S und

Mehr

4 Isomorphismen affiner und projektiver Ebenen

4 Isomorphismen affiner und projektiver Ebenen $Id: isomorphie.tex,v 1.3 2018/11/26 18:45:03 hk Exp $ 4 Isomorphismen affiner und projektiver Ebenen Wir haben gezeigt das alle Ternärkörper der projektiven Ebene PG(V ) über einem Vektorraum V isomorph

Mehr

Summen und direkte Summen

Summen und direkte Summen Summen und direkte Summen Sei V ein K-Vektorraum. Wie früher erwähnt, ist für beliebige Teilmengen M, N V die Teilmenge M +N V wie folgt definiert M +N = {v+w : v M, w N}. Man sieht leicht, dass i.a. M

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa. Unterraum,

In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa. Unterraum, 2 Vektorräume In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa Unterraum, Linearkombination, lineare Unabhängigkeit und Erzeugendensystem.

Mehr

Affine und projektive Ebenen, WS 2018/2019 Mittwoch 9.1. $Id: trans.tex,v /01/10 10:54:32 hk Exp $

Affine und projektive Ebenen, WS 2018/2019 Mittwoch 9.1. $Id: trans.tex,v /01/10 10:54:32 hk Exp $ $Id: trans.tex,v 1.5 2019/01/10 10:54:32 hk Exp $ 7 Translationsebenen Wir hatten einen Unterkörper F Kern(K des Kerns eines Quasikörpers K zentral in K genannt wenn ab = ba für alle a K, b F gilt und

Mehr

7.3 Unitäre Operatoren

7.3 Unitäre Operatoren Wir können jeden Operator T wie folgt schreiben: Dabei gilt T = 1 2 (T + T ) + i( 1 2 i (T T )) (T + T ) = T + T sowie ( 1 2 i (T T )) = 1 2 i (T T) = 1 2 i (T T ). Wir können T also in zwei lineare Operatoren

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

Tensorprodukte. Isabel Semm. 21. Dezember 2004

Tensorprodukte. Isabel Semm. 21. Dezember 2004 Tensorprodukte Isabel Semm 21. Dezember 2004 1 1 Existenz und Eindeutigkeit Definition: Seien M, N, P A-Moduln. f: M x N P heisst A-bilinear, falls x M: N P, y f(x, y) und y N: M P, x f(x, y) Homomorphismen

Mehr

2.8. ABBILDUNGSMATRIZEN UND BASISWECHSEL 105. gramms kommutativ:

2.8. ABBILDUNGSMATRIZEN UND BASISWECHSEL 105. gramms kommutativ: 2.8. ABBILDUNGSMATRIZEN UND BASISWECHSEL 105 gramms kommutativ: V ϕ W ψ X c B c C c D K n x MC B(ϕ) x K m x MC D (ψ) x K l x M C D (ψ)mb C (ϕ) x Dies bedeutet, dass das gesamte Diagramm kommutativ ist.

Mehr

3 Konstruktion von Maßräumen

3 Konstruktion von Maßräumen $Id: caratheodory.tex,v 1.10 2011/11/17 11:43:55 hk Exp hk $ 3 Konstruktion von Maßräumen 3.4 Der Fortsetzungssatz von Caratheodory Wir hatten in der letzten Sitzung mit dem Beweis des Satzes von Caratheodory

Mehr

1 Eingebettete Untermannigfaltigkeiten des R d

1 Eingebettete Untermannigfaltigkeiten des R d $Id: unter.tex,v 1.5 2014/04/28 14:01:50 hk Exp $ $Id: diff.tex,v 1.2 2014/04/28 14:24:56 hk Exp hk $ 1 Eingebettete Untermannigfaltigkeiten des R d Am Ende der letzten Sitzung hatten wir die Tangentialvektoren

Mehr

2 Affine und projektive Ebenen

2 Affine und projektive Ebenen $Id: ebenen.tex,v 1.3 2018/11/06 12:51:04 hk Exp $ 2 Affine und projektive Ebenen Nachdem wir in der letzten Sitzung affine Ebenen definiert und ein wenig untersucht haben kommen wir nun zu den sogenannten

