Lösung 5: Gram-Schmidt Orthogonalisierung, adjungierte Abbildungen

Größe: px
Ab Seite anzeigen:

Download "Lösung 5: Gram-Schmidt Orthogonalisierung, adjungierte Abbildungen"

Transkript

1 D-MATH Lineare Algebra II FS 7 Dr. Meike Akveld Lösung 5: Gram-Schmidt Orthogonalisierung, adjungierte Abbildungen. a) Wegen der Linearität im ersten Argument gilt sicherlich w S :, w =. Somit ist S und also S nicht-leer. Seien nun v, v S und λ R, dann ist wieder wegen der Linearität im ersten Argument w S : v + λv, w = v, w + λ v, w = und also v + λv S. Also ist S V ein Unterraum. b) Wegen Linearität im ersten Argument und Symmetrie gilt für alle v V, dass v, =, v =. Folglich ist V {} und insbesondere folgt {} = V. Sei nun v V, dann ist per definitionem = v, w = w, v für alle w V. Wie in der letzten Serie gezeigt wurde, ist v durch die Abbildung V w w, v eindeutig bestimmt, und da nach Annahme gilt w, v = w, für alle w V, folgt also v =. Also ist V = {}. c) Sei w W W, dann ist = w, w für alle w W, da nach Voraussetzung w W gilt. Insbesondere ist, wegen w W auch = w, w und wegen der Positivität folgt w =. Bevor wir zeigen, dass W = (W ), wollen wir anmerken, dass die Aussage nur gilt, falls W ein topologisch abgeschlossener Unterraum von V ist, zum Beispiel endlichdimensional. Insbesondere muss ein Beweis diese Tatsache bzw. in diesem vereinfachten Falle die endliche Dimension tatsächlich verwenden. Da V endlichdimensional ist, sind auch W und W endlichdimensional. Falls W = {} gilt, dann gilt die Aussage wegen dem, was weiter oben bewiesen wurde. Sei also W {}, dann können wir unter Verwendung des Gram-Schmidt Bitte wenden!

2 Verfahrens und anschliessender Normalisierung annehmen, dass W eine geordnete Orthonormalbasis (w,..., w m ) besitzt und unter Verwendung des Basisergänzungssatzes sowie des Gram-Schmidt Verfahrens existieren orthonormale Vektoren w m+,..., w n (wobei n = dim(v )), sodass (w,..., w n ) eine geordnete Orthonormalbasis von V ist. Wie in der Vorlesung gezeigt (vgl. Proposition in.), ist v W genau dann, wenn v span{w m+,..., w m }, bzw. nach nochmaliger Anwendung desselben Arguments ist v (W ) genau dann, wenn v span{w,..., w m } = W. d) Sei v span(s), dann gilt wegen S span(s) sicherlich v S. Wir müssen also nur noch zeigen, dass aus v S folgt v span(s). Sei v S und w span(s), dann existieren s,..., s m S sowie α,..., a m R, sodass w = m α is i und somit folgt aus der Symmetrie sowie Linearität im ersten Argument m m v, w = w, v = α i s i, v = α i v, s i = und also v span(s). e) Wie eben argumentiert, können wir zeigen, dass V = span(s) span(s). Dies wurde in Proposition,. gezeigt.. a) Wir haben in Aufgabe gezeigt, dass V = U U gilt. Sei v = u + u mit u U und u U. Wir wissen, dass diese Zerlegung eindeutig ist, und per definitionem ist v u, w = u, w = für alle w U. Angenommen ũ U, sodass v ũ, w = für alle w U, dann ist v ũ U und aus v = ũ+(v ũ) und der Eindeutigkeit der Zerlegung volgt ũ = u. Wir setzten also P U (v) := u. Wir bemerken, dass λv = λu + λu und somit ist für alle w = ũ + ũ mit ũ U, ũ U auch w + λv = ũ } + {{ λu } U + ũ } + {{ λu }, U sodass P U (w + λv) = ũ + λu = P U (w) + λp U (v), sodass P U linear ist. b) Nach obiger expliziter Konstruktion von P U, wurde dies bereits in Serie 7, Aufgabe b der Linearen Algebra I bewiesen. c) Sei w U, dann ist w v = w PU (v) ( v P U (v) ) = w P U (v) + v P U (v) v P U (v) nach Aufgabe 4a von Blatt 4. Dies beweist die Behauptung. Siehe nächstes Blatt!

3 . a) Man überprüft leicht, dass die beiden gegeben Vektoren orthognal sind. Normalisierung liefert die Orthonormalbasis v =, v =. Wir bestimmen bereits an dieser Stelle eine Basis des eindimensionalen orthogonalen Komplements U. Hierzu ergänzen wir {v, v } zu einer Basis von R und wenden auf die resultierende Basis das Gram-Schmidt Verfahren mit anschliesssender Normalisierung an. Man überprüft durch Berechnung einer - Determinante, dass beispielsweise für v = (,, ) T die Menge {v, v, v } eine Basis von R ist. Gram-Schmidt angewendet auf diese Basis liefert nach Normalisierung eine Orthonormalbasis {v, v, v } mit v =. Da U = span{v, v } und nach Konstruktion v U, ist {v } eine Basis von U. b) Wir haben in der Vorlesung gezeigt, dass für jede geordnete Orthonormalbasis B = (w, w, w ) von R und für jedes T End(R ) die Abbildungsmatrix A = [T ] B gegeben ist durch A ij = T (w j ), w i. Wir wenden dies an auf die Basis B := (v, v, v ) von oben, die Abbildung T := P U und verwenden am Schluss die Basiswechselmatrix Q := [I R ] E B zur Bestimmung von [P U ] E = QAQ. Nach Konstruktion gilt { v j falls v j U, bzw. j =, P U (v j ) = sonst und insbesondere ist also Es ist klar, dass [P U ] B =. Q =. Bitte wenden!

