Musterlösung Serie 12

Größe: px
Ab Seite anzeigen:

Download "Musterlösung Serie 12"

Transkript

1 Prof. D. Salamon Analysis II MATH, PHYS, CHAB FS 05 Musterlösung Serie. Es sei wie in der Aufgabenstellung M R n eine C -Untermannigfaltigkeit und B M eine kompakte Teilmenge. Des weiteren nehmen wir an, dass B in einem Kartengebiet von M liegt. Dann existieren oene Mengen Ω R d und U R n mit B U M sowie ein C -Dieomorphismus ψ : Ω U M. Wir nehmen zusätzlich an, dass A := ψ (B) eine kompakte Jordan messbare Teilmenge von U ist und denieren f ds := f(ψ(x)) det(dψ(x) T dψ(x)) dx. () B falls f(ψ(x)) eine Riemann integrierbare Funktion auf A ist. A Wir wollen im Folgenden zeigen, dass diese Denition unabhängig von der Wahl der Karte ψ ist. Sei also ψ : Ω Ũ M eine weitere Karte mit B Ũ M und deniere à := ψ (B). Dann zeigen wir im Folgenden, dass das Integral f( ψ(x)) det(d ψ(x) T d ψ(x)) dx () à wohl-deniert ist und den gleichen Wert für f ds liefert. B (a) Sei W U eine oene Teilmenge für die B W gilt. Da ψ (W ) Ω oen ist, die Einschränkung ψ W : ψ (W ) W M ebenfalls eine Karte für M. Da A ψ (W ) gilt, ändert sich die rechte Seite in () nicht, wenn wir ψ durch die Einschränkung ψ W ersetzen. Das gleiche Argument gilt auch für ψ und (). Wenn wir beide Karten mit W := U Ũ einschränken, erhalten wir eine Situation in der beide Karten das gleiche Bild haben. (b) Wir nehmen nach Teil (a) U M = Ũ M an. Da die Umkehrabbildung eines C - Dieomorphismus wieder eine C -Dieomorphismus ist und die Verkettung von C - Dieomorphismen wieder ein C -Dieomorphismus ist, ist die Abbildung χ := ψ ψ : Ω Ω ein C -Dieomorphismus. Um das Argument zu erklären, wiederholen wir kurz die Denition eines Dieomorphismus zwischen beliebigen (nicht notwendigerweise oenen) Mengen: Seien X R d und Y R n beliebige Teilmengen. Eine Abbildung f : X Y heisst stetig dierenzierbar, wenn eine oene Umgebung X W R d und eine stetig dierenzierbare Abbildung F : W R n existieren mit F (x) = f(x) für alle x X. Eine Abbildung f : X Y heisst C -Dieomorphismus, wenn f bijektiv ist und f, f beide stetig dierenzierbar sind. (c) Nach Teil (b) ist χ ein Dieomorphismus. Der Transformationssatz garantiert, dass à = χ(a) Jordan messbar ist und f ψ = (f ψ) χ Riemann integrierbar ist. Somit ist das Integral in () wohl-deniert.

2 (d) Ableiten des Ausdrucks ψ(x) = ψ(χ(x)) mit Hilfe der Kettenregel liefert dψ(x) = d ψ(χ(x)) dχ(x). Insbesondere folgt det ( dψ(x) T dψ(x) ) ( = det dχ(x) T d ψ(χ(x)) T d ψ(χ(x))dχ(x) ) = det(dχ(x)) det(d ψ(χ(x)) T d ψ(χ(x))). Wenn wir aus diesem Ausdruck die Wurzel ziehen erhalten wir g ψ (x) = det(dχ(x)) g ψ(χ(x)). Es folgt nun aus dem Transformationssatz die Beziehung f(ψ(x))g ψ (x)dx = (f ψ)(χ(x)) g ψ(χ(x)) det(dχ(x)) dx A A = (f ψ)(y)g ψ(y) dy und das beweist die Gleichheit der Ausdrucke in () und (). Ã. (a) Wir betrachten zunächst den Fall, dass a i = 0 für eines der Argumente gilt. Dann folgt aus (V) v d (a,..., 0,..., a d ) = v d (a,..., 0 0,..., a d ) = 0 v d (a,..., 0,..., a d ) = 0. Wir betrachten als nächstes den Fall, dass a,..., a d paarweise orthogonal sind und alle nicht verschwinden. Dann folgt aus (V) und (V3): a v d (a,..., a d ) = ( a a d ) v d a,..., a d = a a d. a d Aus dem ersten Fall folgt, dass diese Formel gültig bleibt, wenn einer der Vektoren a i verschwindet. Folglich ist v d eindeutig bestimmt auf jeder Menge von d paarweise orthogonalen Vektoren. Seinen nun beliebige Vektoren a,..., a d gegeben. Wir konstruieren induktiv Vektoren â,..., â d wie folgt: Wir denieren â := a. Wenn â,..., â k bereits konstruiert sind, existiert eine eindeutige Zerlegung a k+ = ã k+ + â k+ wobei ã k+ in dem Unterraum liegt, der von â,..., â k aufgespannt wird, und â k orthogonal zu diesem Unterraum ist. Diese Konstruktion ist im wesentlichen das Gram- Schmidt Verfahren und die resultierenden Vektoren â,..., â d sind paarweise orthogonal. Wir zeigen mit vollständiger Induktion über k die Identität v d (a,..., a d ) = v d (â,... â k, a k+,..., a d ). (3) Für k = d werten wir v d auf den paarweise orthogonalen Vektoren â,..., â d aus und für solche ist v d bereits eindeutig durch die Axiome deniert. Somit liefert dieses Verfahren einen Algorithmus durch den wir v d (a,..., a d ) berechnen können und folglich ist v d eindeutig durch die Axiome bestimmt. Die Gleichung (3) ist für k = trivial, da a = â gilt. Für den Induktionsschritt schreibe a k+ = ã k+ + â k+ und ã k+ := α â + α â + + α k â k mit α,..., α k R. Aus (V) und (V) folgt die Regel v d (, â j,, a k+, ) = α j v d(, α j â j,..., a k+,...) = α j v d(, α j â j,..., a k+ α j â j,...) = v d (, â j,, a k+ α j â j,...)