Mehr

1 Der Satz von Poincaré-Birkhoff-Witt. 2 Die freie Algebra. 3 Die universell einhüllende Algebra

1 Der Satz von Poincaré-Birkhoff-Witt. 2 Die freie Algebra. 3 Die universell einhüllende Algebra 1 Der Satz von Poincaré-Birkhoff-Witt Darstellungen von assoziativen Algebren sind oft einfacher zu handhaben als Darstellungen von Lie- Algebren. Die universell einhüllende Algebra einer Lie-Algebra hat

Mehr

Übungsblatt 14. Lineare Algebra II, Prof. Dr. Plesken, WS 2008/09

Übungsblatt 14. Lineare Algebra II, Prof. Dr. Plesken, WS 2008/09 Übungsblatt 14 Lineare Algebra II, Prof. Dr. Plesken, WS 2008/09 Aufgabe 3. (Symmetrisches Produkt. 4 Punkte.) Sei V ein n-dimensionaler K-Vektorraum mit Basis B V n und ϕ: V K[x 1,...,x n ] 1 der Isomorphismus,

Mehr

49 Tensorprodukt. Diese Abbildung ist offensichtlich bilinear. Sie hat außerdem die folgende universelle Eigenschaft:

49 Tensorprodukt. Diese Abbildung ist offensichtlich bilinear. Sie hat außerdem die folgende universelle Eigenschaft: 49 Tensorprodukt Zusammenfassung Das Tensorprodukt von Vektorräumen erlaubt die Linearisierung von bilinearen und multilinearen Abbildungen zwischen Vektorräumen. Varianten des Tensorproduktes sind das

Mehr

Ferienkurs Mathematik für Physiker I Skript Teil 2 ( )

Ferienkurs Mathematik für Physiker I Skript Teil 2 ( ) Ferienkurs Mathematik für Physiker I WS 206/7 Ferienkurs Mathematik für Physiker I Skript Teil 2 (28.03.207) Vektorräume Bevor wir zur Definition eines Vektorraumes kommen erinnern wir noch einmal kurz

Mehr

Algebra II. Prof. Dr. M. Rost. Übungen Blatt 3 (SS 2016) 1. Abgabetermin: Freitag, 6. Mai.

Algebra II. Prof. Dr. M. Rost. Übungen Blatt 3 (SS 2016) 1. Abgabetermin: Freitag, 6. Mai. Algebra II Prof. Dr. M. Rost Übungen Blatt 3 (SS 2016) 1 Abgabetermin: Freitag, 6. Mai http://www.math.uni-bielefeld.de/~rost/a2 Erinnerungen an die Vorlesung: Im Folgenden werden manchmal einige Definitionen

Mehr

auf C[; ] sind linear III Formale Dierentiation und Integration: Die Abbildungen und a + a t + + a n t n a + a t + + na n t n a + a t + + a n t n an a

auf C[; ] sind linear III Formale Dierentiation und Integration: Die Abbildungen und a + a t + + a n t n a + a t + + na n t n a + a t + + a n t n an a x LINEARE ABBILDUNGEN Denition: Seien V; V Vektorraume Eine Abbildung f heit linear, falls (i) (ii) f(x + y) f(x) + f(y) (x; y V ) f(x) f(x) ( R; x V ) Bemerkungen: I (i) und (ii) oben sind aquivalent

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 20 Kultur ist Reichtum an Problemen. Egon Friedell Der Interpolationssatz Satz 20.1. Es sei K ein Körper

Mehr

5 Der Transzendenzgrad

5 Der Transzendenzgrad $Id: trgrad.tex,v 1.6 2009/05/11 14:48:57 hk Exp $ 5 Der Transzendenzgrad Wir stellen nun einige der Tatsachen über die Mächtigkeit von Mengen zusammen, die Ihnen wahrscheinlich aus den ersten Semester

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen Mathematische Probleme, SS 208 Dienstag 0.4 $Id: vektor.tex,v.30 207/07/7 08:09:23 hk Exp hk $ Analytische Geometrie und Grundlagen In dieser Vorlesung wollen wir uns mit Fragen der sogenannten Elementargeometrie

Mehr

11 Multilineare Algebra

11 Multilineare Algebra 11 Multilineare Algebra Pink: Lineare Algebra 2014/15 Seite 117 11 Multilineare Algebra 11.1 Multilineare Abbildungen Definition: Betrachte K-Vektorräume V 1,...,V r und W. Eine Abbildung ϕ: V 1... V r