4 Da (v, v, v ) eine Orthonormalbasis ist, folgt Q T Q = I und folglich ist Q = Q T. Es gilt also [P U ] E = = = 5 5. Zur Bestimmung von [P U ] E verwenden wir die Tatsache, dass nach Aufgabe für alle v R gilt v = P U (v) + P U (v) = (P U + P U )(v) und folglich ist I R = P U + P U. Wegen der Linearität von End(V ) T [T ] E, folgt [P U ] E = I [P U ] E und also [P U ] E = c) U ist nach Aufgabe d der Durchschnitt der Kerne der Abbildungen R v v, v und R v v, v, bzw. U ist die Lösungsmenge des Gleichungssystems x + y + z = x + y =. und analog ist U die Lösungsmenge des Gleichungssystems x y + y =, wobei wir hier verwendet haben, dass U = (U ), was in Aufgabe c bewiesen wurde. 4. Sei W R n der Unterraum von R n, der von den Spalten von A aufgespannt wird und nimm für den Moment an, dass dim(w ) = m und W = span{a (),..., A (m) }. Unter Verwendung des Gram-Schmidt Verfahrens existiert eine Orthogonalbasis w,..., w m W von W, sodass gilt j A (j) = w j + α ij w i ( j m) Siehe nächstes Blatt!

5 für eine obere Dreiecksmatrix (α ij ) m i,j= M m m (R). Sei v i := w i w i für i m. Dann ist {v,..., v m } eine Orthonormalbasis von W und es gilt A (j) = j β ij v i ( j m) für eine obere Dreiecksmatrix (β ij ) m i,j= M m m (R). Wir ergänzen {v,..., v m } zu einer Orthonormalbasis {v,..., v n } von R n. Dann existiert nach Voraussetzung eine obere Dreiecksmatrix (β ij ) n i,j= M n n (R) mit A (j) = j β ij v i ( i n), denn A j span{v,..., v m } nach Annahme. Sei R = (β ij ) n i,j= M n n (R), Q wie in der Aufgabenstellung für die geordnete Basis (v,..., v n ), dann ist A = QR nach Konstruktion. Falls W span{a (),..., A (m) }, dann ergänzen wir an den Stellen der linear abhängigen Spalten die oben im ersten Schritt gefundene orthogonale Basis einfach durch Elemente einer orthonormalen Basis der orthogonalen Komplements. Per Definition von W fügt dies Nullspalten in R ein, was aber die Gültigkeit der Aussage nicht ändert und somit folgt die Aussage im allgemeinen Fall. Sei nun A invertierbar, dann sind auch Q und R invertierbar und dasselbe gilt für jede weitere solche Zerlegung von A in Q und R. Man beachte, dass für Q wie in der Aufgabenstellung aus der Orthonormalität der Basis folgt Q T Q = I n und somit ist Q = Q T und folglich ist QQ T = I n, was wiederum impliziert, dass die Zeilen von Q und die Spalten von Q T eine Orthonormalbasis von R n bilden. Des Weiteren ist (Q T Q ) T Q T Q = (Q ) T QQ T Q = I n und folglich sind auch die Zeilen und Spalten von Q T Q eine Orthonormalbasis von R. Es gilt nun QR = A = Q R QR = A und R(R ) = Q T Q. Insbesondere erfüllt die obere Dreiecksmatrix R(R ) die Gleichung (R(R ) ) = (R(R ) ) T. Da aber die Inverse einer oberen Dreiecksmatrix eine obere Dreiecksmatrix ist, erhalten wir, dass R(R ) eine Diagonalmatrix ist, deren Spalten wegen R(R ) = Q T Q eine Orthonormalbasis von R n bilden. Da die Diagonaleinträge eines Produktes von Dreiecksmatrizen die Produkte der entsprechenden Diagonaleinträge sind, besitzt die Diagonalmatrix nur positive Einträge auf der Diagonalen, die folglich alle gleich sind. Somit ist Q = Q und folglich R = Q T QR = R eie gewünscht. Bitte wenden!

6 5. a) Es ist per Definitionem L A v, w = Av, w R n = v T A T w = w T Av, wobei wir hier verwenden, dass für alle a R gilt a T = a. Es folgt die Aussage. b) Es gilt für beliebige v V nach Definition von Φ und Φ Φv, v V = v Ker(Φ). Φ Φv, v V = Φv, Φv W = Φv c) Sei v Ker(Φ Φ), dann ist = Φ Φv, u = Φv, Φu W für alle u V und mit u := v folgt aus der Positivität Φv = bzw. Ker(Φ Φ) Ker(Φ). Die Inklusion Ker(Φ) Ker(Φ Φ) ist klar und folglich ist Ker(Φ Φ) = Ker(Φ). Es folgt aus der Dimensionsformel, dass Rang(Φ Φ) = dim V nullity(φ Φ) = dim V nullity(φ) = Rang(Φ).. a) Da die Evaluationshomomorphismen e a : P (R) R, p p(a) linear sind, und unter Verwendung der Linearität der formalen Ableitungen p p (k) für beliebige k N, erhalten wir, dass die Abbildung (p, q) p, q im ersten Argument linear ist. Explizit gilt wegen erwähnter Tatsachen für p, p, q P (R), λ R p, q =(p + λp )()q() + (p + λp ) ()q () + (p + λp ) ()q () =(p + λp )()q() + (p + λp )()q () + (p + λp )()q () = ( p () + λp () ) + ( p () + λp () ) q () + ( p () + λp () ) q () = p, q + λ p, q. Symmetrie von, folgt aus der Tatsache, dass die Multiplikation auf R kommutativ ist, denn für beliebige p, q P (R). p, q =p()q() + p ()q () + p ()q () =q()p() + q ()p () + q ()p () = q, p Die Positivität folgt aus der Positivität des Quadrates reeller Zahlen, denn es ist sicherlich p, p = p() + p () + p () Wir müssen noch zeigen, dass aus p, p = die Gleichung p = folgt. Sei p gegeben durch p(x) = a X + a X + a, dann sind p (X) = a X + a und p (X) = a und somit ist p, p = a + a + 4a und folglich impliziert p, p =, dass a = a = a =, bzw. dass p =. Somit ist, ein inneres Produkt. Siehe nächstes Blatt!