3 Eine wiederholte Anwendung dieser Regel zeigt die Beziehung n v d (â,... â k, a k+,..., a d ) = v d â,... â k, a k+ α j â j,..., a d und das zeigt den Induktionsschritt. j= = v d (â,... â k, a k+ ã k+,..., a d ) = v d (â,... â k, â k+,..., a d ) (b) Schreibe A = (a,..., a d ) R n d, wobei a i R n die i-te Spalte von A bezeichnet. Der (k, l)-te Eintrag von A T A ist dann gegeben durch [A T A] kl = a k, a l. Insbesondere sehen wir, falls a,..., a d ein Orthonormalsystem ist, dann ist A T A die d d Einheitsmatrix und es folgt det(a T A) =. Somit erfüllt diese Funktion (V3). Sei à = (a,..., a i,..., a j + a i,..., a d ). Dann gilt a k, a l k j l a k, a l + a k, a i k j, l = j [ÃT Ã] kl = a k, a l + a i, a l k = j, l j a k, a l + a i, a i + a i, a j k = j = l 0 k j l = [A T [A T A] ki k j, l = j A] kl + [A T. A] il k = j, l j [A T A] ii + [A T A] ij k = j = l Aus dieser Formel folgt, dass wir ÃT à durch elementare Zeilen- und Spaltenumformungen aus A T A erhalten: Wenn wir in A T A die i-te Zeile zu der j-ten Zeile addieren und anschliessend die i-te Spalte zur j-ten Spalte addieren erhalten wir genau den Ausdruck für ÃT Ã. Folglich gilt det(ãt Ã) = det(a T A) und (V) folgt. Sei schlieslich  = (a,..., λa i,..., a d ). Dann erhalten wir ÂT  aus A T A indem wir die i-te Spalte und die i-te Zeile jeweils mit λ multiplizieren. Daraus folgt direkt det(ât Â) = λ det(a T A). Wenn wir aus diesem Ausdruck die Wurzel ziehen folgt (V). 3. Die Funktion : R n R, (x,..., x n ) x + + x n ist als Polynom beliebig oft stetig dierenzierbar. Wir zeigen weiter unten, dass die Funktion {e t t < ρ : R R, ρ(t) := 0 t beliebig oft stetig dierenzierbar ist. Es folgt dann aus der Kettenregel, dass die Verkettung φ = ρ ebenfalls beliebig oft stetig dierenzierbar ist. Für t > ist ρ konstant und somit beliebig oft stetig dierenzierbar wobei alle höheren Ableitungen verschwinden. Wir zeigen per Induktion, dass für t < die n-te Ableitung die Form ρ (n) (t) = R n (t)e t hat, wobei R n (t) eine rationale Funktion der Form R n (t) = fn(t) ( t) ist und f n n (t) ein Polynom mit f n () 0 ist. Für n = gilt ρ (t) = ( t) e t 3

4 und die Behauptung ist mit R (t) = berechnen wir mit der Produktregel ρ (n+) (t) = d dt ρ(n) (t) = d dt = Damit erhalten wir die Rekursion R n+ (t) = ( t) und f = erfüllt. Im Induktionsschritt f n (t) e ( t) n t ( fn (t) ( t) n+ + f n(t) ( t) n + n f n (t) ( t) n+ ) e t = f n(t) + ( t) f n(t) + n( t)f n (t) ( t) n+ e t. f n+(t) ( t) (n+), f n+(t) = f n (t) + ( t) f n(t) + n( t)f n (t) und es folgt insbesondere f n+ () = f n () = ( ) n f (0) = ( ) n+ 0. Wir können nun leicht zeigen, dass sich alle Ableitungen ρ (n) (t) stetig forsetzen lassen: lim ρ (n) f n (t) (t) = lim e t t t ( t) n = fn () lim e t t ( t) n = fn () lim t n e t = 0. t Es folgt, dass ρ beliebig oft stetig dierenzierbar ist. (Beachte, dass dieses Argument nur für Funktionen in einer Variablen funktioniert. Die stetige Fortsetzbarkeit der Ableitung garantiert für Funktionen in mehreren Variablen nicht mehr die Dierenzierbarkeit der Funktion.) 4. (a) Wir benutzen die Parametrisierung u ψ : {(u, v) R u + v < } S+, ψ(u, v) := v u v Das Bild dieser Parametrisierung ist die obere Halbsphäre bis auf den Rand {(x, y, 0) x + y = } der eine Jordan Nullmenge ist. Es gilt folglich (x + y + z) ds = (u + v + u v )g ψ (u, v) dudv. S + Wir berechnen und sowie g ψ (u, v) := = dψ(u, v) = dψ(u, v) T dψ(u, v) = 0 0 u u v det(dψ(u, v) T dψ(u, v)) = u v. v u v v uv u v uv u u v ( v )( u ) u v Wir erhalten S + (x + y + z) ds = = u + v u v + dudv u + v u v dudv + π 4

5 wobei wir vol ({u + v }) = π verwendet haben. Die Spiegelung (u, v) ( u, v) lässt den Integrationsbereich unverändert und aus dem Transformationssatz folgt u + v u v dudv = u v u v dudv. Es folgt also unmittelbar aus dieser (Anti-)Symmetrie, dass dieses Integral verschwinden muss, und wir erhalten (x + y + z) ds = π. S + (b) Wir betrachten die Parametrisierung ψ : {(u, v) R u + v < } P, ψ(u, v) := u v. u + v Diese Parametrisierung beschreibt das gesamte Paraboloid P bis auf den Rand {x + y = z = }, der eine Jordan-Nullmenge ist. Es gilt also (x + y ) ds = (u + v )g ψ (u, v) ds. P Wir berechnen 0 dψ(u, v) = 0, dψ(u, v) T + 4u 4uv dψ(u, v) = 4uv + 4v u v und g ψ (u, v) = Wir erhalten damit (x + y ) ds = P det(dψ(u, v) T dψ(u, v)) = + 4(u + v ). (u + v ) + 4(u + v ) dudv. Das letzte Integral berechnen wir indem wir zunächst in Polarkoordinaten substituieren und anschliessend partiell integrieren. π (x + y ) ds = r + 4r rdrdφ P = π r r 3 dr ( = π + 4r ) 3 r= r π ( + 4r ) 3 r dr r=0 3 0 = π π 3 ( + 4r ) r= 5 0 r=0 = π 5 5 π + 60 π = 5 5 π + 60 π 5. (a) Es gilt T R,a = f (a ) für die Funktion f : R 3 R, f(x, y, z) = ( x + y R) + z. Wir behaupten, dass a ein regulärer Wert von f ist. Dann garantiert der Satz vom regulären Wert, dass T R,a in der Tat eine Untermannigfaltigkeit ist. Nach Annahme 5