Mehr

3.5 Duale Vektorräume und Abbildungen

3.5 Duale Vektorräume und Abbildungen 3.5. DUALE VEKTORRÄUME UND ABBILDUNGEN 103 3.5 Duale Vektorräume und Abbildungen Wir wollen im Folgenden auch geometrische Zusammenhänge mathematisch beschreiben und beginnen deshalb jetzt mit der Einführung

Mehr

Lineare Abbildungen und Matrizen

Lineare Abbildungen und Matrizen Lineare Abbildungen und Matrizen Seien V und W K-Vektorräume mit dimv = n und dimw = m Im folgenden wollen wir jeder m n Matrix eine lineare Abbildung V W zuordnen, und umgekehrt jeder linearen Abbildung

Mehr

Basiswissen über Bilinearformen mit Betrachtung symmetrischer Bilinearformen

Basiswissen über Bilinearformen mit Betrachtung symmetrischer Bilinearformen Basiswissen über Bilinearformen mit Betrachtung symmetrischer Bilinearformen Zhelun Chen Proseminar Lineare Algebra WS016/017 Universität Konstanz Zusammenfassung In diesem Proseminar lernen wir einige

Mehr

LINEARE ALGEBRA II. FÜR PHYSIKER

LINEARE ALGEBRA II. FÜR PHYSIKER LINEARE ALGEBRA II FÜR PHYSIKER BÁLINT FARKAS 4 Rechnen mit Matrizen In diesem Kapitel werden wir zunächst die so genannten elementaren Umformungen studieren, die es ermöglichen eine Matrix auf besonders

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 15 Unterräume und Dualraum Untervektorräume eines K-Vektorraumes stehen in direkter Beziehung zu Untervektorräumen

Mehr

U = U, v i λ i = o und (z.b.) λ 1 0. i=1 1 = i=2. i=2

U = U, v i λ i = o und (z.b.) λ 1 0. i=1 1 = i=2. i=2 7 Lineare Unabhängigkeit, asis Existenzsatz M Am Ende des vorigen Paragraphen betrachteten wir bei vorgegebener Teilmenge T eines K-Vektorraumes V das Erzeugnis U von T in V. Die ildung des Erzeugnisses

Mehr

Lineare Abbildungen - I

Lineare Abbildungen - I Lineare Abbildungen - I Definition. Seien V und W K-Vektorräume (über demselben K). Eine Abbildung F : V W heißt K-linear, wenn L1) F (v + w) = F (v) + F (w) v, w V L2) F (λv) = λf (v) v V, λ K. Somit

Mehr

Analysis für Physiker Zusätze

Analysis für Physiker Zusätze Analysis für Physiker Zusätze nach den Vorlesungen von Prof. Dr. Werner Timmermann (Sommersemester 2007, Wintersemester 2007/08) Herausgegeben von Jeffrey Kelling Felix Lemke Stefan Majewsky Stand: 23.

Mehr

5.2 Diagonalisierbarkeit und Trigonalisierung

5.2 Diagonalisierbarkeit und Trigonalisierung HINWEIS: Sie finden hier eine vorläufige Kurzfassung des Inhalts; es sind weder Beweise ausgeführt noch ausführliche Beispiele angegeben. Bitte informieren Sie sich in der Vorlesung. c M. Roczen und H.

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 0/06 Lineare Algebra und analytische Geometrie I Vorlesung... und ein guter Lehrer kann auch einem schlechten Schüler was beibringen Beziehung zwischen Eigenräumen Wir

Mehr

Musterlösung zu Blatt 6, Aufgabe 2

Musterlösung zu Blatt 6, Aufgabe 2 Musterlösung zu Blatt 6, Aufgabe 2 I Aufgabenstellung Es sei F = R N der Raum aller reellen, mit N induzierten Folgen. Weiter bezeichne N alle Nullfolgen, K alle konvergenten Folgen und B alle beschränkten

Mehr

2 Differenzierbare Mannigfaltigkeiten

2 Differenzierbare Mannigfaltigkeiten $Id: diff.tex,v 1.6 2014/05/12 09:25:07 hk Exp hk $ 2 Differenzierbare Mannigfaltigkeiten 2.1 Topologische Räume In der letzten Sitzung haben wir begonnen den Kompaktheitsbegriff in allgemeinen topologischen

Mehr

Multilineare Algebra

Multilineare Algebra Multilineare Algebra Handout zur Vorlesung Differentialgeometrie Dr. Bernd Ammann, Prof. Chr. Bär Literatur Frank Warner, Foundations of differentiable manifolds and Lie groups, Kapitel 2 1 Tensoren Motivation.