7 b) Wie oben besprochen, gilt für p P (R) gegeben durch p(x) = a X + a X + a, dass p (X) = a X + a P (R) und folglich ist (X + )p (X) P (R). Also ist T wohldefiniert. Die Linearität von T folgt aus der Distributivität von Addition und Multiplikation auf P (R) sowie der Linearität der formalen Ableitung. Seien nämlich p, p P (R) und λ R, dann ist T (p + λp ) =(X + ) ( p (X) + λp (X) ) =(X + ) ( p (X) + λp (X) ) =(X + )p (X) + λ(x + )p (X) =T (p ) + λt (p ). Im Folgenden betrachten wir die Orthonormalbasis B = (, X, X ) von P (R). Man berechnet leicht, dass und folglich ist T () = T (X) =X + T ( X ) =X + X [T ] B =. Wir haben in der Vorlesung gezeigt, dass [T ] B = [T ] T B =. Es ist also T () = X, T (X) = X + X und T ( X ) = X bzw. T (X ) = X. Unter Verwendung der Linearität von T folgt T (a X + a X + a ) = (a + a )X + (a + a )X. c) Wir wissen, dass v = α + α X + α X ist für gewisse α, α, α R, die wir nun bestimmen. Da {, X, X } eine Orthonormalbasis ist, gilt α =, v, α = X, v, α = X, v, Bitte wenden!

8 und aus der Bedingung f(p) = p, v folgt nach einsetzen der Basis für p, dass Also ist v = X + X +. α = α = α = dx = xdx = x dx =.

Lösung 23: Sylvesters Trägheitssatz & Singulärwertzerlegung

Lösung 23: Sylvesters Trägheitssatz & Singulärwertzerlegung D-MATH Lineare Algebra I/II HS 07/FS 08 Dr Meike Akveld Lösung 3: Sylvesters Trägheitssatz & Singulärwertzerlegung Wir wissen, dass eine Basis B von R n existiert, sodass p [β Q ] B I I q 0 n p q gilt

Mehr

Lösung 7: Bilinearformen

Lösung 7: Bilinearformen D-MATH Lineare Algebra II FS 207 Dr. Meike Akveld Lösung 7: Bilinearformen. a). Seien u, u 2 V, λ K, dann gelten nach Voraussetzung: L v (u + λu 2 ) =β(v, u + λu 2 ) = β(v, u ) + β(v, λu 2 ) =β(v, u )

Mehr

Lösung 7: Lineare Abbildungen: Kern, Bild, Rang und Darstellung durch Matrizen

Lösung 7: Lineare Abbildungen: Kern, Bild, Rang und Darstellung durch Matrizen D-MATH Lineare Algebra I HS 2017 Dr. Meike Akveld Lösung 7: Lineare Abbildungen: Kern, Bild, Rang und Darstellung durch Matrizen 1. a) Seien v 1, v 2 V, λ K, dann sind Also ist id V linear. b) Seien v

Mehr

Lösung 13: Unitäre Vektorräume und normale Abbildungen

Lösung 13: Unitäre Vektorräume und normale Abbildungen D-MATH Lineare Algebra II FS 2017 Dr. Meike Akveld Lösung 13: Unitäre Vektorräume und normale Abbildungen 1. a) Im Folgenden sei γ : V V C die Abbildung γ(v, w) v + w 2 v w 2 i v + iw 2 + i v iw 2. : Wir

Mehr

Lösung 8: Quadratische Formen, Sylvesters Trägheitssatz

Lösung 8: Quadratische Formen, Sylvesters Trägheitssatz D-MATH Lineare Algebra II FS 207 Dr. Meike Akveld Lösung 8: Quadratische Formen, Sylvesters Trägheitssatz. Wir erinnern an den Hauptachsensatz: Jede von 0 verschiedene quadratische Form Q auf R 3 ist bis

Mehr

Sommer 2017 Musterlösung

Sommer 2017 Musterlösung Sommer 7 Musterlösung. (5 Punkte) a) Sei V ein Vektorraum über K und sei T End(V ). Geben Sie die Definition eines Eigenwertes von T und zeigen Sie für endlichdimensionales V, dass λ K genau dann ein Eigenwert

Mehr

Lösung Lineare Algebra I Sommer 2018 Version A

Lösung Lineare Algebra I Sommer 2018 Version A Lösung Lineare Algebra I Sommer 208 Version A. (25 Punkte) Kreuzen Sie direkt auf dem Abgabeblatt an, ob die Behauptungen oder sind. Sie müssen Ihre Antworten nicht begründen! Bewertung: Punkt für jede

Mehr

Summen und direkte Summen

Summen und direkte Summen Summen und direkte Summen Sei V ein K-Vektorraum. Wie früher erwähnt, ist für beliebige Teilmengen M, N V die Teilmenge M +N V wie folgt definiert M +N = {v+w : v M, w N}. Man sieht leicht, dass i.a. M

Mehr

Lösung Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Lösung Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 06 Dr. Meike Akveld Lösung Serie : Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung. Um zu zeigen, dass es sich bei den gegebenen Vektoren um Basen handelt,

Mehr

Lineare Algebra I Lösungsvorschlag

Lineare Algebra I Lösungsvorschlag Aufgabe Lineare Algebra I Lösungsvorschlag Wir bezeichnen mit a, a 2, a 3 Q 4 die Spalten der Matrix A. Es ist 7 a + 2a 2 = 7 4 = 7a 3, und wir sehen im l A = a, a 2, a 3 = a, a 2. Da die Vektoren a und

Mehr

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink Lineare Algebra D-MATH, HS 201 Prof. Richard Pink Lösung zu Serie 18 1. Sei V,, ein endlich-dimensionaler unitärer Vektorraum. Zeige, dass zu jeder Sesquilinearform f : V V C eine eindeutige lineare Abbildung

Mehr

Lösung zu Serie [Aufgabe] Zeige: Das folgende Diagramm kommutiert insgesamt genau dann, wenn alle 6 Teilquadrate kommutieren.