6 gilt f(0, 0, z) = R + z R > a und folglich schneidet T R,a nicht die z-achse. Im Komplement der z-achse ist f stetig dierenzierbar und es gilt ( x( ) x df(x, y, z) = + y R), y( x + y R), z. x + y x + y Falls z 0 gilt, folgt direkt df(x, y, z) 0 und die Ableitung ist surjektiv. Falls z = 0 und f(x, y, 0) = a gilt, folgt x + y R > 0 und entweder x 0 oder y 0 ist erfüllt. Es folgt dann ebenfalls df(x, y, z) 0 und die Ableitung ist wiederum surjektiv. (b) Betrachte die Parametrisierung cos(α)(r + a cos(β)) ψ : (0, π) (0, π) T R,a, ψ(α, β) := sin(α)(r + a cos(β)). a sin(β) Das Bild dieser Parametrisierung ist der gesamte Torus bis auf die Vereinigung von zwei Kreisen. Da diese Jordan Nullmengen sind, erhalten wir vol (T R,a ) = ds = g ψ (α, β) dαdβ. T R,a (0,π) Wir berechnen sin(α) (R + a cos(β)) a cos(α) sin(β) dψ(α, β) = cos(α) (R + a cos(β)) a sin(α) cos(β) 0 a cos(β) und sowie Damit folgt dψ(α, β) T (R + a cos(β)) 0 dψ(α, β) = 0 a g ψ (α, β) := det(dψ(α, β) T dψ(α, β)) = (R + a cos(β))a. vol (T R,a ) = π π (R + a cos(β))a dαdβ = π π Ra + a cos(β) dβ = 4π Ra. 6

Lösung 5: Gram-Schmidt Orthogonalisierung, adjungierte Abbildungen

Lösung 5: Gram-Schmidt Orthogonalisierung, adjungierte Abbildungen D-MATH Lineare Algebra II FS 7 Dr. Meike Akveld Lösung 5: Gram-Schmidt Orthogonalisierung, adjungierte Abbildungen. a) Wegen der Linearität im ersten Argument gilt sicherlich w S :, w =. Somit ist S und

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Michael Wolf Daniel Stilck França Stefan Huber Zentralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik 4 für Physiker (Analysis 3) MA94 Z4.. Parametrisierungsinvarianz des Oberflächenintegrals

Mehr

Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung. Lösungen zur Probeklausur 2.

Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung. Lösungen zur Probeklausur 2. Adµ Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung Blatt Probeklausur 2 Lösungen zur Probeklausur 2 Aufgabe 1 1. Formulieren Sie den Satz von Taylor

Mehr

Abbildung 10.1: Das Bild zu Beispiel 10.1

Abbildung 10.1: Das Bild zu Beispiel 10.1 Analysis 3, Woche Mannigfaltigkeiten I. Definition einer Mannigfaltigkeit Die Definition einer Mannigfaltigkeit braucht den Begriff Diffeomorphismus, den wir in Definition 9.5 festgelegt haben. Seien U,

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Michael Wolf Daniel Stilck rança Stefan Huber Zentralübung TECHNISCHE UNIVESITÄT MÜNCHEN Zentrum Mathematik Mathematik 4 für Physiker (Analysis 3) MA924 Z3.. Polardarstellung quadratischer Matrizen

Mehr

M U = {x U f 1 =... = f n k (x) = 0}, (1)

M U = {x U f 1 =... = f n k (x) = 0}, (1) Aufgabe 11. a) Es sei M = {(x, y, z) R 3 f 1 = xy = 0; f = yz = 0}. Der Tangentialraum T x M muss in jedem Punkt x M ein R-Vektorraum sein und die Dimension 1 besitzen, damit diese Menge M eine Untermannigfaltigkeit

Mehr

Vektoranalysis Übungsblatt 1 Prof. S. Warzel, T. Satzger 11. Dezember von b in R n sowie Abbildungen f C 1 (U a. , R n k ) und g C 1 (U b

Vektoranalysis Übungsblatt 1 Prof. S. Warzel, T. Satzger 11. Dezember von b in R n sowie Abbildungen f C 1 (U a. , R n k ) und g C 1 (U b Vektoranalysis Übungsblatt Prof S Warzel, T Satzger Dezember 009 Aufgabe (Mannigfaltigkeiten) Im R n seien M eine k-dimensionale C -Mannigfaltigkeit und N eine l-dimensionale C - Mannigfaltigkeit (a) Begründen

Mehr

10 Untermannigfaltigkeiten

10 Untermannigfaltigkeiten 10. Untermannigfaltigkeiten 1 10 Untermannigfaltigkeiten Definition. Eine Menge M R n heißt k-dimensionale Untermannigfaltigkeit des R n, 1 k n, falls es zu jedem a M eine offene Umgebung U R n von a und

Mehr

Das mehrdimensionale Riemann-Integral. 1. Volumenintegrale

Das mehrdimensionale Riemann-Integral. 1. Volumenintegrale Das mehrdimensionale Riemann-Integral. Volumenintegrale Es sei ein uader im R n gegeben durch := [a, b ] [a 2, b 2 ] [a n, b n ] = {(x,... x n ) a j x j b j } mit rellen Zahlen a j, b j, j =,... n. Offenbar

Mehr

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve.