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.4 2017/04/13 14:48:29 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.1 Affine Geometrie im R d Wir hatten einen affinen Teilraum A des R d als eine Teilmenge der Form A = a + U definiert,

Mehr

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung Kapitel 3 Lineare Abbildungen Lineare Abbildungen sind eine natürliche Klasse von Abbildungen zwischen zwei Vektorräumen, denn sie vertragen sich per definitionem mit der Struktur linearer Räume Viele

Mehr

2. Isotropie. Beweis: (i) (ii): β U ist nicht ausgeartet. U U = {0} (ii) (iii): β U ist nicht ausgeartet. Da β nicht ausgeartet ist, gilt U = U:

2. Isotropie. Beweis: (i) (ii): β U ist nicht ausgeartet. U U = {0} (ii) (iii): β U ist nicht ausgeartet. Da β nicht ausgeartet ist, gilt U = U: 2. Isotropie Im folgenden sei V ein K-Vektorraum der Dimension n. Es sei q eine quadratische Form darüber und β die zugehörige symmetrische Bilinearform. Zudem gelte in K: 1 + 1 0. Notation 2.0: Wir nennen

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 15.11.2013 Alexander Lytchak 1 / 12 Erinnerung Eine Abbildung f : V W zwischen reellen Vektorräumen ist linear, wenn

Mehr

Lineare Algebra. 6. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 6. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra 6. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching November, 7 Vektoräume Eine Menge E zusammen mit zwei Verknüpfungen + : E E E, x, y x + y Addition : E E E,

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.39 2018/05/03 14:55:15 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel Nachdem wir uns am Ende der letzten Sitzung an den Orthogonalitätsbegriff der linearen

Mehr

Lineare Algebra. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra 7. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching November 9, 27 Erinnerung 2 Vektoräume Sei V ein Vektorraum, U V, U {}. U hiesst Untervektorraum, Unterraum,

Mehr

Lösung zu Serie [Aufgabe] Zeige: Das folgende Diagramm kommutiert insgesamt genau dann, wenn alle 6 Teilquadrate kommutieren.

Lösung zu Serie [Aufgabe] Zeige: Das folgende Diagramm kommutiert insgesamt genau dann, wenn alle 6 Teilquadrate kommutieren. Lineare Algebra D-MATH, HS 2014 Prof. Richard Pink Lösung zu Serie 8 1. [Aufgabe] Zeige: Das folgende Diagramm kommutiert insgesamt genau dann, wenn alle 6 Teilquadrate kommutieren. a 1 A 1 a 2 A 2 a 3

Mehr

1 Lineare Abbildungen

1 Lineare Abbildungen 1 Lineare Abbildungen Definition 1 Sei K ein Körper und V und W K-Vektoräume. Eine Abbildung f : V W heisst linear oder Homomoprhismus, wenn gilt: fv 1 + v 2 = fv 1 + fv 2 v 1, v 2 V fλv = λfv λ K, v V

Mehr

Lineare Abbildungen und Matrizen

Lineare Abbildungen und Matrizen Lineare Abbildungen und Matrizen In diesem Kapitel geht es um den grundlegenden Zusammenhang zwischen linearen Abbildungen und Matrizen. Die zentrale Aussage ist, dass nach anfänglicher Wahl von Basen

Mehr

Algebra und Zahlentheorie WS 13/14

Algebra und Zahlentheorie WS 13/14 Algebra und Zahlentheorie WS 13/14 FU Berlin David Müßig http://page.mi.fu-berlin.de/def/auz14/ muessig@mi.fu-berlin.de 21.01.2014 1 Hintergrund: Basen & Vektorräume 1.1 Grundlegende Begriffe Da einige

Mehr

1 Eingebettete Untermannigfaltigkeiten des R d

1 Eingebettete Untermannigfaltigkeiten des R d $Id: unter.tex,v 1.2 2014/04/14 13:19:35 hk Exp hk $ 1 Eingebettete Untermannigfaltigkeiten des R d In diesem einleitenden Paragraphen wollen wir Untermannigfaltigkeiten des R d studieren, diese sind die