Lösung zu Serie [Aufgabe] Zeige: Das folgende Diagramm kommutiert insgesamt genau dann, wenn alle 6 Teilquadrate kommutieren. Lineare Algebra D-MATH, HS 2014 Prof. Richard Pink Lösung zu Serie 8 1. [Aufgabe] Zeige: Das folgende Diagramm kommutiert insgesamt genau dann, wenn alle 6 Teilquadrate kommutieren. a 1 A 1 a 2 A 2 a 3

Mehr

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 06 Dr. Meike Akveld Serie : Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung. Gegeben seien die folgenden geordneten Basen B = (v, v, v, v ) und C = (w, w,

Mehr

Serie 17: Satz von Cayley-Hamilton & spezielle Endomorphismen

Serie 17: Satz von Cayley-Hamilton & spezielle Endomorphismen D-MATH Lineare Algebra I/II HS 2017/FS 2018 Dr. Meike Akveld Serie 17: Satz von Cayley-Hamilton & spezielle Endomorphismen 1. Sei V ein K-Vektorraum. a) Sei T End(V ). Zeigen Sie, dass die folgenden alles

Mehr

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q:

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q: Lineare Algebra D-MATH, HS 214 Prof Richard Pink Serie 5 1 [Aufgabe] Invertieren Sie folgende Matrizen über Q: 1 a) 1 1 1 1 1 2 1 1 1 b) 1 2 1 1 1 1 2 1 1 1 1 2 1 2 3 1 c) 1 3 3 2 2 1 5 3 1 2 6 1 [Lösung]

Mehr

6. Normale Abbildungen

6. Normale Abbildungen SKALARPRODUKE 1 6 Normale Abbildungen 61 Erinnerung Sei V ein n-dimensionaler prä-hilbertraum, also ein n-dimensionaler Vektorraum über K (R oder C) versehen auch mit einer Skalarprodukt, ra K Die euklidische

Mehr

D-Math/Phys Lineare Algebra I HS 2017 Dr. Meike Akveld. Clicker Fragen

D-Math/Phys Lineare Algebra I HS 2017 Dr. Meike Akveld. Clicker Fragen D-Math/Phys Lineare Algebra I HS 2017 Dr. Meike Akveld Clicker Fragen Frage 1 Die Aussage Dieser Satz ist falsch ist wahr falsch Dies ist die einfachste Form des Lügner-Paradoxes ist der folgende selbstbezügliche

Mehr

Blatt 10 Lösungshinweise

Blatt 10 Lösungshinweise Lineare Algebra und Geometrie I SS 05 Akad. Rätin Dr. Cynthia Hog-Angeloni Dr. Anton Malevich Blatt 0 Lösungshinweise 0 0 Aufgabe 0. Es seien die Vektoren u =, v = und w = in R gegeben. a # Finden Sie

Mehr

D-Math/Phys Lineare Algebra I HS 2016 Dr. Meike Akveld. Clicker Fragen. Sei R die Menge aller Mengen, die sich nicht selbst enthalten.

D-Math/Phys Lineare Algebra I HS 2016 Dr. Meike Akveld. Clicker Fragen. Sei R die Menge aller Mengen, die sich nicht selbst enthalten. D-Math/Phys Lineare Algebra I HS 2016 Dr. Meike Akveld Clicker Fragen Frage 1 Sei R die Menge aller Mengen, die sich nicht selbst enthalten. So gilt R R R / R Dies ist bekannt als die Russelsche Antimonie

Mehr

7.3 Unitäre Operatoren

7.3 Unitäre Operatoren Wir können jeden Operator T wie folgt schreiben: Dabei gilt T = 1 2 (T + T ) + i( 1 2 i (T T )) (T + T ) = T + T sowie ( 1 2 i (T T )) = 1 2 i (T T) = 1 2 i (T T ). Wir können T also in zwei lineare Operatoren

Mehr

Basisprüfung. 18. August 2015

Basisprüfung. 18. August 2015 Lineare Algebra I/II D-MATH, HS 4/FS 5 Prof Richard Pink Basisprüfung 8 August 25 [6 Punkte] Betrachte den reellen Vektorraum R 3 zusammen mit dem Standardskalarprodukt, und die Vektoren 9 3 v := 6, v

Mehr

Lösung Serie 10: Elementare Zeilenumformungen & Elementarmatrizen, Rang & Inverse einer Matrix

Lösung Serie 10: Elementare Zeilenumformungen & Elementarmatrizen, Rang & Inverse einer Matrix D-MATH/D-PHYS Lineare Algebra I HS 26 Dr. Meike Akveld Lösung Serie : Elementare Zeilenumformungen & Elementarmatrizen, Rang & Inverse einer Matrix. a) Sei w ImT + T 2 ), dann existiert ein v V, so dass

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 15. April 2018 1/46 Die Dimension eines Vektorraums Satz 2.27 (Basisergänzungssatz) Sei V ein Vektorraum über einem Körper K. Weiter seien v 1,...,

Mehr

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 2017 Dr. Meike Akveld Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung 1. In dieser Aufgabe beweisen wir die Existenz der LR-Zerlegung einer quadratischen