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve. 1 Ableitungen Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen γ 1 (t) γ(t) = γ n (t) Bild(γ) = {γ(t) t I} heißt auch die Spur der Kurve Beispiel:1)

Mehr

Lösungen zu den Hausaufgaben zur Analysis II

Lösungen zu den Hausaufgaben zur Analysis II Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin

Mehr

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 11

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 11 D-MATH, D-PHYS, D-CHAB Analysis II FS 218 Prof. Manfred Einsiedler Lösung 11 Hinweise 1. Kehren Sie die Integrationsreihenfolge um. Um dabei die korrekten Grenzen zu finden, skizzieren Sie den Integrationsbereich.

Mehr

Wann heit eine Menge reeller Zahlen beschrankt? oen? abgeschlossen? Was ist das Supremum (Inmum) Maximum (Minimum) einer Teilmenge

Wann heit eine Menge reeller Zahlen beschrankt? oen? abgeschlossen? Was ist das Supremum (Inmum) Maximum (Minimum) einer Teilmenge 1 1 Check-Liste Analysis 1.1 Mengen und Abbildungen Wann heit eine Menge reeller Zahlen beschrankt? oen? abgeschlossen? kompakt? Was ist das Supremum (Inmum) Maximum (Minimum) einer Teilmenge von R? Was

Mehr

Grundlagen der Mathematik (BSc Maschinenbau)

Grundlagen der Mathematik (BSc Maschinenbau) Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 5.9.7 Grundlagen der Mathematik (BSc Maschinenbau) Aufgabe. (6+8+6 Punkte) a) Zeigen Sie durch Induktion nach n N: n (k ) = n k= b) Stellen Sie die folgenden Mengen

Mehr

Schwartz Raum und gemässigte Distributionen

Schwartz Raum und gemässigte Distributionen 1 ETH Zürich (Pro)Seminar: Grundideen der Harmonischen Analysis Schwartz Raum und gemässigte Distributionen David Bernhardsgrütter und David Umbricht 18 Dezember 2007 Schwartz Raum und gemässigte Distributionen

Mehr

p = 0 Nun zur eigentlichen Aufgabe. Wie wir wissen, ist {1, X, X 2 } eine Basis von V, die wir nun mit Gram-Schmidt orthogonalisieren.

p = 0 Nun zur eigentlichen Aufgabe. Wie wir wissen, ist {1, X, X 2 } eine Basis von V, die wir nun mit Gram-Schmidt orthogonalisieren. Aufgabe 1 Es sei V = {p R[X] Grad p 2} und a, b, c R fest gewählt Überzeugen Sie sich davon, dass die Abbildung, : V V R, deniert durch p, q := p(a)q(a) + p (b)q (b) + p (c)q (c) ein Skalarprodukt ist

Mehr

Klausur HM II/III F 2003 HM II/III : 1

Klausur HM II/III F 2003 HM II/III : 1 Klausur HM II/III F 3 HM II/III : Aufgabe : (7 Punkte) Untersuchen Sie die Funktion f : R R gegeben durch x 3 y 3 f(x, y) x + y sin, (x, y) (, ) x + y, (x, y) (, ) auf Stetigkeit und Differenzierbarkeit.

Mehr

ANALYSIS 3. Carsten Schütt WS 2008/9

ANALYSIS 3. Carsten Schütt WS 2008/9 1. Es sei f : R 3 R 3 durch f 1 (r, φ 1,φ 2 ) = r cos φ 1 f 2 (r, φ 1,φ 2 ) = r sin φ 1 cos φ 2 f 3 (r, φ 1,φ 2 ) = r sin φ 1 sin φ 2 gegeben. Für welche (r, φ 1,φ 2 ) ist f lokal invertierbar? Ist f global

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

Exkurs: Klassifikation orthogonaler 2 2-Matrizen.

Exkurs: Klassifikation orthogonaler 2 2-Matrizen. Exkurs: Klassifikation orthogonaler 2 2-Matrizen. Aussage: Es gilt: (a) Jede orthogonale 2 2 Matrix A mit det(a) = 1 hat das Aussehen cos(α) sin(α) D(α) = sin(α) cos(α), wobei α [0,2π[. Ist sin(α) 0, so

Mehr

Transformation mehrdimensionaler Integrale

Transformation mehrdimensionaler Integrale Transformation mehrdimensionaler Integrale Für eine bijektive, stetig differenzierbare Transformation g eines regulären Bereiches U R n mit det g (x), x U, gilt für stetige Funktionen f : f g det g du

Mehr

12 Der Gaußsche Integralsatz

12 Der Gaußsche Integralsatz 12. Der Gaußsche Integralsatz 1 12 Der Gaußsche Integralsatz Das Ziel dieses Abschnitts ist die folgende zentrale Aussage der mehrdimensionalen Analysis und der Theorie der partiellen Differentialgleichungen:

Mehr

Das heißt, Γ ist der Graph einer Funktion von d 1 Veränderlichen.

Das heißt, Γ ist der Graph einer Funktion von d 1 Veränderlichen. Kapitel 2 Der Gaußsche Satz Partielle Differentialgleichung sind typischerweise auf beschränkten Gebieten des R d, d 1, zu lösen. Dabei sind die Eigenschaften dieser Gebiete von Bedeutung, insbesondere

Mehr

15. Bereichsintegrale

15. Bereichsintegrale H.J. Oberle Analysis III WS 212/13 15. Bereichsintegrale 15.1 Integrale über uadern Ziel ist die Berechnung des Volumens unterhalb des Graphen einer Funktion f : R n D R, genauer zwischen dem Graphen von

Mehr

1 Distributionen und der Satz von Frobenius

1 Distributionen und der Satz von Frobenius 1 Distributionen und der Satz von Frobenius 1.1 Vorbemerkungen Definition 1.1. Sei M eine d-dimensionale Mannigfaltigkeit, sei (U, ϕ) ein Koordinatensystem auf M mit Koordinatenfunktionen x 1,..., x d.