Mehr

Kapitel II. Vektorräume

Kapitel II. Vektorräume Inhalt der Vorlesung LAAG I Prof. Dr. Arno Fehm TU Dresden WS2017/18 Kapitel II. Vektorräume In diesem ganzen Kapitel sei K ein Körper. 1 Definition und Beispiele 1.1 Beispiel. Ist K = R, so haben wir

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

4 Bilinearformen und Skalarprodukte

4 Bilinearformen und Skalarprodukte 4 Bilinearformen und Skalarprodukte 4 Grundlagen über Bilinearformen Definition 4 Sei V ein K-Vektorraum Eine Bilinearform b auf V ist eine Abbildung b : V V K mit folgenden Eigenschaften: (B) x, y, z

Mehr

4 Funktionenfolgen und normierte Räume

4 Funktionenfolgen und normierte Räume $Id: norm.tex,v 1.57 2018/06/08 16:27:08 hk Exp $ $Id: jordan.tex,v 1.34 2018/07/12 20:08:29 hk Exp $ 4 Funktionenfolgen und normierte Räume 4.7 Kompakte Mengen Am Ende der letzten Sitzung hatten wir zwei

Mehr

α i e i. v = α i σ(e i )+µ

α i e i. v = α i σ(e i )+µ Beweis: Der Einfachheit halber wollen wir annehmen, dass V ein endlich-dimensionaler Vektorraum mit Dimension n ist. Wir nehmen als Basis B {e 1,e 2,...e n }. Für beliebige Elemente v V gilt dann v α i

Mehr

2.3 Basis und Dimension

2.3 Basis und Dimension Lineare Algebra I WS 205/6 c Rudolf Scharlau 65 2.3 Basis und Dimension In diesem zentralen Abschnitt werden einige für die gesamte Lineare Algebra fundamentale Grundbegriffe eingeführt: Lineare Abhängigkeit

Mehr

Rangsatz. d.) (2P) Formulieren Sie den

Rangsatz. d.) (2P) Formulieren Sie den Probeklausur Lineare Algebra I am 14.11.09 Die Klausur ist in drei Teile unterteilt, die grob als Definitions-, Rechenund Beweisteil bezeichnet werden können (optisch durch Linien getrennt). In jedem Teil

Mehr

8 Eigenwerttheorie I 8. EIGENWERTTHEORIE I 139. Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet:

8 Eigenwerttheorie I 8. EIGENWERTTHEORIE I 139. Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet: 8. EIGENWERTTHEORIE I 139 8 Eigenwerttheorie I Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet: K[x] = Abb[N, K] = {P ; P = a n x n + a n 1 x n 1 + + a 0 ; a

Mehr

02. Vektorräume und Untervektorräume

02. Vektorräume und Untervektorräume 02. Vektorräume und Untervektorräume Wir kommen nun zur eigentlichen Definition eines K-Vektorraums. Dabei ist K ein Körper (bei uns meist R oder C). Informell ist ein K-Vektorraum eine Menge V, auf der

Mehr

Mathematik I. Vorlesung 16. Eigentheorie

Mathematik I. Vorlesung 16. Eigentheorie Prof Dr H Brenner Osnabrück WS 009/00 Mathematik I Vorlesung 6 Eigentheorie Unter einer Achsenspiegelung in der Ebene verhalten sich gewisse Vektoren besonders einfach Die Vektoren auf der Spiegelungsachse

Mehr

Lineare Algebra. Wintersemester 2017/2018. Skript zum Ferienkurs Tag Claudia Nagel Pablo Cova Fariña. Technische Universität München

Lineare Algebra. Wintersemester 2017/2018. Skript zum Ferienkurs Tag Claudia Nagel Pablo Cova Fariña. Technische Universität München Technische Universität München Wintersemester 27/28 Lineare Algebra Skript zum Ferienkurs Tag 2-2.3.28 Claudia Nagel Pablo Cova Fariña Wir danken Herrn Prof. Kemper vielmals für seine Unterstützung bei

Mehr

7.2 Die adjungierte Abbildung

7.2 Die adjungierte Abbildung 7.2 Die adjungierte Abbildung Definition 7.2.1 Eine lineare Abbildung f : V K heißt lineares Funktional oder Linearform. (Diese Definition gilt für beliebige K-Vektorräume, nicht nur für innere Produkträume.)

Mehr