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

10 Unitäre Vektorräume

10 Unitäre Vektorräume 10 Unitäre Vektorräume Pink: Lineare Algebra 2014/15 Seite 98 10 Unitäre Vektorräume Die Theorie komplexer Vektorräume mit Skalarprodukt folgt denselben Linien wie die Theorie reeller Vektorräume mit Skalarprodukt;

Mehr

Lösung zum 9. Tutorium

Lösung zum 9. Tutorium MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Prof. Dr. D. Rost SoSe 5 Blatt 9 9.6.5 Lösung zum 9. Tutorium. Staatsexamensaufgabe Frühjahr 8 Die Vektoren v = 3, und v = 3 R4 spannen einen Unterraum U

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11 D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung Serie 11 1. Wir betrachten das überbestimmte Gleichungssystem Ax = y mit 1 1 1 1 A := 1 1 0 1 0 1, y := 2 3 0 0 1 4 Berechnen Sie die

Mehr

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2,

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2, Aufgabe I Es sei Q die folgende Teilmenge von C 2 2 : { ( ) a b Q a, b C b a Hier bezeichnet der Querstrich die komplexe Konjugation Zeigen Sie: (a) Mit den üblichen Verknüpfungen + und für Matrizen ist

Mehr

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009 I. (4 Punkte) Gegeben sei die Menge Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 9 G := { a c b a, b, c R }. (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe

Mehr

Serie Sei V ein Vektorraum. Man nennt eine lineare Abbildung P : V V eine Projektion, falls P 2 = P gilt. Zeigen Sie:

Serie Sei V ein Vektorraum. Man nennt eine lineare Abbildung P : V V eine Projektion, falls P 2 = P gilt. Zeigen Sie: Prof Emmanuel Kowalski Lineare Algebra II Serie 3 Sei V ein Vektorraum Man nennt eine lineare Abbildung P : V V eine Projektion, falls P 2 = P gilt Zeigen Sie: a Der Kern und das Bild einer Projektion

Mehr

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Winter 6 Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT. Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in das entsprechende

Mehr

Lösungsvorschläge zur Klausur. Lineare Algebra, Herbst 2010

Lösungsvorschläge zur Klausur. Lineare Algebra, Herbst 2010 Lösungsvorschläge zur Klausur Lineare Algebra, Herbst 200 I. Es seien n eine natürliche Zahl, M = {,..., n} N und S n die Gruppe der Permutationen der Menge M. Zeigen Sie: a) Für jedes a M ist H a := {σ

Mehr

Differentialgleichungen und Hilberträume Sommersemester 2014 Übungsblatt 11

Differentialgleichungen und Hilberträume Sommersemester 2014 Übungsblatt 11 Institut für Analysis Prof. Dr. Wolfgang Reichel Dipl.-Math. Anton Verbitsky Aufgabe 1 Differentialgleichungen und Hilberträume Sommersemester 14 Übungsblatt 11 5 Punkte In dieser Aufgabe geht es um die

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 4

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 4 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 4 4. (Frühjahr 27, Thema, Aufgabe ) Zeigen Sie, dass die beiden folgenden Unterräume des R 3 übereinstimmen:

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 4

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 4 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 26/7): Lineare Algebra und analytische Geometrie 4 4. (Frühjahr 27, Thema, Aufgabe ) Zeigen Sie, dass die beiden folgenden Unterräume des R 3 übereinstimmen:

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

Lineare Algebra für Physiker 11. Übungsblatt

Lineare Algebra für Physiker 11. Übungsblatt Lineare Algebra für Physiker 11. Übungsblatt Fachbereich Mathematik SS 01 Prof. Dr. Matthias Schneider./. Juli 01 Dr. Silke Horn Dipl.-Math. Dominik Kremer Gruppenübung Aufgabe G1 (Minitest) (a) Welche

Mehr

Zeigen Sie, dass der einzige Gruppenhomomorphismus von (G, ) nach (Z 5, +) die Abbildung Φ : G Z 5

Zeigen Sie, dass der einzige Gruppenhomomorphismus von (G, ) nach (Z 5, +) die Abbildung Φ : G Z 5 Aufgabe I (4 Punkte) Es sei G : {e, g, g, g } eine 4-elementige Gruppe mit neutralem Element e Die Verknüpfung auf G werde mit bezeichnet Außerdem seien in G folgende Gleichungen erfüllt: g g g und g g

Mehr

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich Henning Krause Lineare Algebra Julia Sauter SS 27 Klausur 2.9.27 mit Lösungsvorschlag Jan Geuenich Aufgabe (4 Punkte: Sei n N und seien A und B zwei (n n-matrizen über einem Körper K. Wahr Falsch (a Es

Mehr

Musterlösung zur Serie 10

Musterlösung zur Serie 10 D-MATH, D-PHYS, D-CHAB Lineare Algebra II FS 1 Prof. Giovanni Felder, Thomas Willwacher Musterlösung zur Serie 1 1. a) Zur Erinnerung: Eine Äquivalenzrelation auf einer Menge M ist eine Relation, die die

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Für die Matrikelnummer M = Dann sind durch A =

Für die Matrikelnummer M = Dann sind durch A = Musterlösung zum. Blatt 9. Aufgabe: Gegeben seien m 3 + 2 m m 3 m 2 m 4 + m 7 m 3 A := m m 2 m 2 + 2 m 2 m 4 + m 5 und b := m 6 m 4 + a) Finden Sie eine Lösung x R 7 für die Gleichung Ax =. b) Finden Sie

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen 1 Zum Aufwärmen 1.1 Notationen In diesem Teil der Vorlesung bezeichnen wir Körper mit K, Matrizen mit Buchstaben A,B,..., Vektoren mit u,v,w,... und Skalare mit λ,µ,... Die Menge der m n Matrizen bezeichnen

Mehr

3.3 Skalarprodukte 3.3. SKALARPRODUKTE 153

3.3 Skalarprodukte 3.3. SKALARPRODUKTE 153 3.3. SKALARPRODUKTE 153 Hierzu müssen wir noch die Eindeutigkeit (Unabhängigkeit von der Wahl der Basis bzw. des Koordinatensystems) zeigen. Sei hierzu β eine Bilinearform und q die entsprechende quadratische