Mehr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr TUM Ferienkurs Lineare Algebra WiSe 8/9 Dipl.-Math. Konrad Waldherr Musterlösung Relationen Aufgabe Auf R sei die Relation σ gegeben durch (a, b)σ(c, d) : a + b c + d. Ist σ reflexiv, symmetrisch, transitiv,

Mehr

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 5

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 5 D-MATH, D-PHYS, D-CHAB Analysis II FS 208 Prof. Manfred Einsiedler Lösung 5 Hinweise. Per Definition ist v f(x, y) die Ableitung von s f(x+s, y+2s) in s = 0. Alternativ können Sie die Darstellung der Ableitung

Mehr

Probeklausur zur Analysis 2, SoSe 2017

Probeklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 21717 Fakultät 4 - Mathematik und Naturwissenschaften Prof N V Shcherbina Dr T P Pawlaschyk wwwkanauni-wuppertalde Probeklausur zur Analysis 2, SoSe 217 Hinweis Die Lösungen

Mehr

Klausurvorbereitung Höhere Mathematik Lösungen

Klausurvorbereitung Höhere Mathematik Lösungen Klausurvorbereitung Höhere Mathematik Lösungen Yannick Schrör Christian Mielers. Februar 06 Ungleichungen Bestimme die Lösungen für folgende Ungleichungen. x+ > x + x + Fall : x, x + > x + 6 Lösung im

Mehr

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie Tobias Ried. März 2 2 Aufgabe (Messbarkeit der Komposition zweier Abbildungen). Seien (X, A), (Y, B) und (Z, C) Messräume und f : (X,

Mehr

Wiederholungsserie II

Wiederholungsserie II Lineare Algebra II D-MATH, FS 205 Prof. Richard Pink Wiederholungsserie II. Zeige durch Kopfrechnen, dass die folgende reelle Matrix invertierbar ist: 205 2344 234 990 A := 224 423 990 3026 230 204 9095

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte.

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte. Stroppel Musterlösung 3908, 80min Aufgabe 4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte a) 4n 3 9 lim b) lim n n + n) n + )5n 4) c) lim x 0 sinlnx + )) sinhx) a) Es ist lim

Mehr

Übungen zu Grundbegriffe der Topologie

Übungen zu Grundbegriffe der Topologie Übungen zu Grundbegriffe der Topologie A. Čap Wintersemester 2018 (1) Wiederholen Sie die Definition des Durchschnittes i I A i einer beliebigen Familie {A i : i I} von Mengen und zeigen Sie, dass für

Mehr

Lineare Algebra für Physiker 11. Übungsblatt

Lineare Algebra für Physiker 11. Übungsblatt Lineare Algebra für Physiker 11. Übungsblatt Fachbereich Mathematik SS 01 Prof. Dr. Matthias Schneider./. Juli 01 Dr. Silke Horn Dipl.-Math. Dominik Kremer Gruppenübung Aufgabe G1 (Minitest) (a) Welche

Mehr

3.3 Skalarprodukte 3.3. SKALARPRODUKTE 153

3.3 Skalarprodukte 3.3. SKALARPRODUKTE 153 3.3. SKALARPRODUKTE 153 Hierzu müssen wir noch die Eindeutigkeit (Unabhängigkeit von der Wahl der Basis bzw. des Koordinatensystems) zeigen. Sei hierzu β eine Bilinearform und q die entsprechende quadratische

Mehr

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte Universität München 22. Juli 29 Topologie und Differentialrechnung mehrerer Veränderlicher, SS 29 Modulprüfung/Abschlussklausur Name: Aufgabe 2 3 4 Punkte Gesamtpunktzahl: Gesamturteil: Schreiben Sie unbedingt

Mehr

Für die Matrikelnummer M = Dann sind durch A =

Für die Matrikelnummer M = Dann sind durch A = Musterlösung zum. Blatt 9. Aufgabe: Gegeben seien m 3 + 2 m m 3 m 2 m 4 + m 7 m 3 A := m m 2 m 2 + 2 m 2 m 4 + m 5 und b := m 6 m 4 + a) Finden Sie eine Lösung x R 7 für die Gleichung Ax =. b) Finden Sie

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Simone Warzel Max Lein TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik 4 für Physik (Analysis 3) Wintersemester 29/2 Lösungsblatt 2 (27..29) Zentralübung 4. Parametrisierung einer

Mehr

Lösung 23: Sylvesters Trägheitssatz & Singulärwertzerlegung

Lösung 23: Sylvesters Trägheitssatz & Singulärwertzerlegung D-MATH Lineare Algebra I/II HS 07/FS 08 Dr Meike Akveld Lösung 3: Sylvesters Trägheitssatz & Singulärwertzerlegung Wir wissen, dass eine Basis B von R n existiert, sodass p [β Q ] B I I q 0 n p q gilt

Mehr

Formelsammlung Analysis I & II

Formelsammlung Analysis I & II Formelsammlung Analysis I & II Wichtige eindimensionale Integrale: { x s dx = s+ xs+ + C falls s log x + C falls s = exp(x dx = exp(x + C cos(x dx = sin(x + C sin(x dx = cos(x + C sinh(x dx = cosh(x +

Mehr

Ferienkurs Analysis 3 für Physiker. Integration im R n

Ferienkurs Analysis 3 für Physiker. Integration im R n Ferienkurs Analysis 3 für Physiker Integration im R n Autor: Benjamin Rüth Stand: 16. ärz 214 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Definition des Riemann-Integrals über Quadern 3

Mehr

Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a).

Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a). Aufgabe Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = Es gilt det(λa = (λ n det(a det I n = n? Nein (außer für n = Es gilt deti n = det(ab = det A det B? Ja det(a =

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Blatt 4. Übungen zur Topologie, G. Favi 20. März Abgabe: 27. März 2008, 12:00 Uhr

Blatt 4. Übungen zur Topologie, G. Favi 20. März Abgabe: 27. März 2008, 12:00 Uhr Übungen zur Topologie, G. Favi 20. März 2009 Blatt 4 Abgabe: 27. März 2008, 12:00 Uhr Aufgabe 1. (a) Auf der 2-Sphäre S 2 := {(x, y, z) R 3 x 2 + y 2 + z 2 = 1} R 3 betrachten wir folgende Äquivalenzrelation:

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel IV SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Musterlösung Serie 21

Musterlösung Serie 21 D-MATH Lineare Algebra II FS 09 Prof. Richard Pink Musterlösung Serie Positiv-Definitheit und Singulärwertzerlegung. Welche der folgenden drei reellen symmetrischen Matrizen sind positiv definit? A : 6

Mehr

2.6 Der Satz von Fubini

2.6 Der Satz von Fubini 1 2.6 Der Satz von Fubini Unser Ziel ist der Beweis des folgenden Ergebnisses. 6.1. Satz von Fubini Sei f : R n+m R integrierbar. Dann gibt es eine Nullmenge N R m, so dass gilt: 1. Für alle y R m \ N

Mehr

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010 Aufgaben für die 4. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 4. Bestimmen Sie den Flächeninhalt der dreiblättrigen Kleeblattkurve γ für ein Kleeblatt. Die Polarkoordinaten-

Mehr

(a), für i = 1,..., n.

(a), für i = 1,..., n. .4 Extremwerte Definition Sei M R n eine Teilmenge, f : M R stetig, a M ein Punkt. f hat in a auf M ein relatives (oder lokales) Maximum bzw. ein relatives (oder lokales) Minimum, wenn es eine offene Umgebung

Mehr

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx Seite Aufgabe : a Berechnen Sie das Integral b Berechnen Sie das Integral +x x+x dx. π sin x dx. c Differenzieren Sie die Funktion ft = t e t s ds. Nur Leibniz-Formel a + x x + x dx = d dx lnx + x dx =

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

fj 2 = f n f n+1. fj 2 = 0 2 = 0 = 0 1 = f 0 f 1. f 2 j = f n f n+1 +fn+1 = (f n +f n+1 )f n+1 = f n+2 f n+1 = f n+1 f (n+1)+1.

fj 2 = f n f n+1. fj 2 = 0 2 = 0 = 0 1 = f 0 f 1. f 2 j = f n f n+1 +fn+1 = (f n +f n+1 )f n+1 = f n+2 f n+1 = f n+1 f (n+1)+1. Stroppel Musterlösung 4..4, 8min Aufgabe 3 Punkte) Sei f n ) n N die Fibonacci-Folge, die durch f :=, f := und f n+ := f n +f n definiert ist. Beweisen Sie durch vollständige Induktion, dass für alle n

Mehr

Lösung Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Lösung Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 06 Dr. Meike Akveld Lösung Serie : Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung. Um zu zeigen, dass es sich bei den gegebenen Vektoren um Basen handelt,

Mehr

Analysis 3. Weihnachtsblatt Prof. Dr. H. Koch Dr. F. Gmeineder Besprechung: TBC, Januar Aufgabe 1: (Besonders prüfungsrelevant)

Analysis 3. Weihnachtsblatt Prof. Dr. H. Koch Dr. F. Gmeineder Besprechung: TBC, Januar Aufgabe 1: (Besonders prüfungsrelevant) Analysis 3 04.12.2018 Prof. Dr. H. och Dr. F. Gmeineder Besprechung: TBC, Januar 2019 Weihnachtsblatt Aufgabe 1: (Besonders prüfungsrelevant) Aufgabe 2: Sei Ω eine Menge und Σ eine σ-algebra auf Ω. Seien

Mehr

Lineare Algebra I für Mathematiker Lösungen

Lineare Algebra I für Mathematiker Lösungen Lineare Algebra I für Mathematiker Lösungen Anonymous 24. April 2016 Aufgabe 1 Beantworten Sie bitte die folgenden Fragen. Jeder Vektorraum hat mindestens ein Element. Q ist ein R-Vektorraum (mit der Multiplikation

Mehr

Klausur zur Höheren Mathematik IV

Klausur zur Höheren Mathematik IV Düll Höhere Mathematik IV 8. 1. 1 Klausur zur Höheren Mathematik IV für Fachrichtung: kyb Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 1 Minuten Erlaubte Hilfsmittel: 1 eigenhändig beschriebene

Mehr

Musterlösung zur Serie 11

Musterlösung zur Serie 11 D-MATH, D-PHYS Funktionentheorie HS 203 Prof. J. Teichmann Musterlösung zur Serie. (a) Die Identitätsfunktion ϕ : Ω C, ϕ(z) = z erfüllt die Bedingungen von Satz 4.7, weshalb es eine holomorphe Funktion

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Modulprüfung

Höhere Mathematik II für die Fachrichtung Physik. Modulprüfung Institut für Analysis SS7 PD Dr. Peer Christian Kunstmann 8.9.7 Höhere Mathematik II für die Fachrichtung Physik Modulprüfung Aufgabe [5+5= Punkte] (a) Zeigen Sie, dass die Matrix α A α =, α. genau dann

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

Lineare Algebra II 11. Übungsblatt

Lineare Algebra II 11. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross 9 / Juni Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Minitest (Bearbeitung innerhalb von Minuten und ohne Benutzung des

Mehr

2 Koordinatentransformationen

2 Koordinatentransformationen Mathematik für Ingenieure III, WS 9/ Mittwoch 8. $Id: transform.tex,v.8 //4 :9: hk Exp $ Koordinatentransformationen. Lineare Koordinatentransformationen Wir überlegen uns dies zunächst im Spezialfall

Mehr

Musterlösung der 1. Klausur zur Vorlesung

Musterlösung der 1. Klausur zur Vorlesung Prof. Dr. M. Röger Dipl.-Math. C. Zwilling Fakultät für Mathematik TU Dortmund Musterlösung der. Klausur zur Vorlesung Analysis II 6.7.6) Sommersemester 6 Aufgabe. i) Die Folge f n ) n N konvergiert genau

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Legendre Polynome. 1 2 n n! d n (( P n (x) P m (x)dx = 0 für m n.

