Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr

Größe: px
Ab Seite anzeigen:

Download "Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr"

Transkript

1 TUM Ferienkurs Lineare Algebra WiSe 8/9 Dipl.-Math. Konrad Waldherr Musterlösung Relationen Aufgabe Auf R sei die Relation σ gegeben durch (a, b)σ(c, d) : a + b c + d. Ist σ reflexiv, symmetrisch, transitiv, antisymmetrisch? Lösung Die Relation σ ist reflexiv: (a, b)σ(a, b), da a + b a + b transitiv: (a, b)σ(c, d) a + b c + d und (c, d)σ(e, f) c + d e + f. Insgesamt folgt a + b e + f, also (a, b)σ(e, f). nicht symmetrisch: (, )σ(, ), aber nicht (, )σ(, ) nicht antisymmetrisch: (, )σ(, ) und (, )σ(, ), aber nicht (, ) = (, ) Aufgabe Es sei A := {,,, } und die Relationen R und R auf A seien gegeben durch R = R = {(, ), (, ), (, ), (, ), (, ), (, ), (, ), (, )} i) Man untersuche R und R bzgl. der Eigenschaften reflexix, symmetrisch, antisymmetrisch, transitiv. ii) Man konstruiere R als kleinste Äquivalenzrelation, die R enthält. Lösung i) R : Nicht reflexiv (nicht R ), aber symmetrisch, antisymmetrisch und transitiv (da jeweils Voraussetzung immer falsch) R : reflexiv (R, R, R und R ), symmetrisch (R und R, R und R ), nicht antisymmetrisch (R und R, aber ) und nicht transitiv (R und R, aber nicht R ) ii) R = R {(, ), (, )}, die sogenannte transitive Hülle von R. Aufgabe * Es sei eine Äquivalenzrelation auf einer nichtleeren Menge X. Man zeige, dass dann für beliebige x, y X entweder [x] = [y] oder [x] [y] = gilt. Lösung Es seien x, y X. Wir nehmen [x] [y] an (Sonst gilt die Behauptung). Es sei z [x] [y]. Dann gilt z [x], also x z. Analog gilt z y. Wegen der Symmetrie und Transitivität folgt x y, also x [y] und y [x], das heißt [x] = [y]. Abbildungen Aufgabe (siehe Blatt, H) Es seien A, B Mengen, f : A B eine Abbildung. Wir betrachten die Abbildung g : P(B) P(A), N f (N). Man zeige: i) Es ist f genau dann injektiv, wenn g surjektiv ist. ii) Es ist f genau dann surjektiv, wenn g injektiv ist. Lösung Siehe Blatt, H.

2 Aufgabe Welche der folgenden Abbildungen sind injektiv, surjektiv oder bijektiv? i) f : R R, x x x + ii) g : R R, x x + x iii) h : R R, (x, y) (y, x ) Man berechne, falls möglich, die Umkehrabbildung von h. Lösung i) f(x) = (x )(x ), also nicht injektiv (f hat zwei Nullstellen). f ist nicht surjektiv, da Bild(f). ii) g ist injektiv, da g (x) = x + >, g also streng monoton wachsend. g ist surjektiv: g ist stetig, hat die Grenzwerte ±, nimmt also nach dem Zwischenwertsatz alle Werte R an. iii) h(x, y) = h(x, y ) (y, x ) = (y, x ) y = y und x = x. Es sei (a, b) R. Dann gilt (y, x ) = (a, b) (x, y) = (b +, a/). Damit ist h bijektiv mit der Umkehrabbildung h : (x, y) (y +, x/). Aufgabe Injektivität und Surjektivität i) Gibt es Abbildungen, die weder injektiv noch surjektiv sind? ii) Man zeige, dass die Komposition injektiver (surjektiver) Abbildungen wiederum injektiv (surjektiv) ist. Lösung i) Ja. Beispiel: f : {a, b} {a, b}, a a, b a. ii) injektiv: Es seien f : A B, g : B C injektiv. Es gelte g(f(x)) = g(f(y)). Da g injektiv ist, folgt f(x) = f(y). Da auch f injektiv ist, folgt x = y. Das zeigt die Injektivität von g f. surjektiv: Es seien f : A B, g : B C surjektiv. Es sei c C. Da g surjektiv ist, gibt es ein b B mit g(b) = c. Wegen der Surjektivität von f finden wir schließlich ein a A mit f(a) = b. Insgesamt erhalten wir c = g(b) = g(f(a)). Aufgabe Es seien f : X Y eine Abbildung, A, B X sowie C, D Y. Zu zeigen: i) f(a B) f(a) f(b), ii) f (C D) = f (C) f (D), iii) f ist genau dann injektiv, falls f (f(z)) = Z für alle Z X. Unter welcher Voraussetzung gilt in i) Gleichheit? Lösung i) Es sei y f(a B). Dann existiert x A B mit f(x) = y. Wegen x A folgt y = f(x) f(a) und analog ergibt sich y = f(x) f(b). Das zeigt y f(a) f(b). Gleichheit gilt genau dann, wenn f injektiv ist. ii) Wir zeigen beide Inklusionen in einem Schritt: Es gilt x f (C D) f(x) C D f(x) C f(x) D x f (C) x f (D) x f (C) f (D). iii) Wir zeigen beide Implikationen: "= ": siehe Hilfsaussage Aufgabe (bzw. Blatt, H ) " =": Es seien x, y X mit f(x) = f(y). Dann gilt {x} X und {y} X und nach Voraussetzung gilt {x} = f (f({x})) = f (f({y})) = {y}, also x = y.