Mehr

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie (KIT) WS 22/3 Institut für Analysis 28..23 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Höhere Mathematik I für die Fachrichtung Physik 4. Übungsblatt (letztes Blatt)

Mehr

a) Ein Gruppenhomomorphismus von G nach H ist eine Abbildung Φ : G H, sodass für alle g 1, g 2 G die Gleichung Φ(g 1 g 2 ) = Φ(g 1 ) Φ(g 2 )

a) Ein Gruppenhomomorphismus von G nach H ist eine Abbildung Φ : G H, sodass für alle g 1, g 2 G die Gleichung Φ(g 1 g 2 ) = Φ(g 1 ) Φ(g 2 ) I. (4 Punkte) Es seien (G, ) eine Gruppe mit neutralem Element e G und (H, ) eine weitere Gruppe. a) Geben Sie die Definition eines Gruppenhomomorphismus Φ : G H an und beweisen Sie, dass für solch einen

Mehr

Übungsblatt 13. Lineare Algebra I für Informatiker, Dr. Frank Lübeck, SS 2010

Übungsblatt 13. Lineare Algebra I für Informatiker, Dr. Frank Lübeck, SS 2010 Übungsblatt 3 Lineare Algebra I für Informatiker, Dr Frank Lübeck, SS Für Matrikelnummer: 9787 Abgabezeitpunkt: Do Jul :: CEST Dieses Blatt wurde erstellt: Do 5 Jul 8:47:36 CEST Diese Übung besteht aus

Mehr

Lösungen Serie 5. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler

Lösungen Serie 5. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler D-MAVT Lineare Algebra II S 8 Prof. Dr. N. Hungerbühler Lösungen Serie 5. Die Abbildung V n R n, v [v] B, die jedem Vektor seinen Koordinatenvektor bezüglich einer Basis B zuordnet, ist linear. Sei B =

Mehr

7.2 Die adjungierte Abbildung

7.2 Die adjungierte Abbildung 7.2 Die adjungierte Abbildung Definition 7.2.1 Eine lineare Abbildung f : V K heißt lineares Funktional oder Linearform. (Diese Definition gilt für beliebige K-Vektorräume, nicht nur für innere Produkträume.)

Mehr

Aufgabe I.1 (4 Punkte) Gegeben seien die Matrix H := und die Menge L := {A R 4 4 A HA = H} Zeigen Sie:

Aufgabe I.1 (4 Punkte) Gegeben seien die Matrix H := und die Menge L := {A R 4 4 A HA = H} Zeigen Sie: Aufgabe I (4 Punkte Gegeben seien die Matrix und die Menge Zeigen Sie: H := L := {A R 4 4 A HA = H} a L ist bezüglich der Matrizenmultiplikation eine Gruppe b Die Matrizen der Form ( E O, O B wobei E R

Mehr

Lineare Algebra I Winter 2018 (Lösung)

Lineare Algebra I Winter 2018 (Lösung) Lineare Algebra I Winter 208 (Lösung). (25 Punkte) Kreuzen Sie direkt auf dem Abgabeblatt an, ob die Behauptungen WAHR oder FALSCH sind. Sie müssen Ihre Antworten nicht begründen! Bewertung: Punkt für

Mehr

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie D-MAVT Lineare Algebra I HS 7 Prof. Dr. N. Hungerbühler Lösungen Serie 4: Ferienserie . Finden Sie ein Erzeugendensystem des Lösungsraums L R 5 des Systems x + x x 3 + 3x 4 x 5 = 3x x + 4x 3 x 4 + 5x 5

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Eigenvektoren

Mehr

Lineare Algebra II, Lösungshinweise Blatt 9

Lineare Algebra II, Lösungshinweise Blatt 9 Prof Dr Katrin Wendland Priv Doz Dr Katrin Leschke Christoph Tinkl SS 27 Lineare Algebra II, Lösungshinweise Blatt 9 Aufgabe (4 Punkte) Sei 2 3 4 A = 5 6 Berechnen Sie A k für alle k N und verifizieren

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 12 Aufgabe 121 Matrixpotenzen und Eigenwerte Diese Aufgabe ist

Mehr

4.4 Simultane Diagonalisierbarkeit und Trigonalisierbarkeit

4.4 Simultane Diagonalisierbarkeit und Trigonalisierbarkeit 4.4 Simultane Diagonalisierbarkeit und Trigonalisierbarkeit Definition 4.41. Eine Familie F linearer Operatoren heißt vertauschbar oder kommutierend, wenn für je zwei Operatoren U,T in F gilt: UT = TU.

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom Übungsaufgaben 11. Übung: Woche vom 9. 1.-13. 1. 2017 (Numerik): Heft Ü 1: 12.28.a,b; 12.29.b,c (jeweils mit Fehlerabschätzung); 6.26; 6.27.a (auch mit Lagrange-Interpolationspolynom); 6.25; 6.28 (auch

Mehr

Musterlösung Serie 21

Musterlösung Serie 21 D-MATH Lineare Algebra II FS 09 Prof. Richard Pink Musterlösung Serie Positiv-Definitheit und Singulärwertzerlegung. Welche der folgenden drei reellen symmetrischen Matrizen sind positiv definit? A : 6

Mehr

Musterlösung Serie 20

Musterlösung Serie 20 D-MATH Lineare Algebra II FS 9 Prof. Richard Pink Musterlösung Serie Orthogonale Gruppe, Adjungierte Abbildung und Spektralsatz. Berechne eine Zerlegung A QR der Matrix A in eine orthogonale Matrix Q und