Legendre Polynome. 1 2 n n! d n (( P n (x) P m (x)dx = 0 für m n. Legendre Polynome Sei R[X] der Raum der Polynomfunktionen. Die Legendre Polynome P n R[X] sind definiert durch P n (x) = 1 d n (( x 2 1 ) n). dx n (a) P n hat genau n paarweise verschiedene Nullstellen

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie KIT SS 2013 Institut für Analysis 06.05.2013 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Höhere Mathematik II für die Fachrichtung Physik 4. Übungsblatt Aufgabe 1 Bestimmen

Mehr

Serie 2 Lösungsvorschläge

Serie 2 Lösungsvorschläge D-Math Mass und Integral FS 214 Prof. Dr. D. A. Salamon Serie 2 Lösungsvorschläge 1. Seien folgende Mengen gegeben: und für a, b R R := [, ] := R {, }, (a, ] := (a, ) { }, [, b) := (, b) { }. Wir nennen

Mehr

KLAUSUR ZUR MATHEMATIK FÜR PHYSIKER MODUL MATHB

KLAUSUR ZUR MATHEMATIK FÜR PHYSIKER MODUL MATHB KLAUSUR ZUR ATHEATIK FÜR PHYSIKER ODUL ATHB In jeder Aufgabe können Punkte erreicht werden Es zählen die 9 bestbewerteten Aufgaben Die Klausur ist mit 45 Punkten bestanden Die Bearbeitungszeit beträgt

Mehr

Neilsche Parabel. Wieso ist die Neilsche Parabel N = { (x,y) R 2 x 3 = y 2} keine UMF von R 2?

Neilsche Parabel. Wieso ist die Neilsche Parabel N = { (x,y) R 2 x 3 = y 2} keine UMF von R 2? Inhalt vom 23.6. In dieser Übung soll zum einen die Parametrisierung von Flächen als auch die Berechnung von Flächeninhalten im Mittelpunkt stehen. Bevor wir jedoch damit anfangen, wollen wir noch beantworten,

Mehr

Serie 5 Lösungsvorschläge

Serie 5 Lösungsvorschläge D-Math Mass und Integral FS 214 Prof. Dr. D. A. Salamon Serie 5 Lösungsvorschläge 1. Finden Sie eine stetige Funktion f : [, ) R, so dass f nicht Lebesgue-integrierbar T ist, jedoch der Grenzwert lim f(t)

Mehr

Teil IV : Integration über Untermannigfaltigkeiten. 9 Untermannigfaltigkeiten von R n

Teil IV : Integration über Untermannigfaltigkeiten. 9 Untermannigfaltigkeiten von R n Teil IV : Integration über Untermannigfaltigkeiten In der Analysis II haben wir bereits Kurven in R n eine Länge zugeordnet (also ein eindimensionales Volumen ) und Funktionen über Kurven integriert. In

Mehr

Übungen zur Analysis II Blatt 27 - Lösungen

Übungen zur Analysis II Blatt 27 - Lösungen Prof. Dr. Torsten Wedhorn SoSe 22 Daniel Wortmann Übungen zur Analysis II Blatt 27 - Lösungen Aufgabe 5: 6+6+6* Punkte Bestimme alle lokalen Extrema der folgenden Funktionen: a b c* f : R 3 R g : R 2 R

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.

Mehr

116 KAPITEL 15. INTEGRALSÄTZE

116 KAPITEL 15. INTEGRALSÄTZE 116 APITEL 15. INTEGRALSÄTZE Aufgabe 15.1.3 (Verschwinden des Integrales über eine partielle Ableitung) Es sei U R n offen, ϕ C 0 (U; R). Dann ist für j = 1,..., n U ϕ x j dλ n = 0. Wir erinnern an die

Mehr

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal. Modul: Mathematik I und II, Bachelor Maschinenbau

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal. Modul: Mathematik I und II, Bachelor Maschinenbau Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann 6.9.6 Bergische Universität Wuppertal Aufgabe ( Punkte Modul: Mathematik I und II, Bachelor Maschinenbau a Zeigen Sie durch Induktion nach n die Summenformel

Mehr

7 Integralrechnung für Funktionen einer Variablen

7 Integralrechnung für Funktionen einer Variablen 7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen a) Es ist < x, y > α + + β β ( + α) und y α + + β α + + ( + α) (α + α + ) 6 α + α, also α, ± 5 + ± 9 4 ± 3 Es gibt also Lösungen: α, β

Mehr

a 1 a 1 A = a n . det = λ det a i

a 1 a 1 A = a n . det = λ det a i 49 Determinanten Für gegebene Vektoren a 1,,a n K n, betrachte die Matrix deren Zeilenvektoren a 1,,a n sind, also A = Ab sofort benutzen wir diese bequeme Schreibweise Definition Sei M : K n K }{{ n K

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min. cos(x), y(0) = 1.

Apl. Prof. Dr. N. Knarr Musterlösung , 120min. cos(x), y(0) = 1. Apl. Prof. Dr. N. Knarr Musterlösung.9.6, min Aufgabe ( Punkte) Lösen Sie das folgende Anfangswertproblem: y = e y cos(x), y() =. Sei y : I R die maximale Lösung des gegebenen Anfangswertproblems (diese

Mehr

2 Vektorräume und Gleichungssysteme

2 Vektorräume und Gleichungssysteme 2 Vektorräume und Gleichungssysteme 21 Der n-dimensionale K-Vektorraum 2 Vektorräume und Gleichungssysteme 21 Der n-dimensionale K-Vektorraum Definition 21 Seien K = (K, +, ) ein Körper, V eine Menge und

Mehr

1 Endlich additive Volumen auf R n

1 Endlich additive Volumen auf R n Endlich additive Volumen auf R n In Satz. im Skript haben wir gezeigt, dass kein σ-additives Volumen auf der Potenzmenge P (R n ) definiert werden kann. Man könnte sich vorstellen, das Problem ist aus

Mehr

Analysis II 14. Übungsblatt

Analysis II 14. Übungsblatt Jun.-Prof. PD Dr. D. Mugnolo Wintersemester 01/13 F. Stoffers 04. Februar 013 Analysis II 14. Übungsblatt 1. Aufgabe (8 Punkte Man beweise: Die Gleichung z 3 + z + xy = 1 besitzt für jedes (x, y R genau