Mehr

Lineare Algebra und Geometrie II, Übungen

Lineare Algebra und Geometrie II, Übungen Lineare Algebra und Geometrie II, Übungen Gruppe (9 9 45 ) Sei A 2 Bestimmen Sie A und A Finden Sie weiters Vektoren u, v R 2 mit u und Au A, beziehungsweise v und Av A Zunächst die Berechnung der Norm

Mehr

Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik

Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik Universität Karlsruhe (TH) Institut für Algebra und Geometrie Dr. Klaus Spitzmüller Dipl.-Inform. Wolfgang Globke Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik Lösungen zum

Mehr

Lernbuch Lineare Algebra und Analytische Geometrie, 2. Auflage 2012

Lernbuch Lineare Algebra und Analytische Geometrie, 2. Auflage 2012 Lernbuch Lineare Algebra und Analytische Geometrie, 2 Auflage 22 Korrekturen 8 statt y M lies y N 2 statt m + n = m +(n )=m +(n ) lies m + n = m +(n ) 2 statt #P(M) lies #P (M) 4 7 statt Beispiel c) lies

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I UND II 2. Oktober 2008 MUSTERLÖSUNG

KLAUSUR ZUR LINEAREN ALGEBRA I UND II 2. Oktober 2008 MUSTERLÖSUNG KLAUSUR ZUR LINEAREN ALGEBRA I UND II 2. Oktober 2008 MUSTERLÖSUNG Aufgabe 1 Es sei K ein Körper, V ein K-Vektorraum, und seien v 1,..., v n V (n N). (a) Definieren Sie, wann die endliche Familie v 1,...,

Mehr

Basis und Dimension. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Basis und Dimension. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren Basis und Dimension Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren aus V. 1) (v i ) i I heißt ein Erzeugendensystem von V, wenn Span(v i ) = V. 2) (v i ) i I heißt Basis von

Mehr

Kapitel V. Affine Geometrie

Kapitel V. Affine Geometrie Kapitel V Affine Geometrie 1 Affine Räume Betrachte ein lineares Gleichungssystem Γ : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 + + a mn x n = b

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 5 Aufgabe 5.1 Kommutierende Matrizen In der Vorlesung und vergangenen

Mehr

Lineare Algebra für Ingenieure

Lineare Algebra für Ingenieure TECHNISCHE UNIVERSITÄT BERLIN SS 4 Fakultät II - Mathematik J Liesen/F Lutz/R Seiler Lineare Algebra für Ingenieure Lösungen zur Juli-Klausur Stand: 4 September 4 Rechenteil Aufgabe (8 Punkte Berechnen

Mehr

3 Bilinearform, Basen und Matrizen

3 Bilinearform, Basen und Matrizen Lineare Algebra II 2. Oktober 2013 Mitschrift der Vorlesung Lineare Algebra II im SS 2013 bei Prof. Peter Littelmann von Dario Antweiler an der Universität zu Köln. Kann Fehler enthalten. Veröentlicht

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 6. Aufgabe 6.1. Dr. V. Gradinaru K. Imeri. Herbstsemester 2018.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 6. Aufgabe 6.1. Dr. V. Gradinaru K. Imeri. Herbstsemester 2018. Dr. V. Gradinaru K. Imeri Herbstsemester 8 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 6 Aufgabe 6. Multiple Choice: Online abzugeben. 6.a) (i) Welche der folgenden

Mehr

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015 sskizzen der Klausur zur Linearen Algebra im Herbst 5 Aufgabe I. Es sei (G, ) eine Gruppe mit neutralem Element e und M {x G x x e}. Zeigen Sie: (a) Ist G kommutativ, so ist M eine Untergruppe von G. (b)

Mehr

Ferienkurs - Lineare Algebra. Hanna Schäfer. Merkinhalte

Ferienkurs - Lineare Algebra. Hanna Schäfer. Merkinhalte Technische Universität München, Fakultät für Physik Ferienkurs - ineare Algebra Hanna Schäfer 03. März 04 0. inearität. f : M N, x : y = f(x) Merkinhalte. f(x + λy) = f(x) + λf(y), x, y V, λ K 3. ineare

Mehr

Wiederholung: lineare Abbildungen

Wiederholung: lineare Abbildungen Wiederholung: lineare Abbildungen Def Es seien (V,+, ) und (U, +, ) zwei Vektorräume Eine Abbildung f : V U heißt linear, falls für alle Vektoren v 1, v 2 V und für jedes λ R gilt: (a) f (v 1 + v 2 ) =

Mehr

a) Zeigen Sie, dass ϕ genau dann ein Gruppenhomomorphismus ist, wenn die Verknüpfung

a) Zeigen Sie, dass ϕ genau dann ein Gruppenhomomorphismus ist, wenn die Verknüpfung Aufgabe (8 Punkte) Es sei (G, ) eine Gruppe und ϕ: G G die Abbildung, die für jedes g G durch ϕ(g) = g g =: g gegeben ist. a) Zeigen Sie, dass ϕ genau dann ein Gruppenhomomorphismus ist, wenn die Verknüpfung

Mehr

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel 4 Orthogonalität 4. Motivation Im euklidischen Raum ist das euklidische Produkt zweier Vektoren u, v IR n gleich, wenn die Vektoren orthogonal zueinander sind. Für beliebige Vektoren lässt sich sogar der

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

Lösung zu Serie 10. Lineare Algebra D-MATH, HS Prof. Richard Pink

Lösung zu Serie 10. Lineare Algebra D-MATH, HS Prof. Richard Pink Lineare Algebra D-MATH, HS 2014 Prof. Richard Pink Lösung zu Serie 10 1. [Aufgabe] a) Sei V ein Unterraum eines K-Vektorraums V. Zeige, dass jede Linearform auf V eine Fortsetzung zu einer Linearform auf

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008

KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008 KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008 MUSTERLÖSUNG Name: Studiengang: Aufgabe 1 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter die Aufgabenstellung