Mehr

Musterlösung Serie 8

Musterlösung Serie 8 D-MATH Lineare Algebra I HS 018 Prof. Richard Pink Musterlösung Serie 8 Dimension, Direkte Summe & Komplemente 1. Zeige: Für jedes Erzeugendensystem E eines Vektorraums V und jede linear unabhängige Teilmenge

Mehr

AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW

AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW Lineare Gleichungssysteme Lösen Sie folgende Gleichungssysteme über R: a) x + x + x = 6x + x + x = 4 x x x = x 7x x = 7 x x = b) x + x 4x + x 4 = 9 x + 9x x x

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D. Dr. V. Gradinaru D. Devaud Herbstsemester 5 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie Aufgabe..a Bezüglich des euklidischen Skalarprodukts in R ist die Orthogonalprojektion

Mehr

1 Definition und Konstruktion vektorwertiger Funktionen und Funktionen mehrerer Variabler

1 Definition und Konstruktion vektorwertiger Funktionen und Funktionen mehrerer Variabler Zusammenfassung Kapitel IV: Funktionen mehrerer Veränderlicher und vektorwertige Funktionen 1 Definition und Konstruktion vektorwertiger Funktionen und Funktionen mehrerer Variabler Definition vektorwertige

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

Blatt 5. , womit (U jk ) n k=0

Blatt 5. , womit (U jk ) n k=0 Übungen zur Topologie, G. Favi 7. März 009 Blatt 5 Abgabe: 3. April 008, 1:00 Uhr Aufgabe 1. Zeige, daÿ für alle n N die n-sphäre S n in R n+1 kompakt ist. Beweis. Wir schreiben d(x, y) := y x für die

Mehr

Mehrdimensionale Integration

Mehrdimensionale Integration Kapitel C Mehrdimensionale Integration h s r h h r h r Inhalt dieses Kapitels C000 1 Der Satz von Fubini 3 Aufgaben und Anwendungen 1 Vertauschen von Integral und Reihe Mehrdimensionale Integration #Der

Mehr

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q:

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q: Lineare Algebra D-MATH, HS 214 Prof Richard Pink Serie 5 1 [Aufgabe] Invertieren Sie folgende Matrizen über Q: 1 a) 1 1 1 1 1 2 1 1 1 b) 1 2 1 1 1 1 2 1 1 1 1 2 1 2 3 1 c) 1 3 3 2 2 1 5 3 1 2 6 1 [Lösung]

Mehr

1 Eingebettete Untermannigfaltigkeiten des R d

1 Eingebettete Untermannigfaltigkeiten des R d $Id: unter.tex,v 1.5 2014/04/28 14:01:50 hk Exp $ $Id: diff.tex,v 1.2 2014/04/28 14:24:56 hk Exp hk $ 1 Eingebettete Untermannigfaltigkeiten des R d Am Ende der letzten Sitzung hatten wir die Tangentialvektoren

Mehr

Integration (handgestrickt)

Integration (handgestrickt) Integration (handgestrickt) C c (R n ) :={f : R n R; f stetig, Träger(f) beschränkt}. B + b (Rn ) := { f : R n R; abei bedeutet f m konvergiert. J (R n ) := {f; a) f beschränkt, b) Träger(f) beschränkt,

Mehr

Grundlagen der Mathematik (BSc Maschinenbau)

Grundlagen der Mathematik (BSc Maschinenbau) Prof. Dr. J. Ruppenthal Wuppertal, 3.8.8 Dr. T. Pawlaschyk Grundlagen der Mathematik (BSc Maschinenbau) Aufgabe. (5+5+5+5 Punkte) a) Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH

Mehr

4 Bilinearformen und Skalarprodukte

4 Bilinearformen und Skalarprodukte 4 Bilinearformen und Skalarprodukte 4 Grundlagen über Bilinearformen Definition 4 Sei V ein K-Vektorraum Eine Bilinearform b auf V ist eine Abbildung b : V V K mit folgenden Eigenschaften: (B) x, y, z

Mehr

102 KAPITEL 14. FLÄCHEN

102 KAPITEL 14. FLÄCHEN 102 KAPITEL 14. FLÄCHEN Definition 14.3.1 (Kurve) Es sei M eine k-dimensionale Untermannigfaltigkeit des R n. Eine C 1 - Kurve γ : ( a, a) R n mit γ(( a, a)) M heißt Kurve auf M durch x 0 = γ(0). Definition

Mehr

Extremalprobleme mit Nebenbedingungen

Extremalprobleme mit Nebenbedingungen Extremalprobleme mit Nebenbedingungen In diesem Abschnitt untersuchen wir Probleme der folgenden Form: g(x 0 ) = inf{g(x) : x Ω, f(x) = 0}, (x 0 Ω, f(x 0 ) = 0). (1) Hierbei sind Ω eine offene Menge des

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe H 34.

Mehr

( 1) k k 2. k=0. n n(n + 1) ( 1) k k 2 + ( 1) n+1 (n + 1) 2. k=0. + ( 1) n+1 (n + 1) 2 n(n + 1) + (n + 1) 2 )

( 1) k k 2. k=0. n n(n + 1) ( 1) k k 2 + ( 1) n+1 (n + 1) 2. k=0. + ( 1) n+1 (n + 1) 2 n(n + 1) + (n + 1) 2 ) Musterlösung zum 9. Blatt 8. Aufgabe: Sei n eine natürliche Zahl. Vermuten Sie eine Formel für ( ) k k und beweisen Sie diese durch vollständige Induktion. Lösung: Für jede natürliche Zahl n sei a n =

Mehr

{ id, falls sgn(σ) = 1, τ, falls sgn(σ) = 1,

{ id, falls sgn(σ) = 1, τ, falls sgn(σ) = 1, Aufgabe I1 (4 Punkte) Es seien (G, ) und (H, ) Gruppen a) Wann heißt eine Abbildung Φ : G H ein Gruppenhomomorphismus? b) Es seien Φ, Ψ : G H zwei Gruppenhomomorphismen Zeigen Sie, dass eine Untergruppe

Mehr