Mehr

Musterlösungen zur Linearen Algebra II Weihnachtszettel

Musterlösungen zur Linearen Algebra II Weihnachtszettel Musterlösungen zur Linearen Algebra II Weihnachtszettel Aufgabe. Welche der folgenden Matrizen 3 0 0 A = 0 4, B = 3, C = 0 0 0 6 0 0 0 sind über R und welche über C diagonalisierbar? Bestimmen Sie dazu

Mehr

3 Lineare Algebra Vektorräume

3 Lineare Algebra Vektorräume 3 Lineare Algebra Vektorräume (31) Sei K ein Körper Eine kommutative Gruppe V bzgl der Operation + ist ein Vektorraum über K, wenn eine Operation : K V V (λ, v) λv existiert mit i) v,w V λ,µ K: λ (v +

Mehr

Ferienkurs zur Linearen Algebra Bilinearformen, Euklidische Vektorräume und Endomorphismen

Ferienkurs zur Linearen Algebra Bilinearformen, Euklidische Vektorräume und Endomorphismen Technische Universität München Department of Physics Ferienkurs zur Linearen Algebra Bilinearformen, Euklidische Vektorräume und Endomorphismen Freitag, 16.03.2012 Sascha Frölich Ferienkurs Lin. Alg. -

Mehr

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41. : x i R, 1 i n x n

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41. : x i R, 1 i n x n Kapitel Vektorräume Josef Leydold Mathematik für VW WS 07/8 Vektorräume / 4 Reeller Vektorraum Die Menge aller Vektoren x mit n Komponenten bezeichnen wir mit x R n =. : x i R, i n x n und wird als n-dimensionaler

Mehr

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41 Kapitel 3 Vektorräume Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41 Reeller Vektorraum Die Menge aller Vektoren x mit n Komponenten bezeichnen wir mit R n = x 1. x n : x i R, 1 i n und

Mehr

6 Lineare Gleichungssysteme

6 Lineare Gleichungssysteme 6 LINEARE GLEICHUNGSSYSTEME 3 6 Lineare Gleichungssysteme Unter einem linearen Gleichungssystem verstehen wir ein System von Gleichungen α ξ + + α n ξ n = β α m ξ + + α mn ξ n = β m mit Koeffizienten α

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

5 Vektorräume. (V1) für alle x, y V : x + y = y + x; (V2) für alle x, y, z V : (x + y) + z = x + (y + z);

5 Vektorräume. (V1) für alle x, y V : x + y = y + x; (V2) für alle x, y, z V : (x + y) + z = x + (y + z); 5 Vektorräume Was wir in den vorangegangenen Kapiteln an Matrizen und Vektoren gesehen haben, wollen wir nun mathematisch abstrahieren. Das führt auf den Begriff des Vektorraumes, den zentralen Begriff

Mehr

Ausgewählte Lösungen zu den Übungsblättern 4-5

Ausgewählte Lösungen zu den Übungsblättern 4-5 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit

Mehr

Klausur Lineare Algebra I

Klausur Lineare Algebra I Klausur Lineare Algebra I Fachbereich Mathematik WS / Prof. Dr. Kollross 9. März Name:.................................................. Vorname:............................................... Studiengang:...........................................

Mehr

Hinweis: Die Klausur Lineare Algebra 2 für die Fachrichtung Informatik besteht aus den Aufgaben 2.1 bis 2.4.

Hinweis: Die Klausur Lineare Algebra 2 für die Fachrichtung Informatik besteht aus den Aufgaben 2.1 bis 2.4. Hinweis: Die Klausur Lineare Algebra 2 für die Fachrichtung Informatik besteht aus den Aufgaben 2.1 bis 2.4. Aufgabe 2.1 (8 Punkte) Es sei K ein Körper, n N, V ein 2n-dimensionaler K -Vektorraum und U

Mehr

4 Vektorräume. 4.1 Definition. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48. Sei K ein Körper.

4 Vektorräume. 4.1 Definition. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48. Sei K ein Körper. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48 4 Vektorräume 4.1 Definition Sei K ein Körper. Definition: Ein Vektorraum über K, oder kurz ein K-Vektorraum, ist ein Tupel (V,+,, 0 V ) bestehend aus

Mehr

Tutorium: Analysis und Lineare Algebra

Tutorium: Analysis und Lineare Algebra Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 14.5.218 (Teil 2) 9. Mai 218 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 218 Steven Köhler 9. Mai 218 3 c 218

Mehr

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Stefan Lell 2. Juli 2 Aufgabe. Sei t Q und A t = t 4t + 2 2t + 2 t t 2t 2t Mat 3Q a Bestimmen Sie die Eigenwerte von A t in Abhängigkeit

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D. Dr. V. Gradinaru D. Devaud Herbstsemester 5 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie Aufgabe..a Bezüglich des euklidischen Skalarprodukts in R ist die Orthogonalprojektion

Mehr

6.5 Lineare Abhängigkeit, Basis und Dimension

6.5 Lineare Abhängigkeit, Basis und Dimension 6.5. Lineare Abhängigkeit, Basis und Dimension 123 6.5 Lineare Abhängigkeit, Basis und Dimension Seien v 1,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von

Mehr

Musterlösung Serie 8

Musterlösung Serie 8 D-MATH Lineare Algebra I HS 018 Prof. Richard Pink Musterlösung Serie 8 Dimension, Direkte Summe & Komplemente 1. Zeige: Für jedes Erzeugendensystem E eines Vektorraums V und jede linear unabhängige Teilmenge

Mehr

Musterlösung Serie 12

Musterlösung Serie 12 Prof. D. Salamon Analysis II MATH, PHYS, CHAB FS 05 Musterlösung Serie. Es sei wie in der Aufgabenstellung M R n eine C -Untermannigfaltigkeit und B M eine kompakte Teilmenge. Des weiteren nehmen wir an,

Mehr