3 Aufgabe * Es seien A, B, C, D Mengen und C f D ein kommutatives Diagramm, d.h. es gelte α β A g B f α = β g. Ferner seien α und β bijektiv. Man zeige: Die Abbildung g ist genau dann injektiv, wenn f injektiv ist. Lösung Zu zeigen ist: f ist injektiv g ist injektiv. " :" Es seien a, a A mit g(a ) = g(a ). Damit gilt β(g(a )) = β(g(a )) = f(α(a )) = β(g(a )) = α(a ) = α(a ) = a = a " :" Es seien c, c C mit f(c ) = f(c ). Da α bijektiv ist, gibt es eindeutig bestimmte a, a mit α(a ) = c, α(a ) = c. Damit erhalten wir f(c ) = f(c ) = f(α(a )) = f(α(a )) = β(g(a )) = β(g(a )) = g(a ) = g(a ) = a = a = c = α(a ) = α(a ) = c Gruppen, Ringe, Körper Aufgabe Es sei K := {,, a} eine Menge mit paarweise verschiedenen Elementen. Wie sind die Verknüpfungstafeln auszufüllen, so dass (K, +, ) ein Körper wird. (Die Elemente und sollen dabei ihre "übliche" Rolle spielen) + a a a a Lösung Man kann die "Sudoku-Aufgaben" jeweils eindeutig lösen. Der so konstruierte Körper ist natürlich isomorph zum Körper F. + a a a a a a a a a Aufgabe Es seien (G, +) eine Gruppe, U und U Untergruppen. Man beweise oder widerlege jeweils: i) (U U, +) ist eine Untergruppe von (G, +), ii) (U U, +) ist eine Untergruppe von (G, +). Lösung i) (U U, +) ist eine Untergruppe von (G, +): e U und e U = e U U a, b U U = a, b U und a, b U. Da U und U Untergruppen sind, folgt a + b U und a + b U, also a + b U U.

4 Es sei a U U. Dann gilt a U, also auch a U. Analog gilt a U und wir erhalten a U U. ii) (U U, +) ist keine Untergruppe von (G, +): Gegenbeispiel: U = Z, U = Z. Dann ist U, U, aber 5 = + U U. Aufgabe * Es sei (G, ) eine Gruppe mit neutralem Element e, und es gelte für alle g G die Gleichung g = e. Man beweise, dass (G, ) abelsch ist. Lösung Es seien a, b G. Dann gilt Lineare Gleichungssysteme ab = e(ab)e = (bb)(ab)(aa) = b(ba)(ba)a = bea = ba. Aufgabe Die Matrix A sei in Abhängigkeit der Parameter a, b gegeben durch b A = a b b a Man bestimme den Rang von A in Abhängigkeit von a und b. Lösung Durch elementare Zeilenumformungen erhalten wir b A b a b a ab b.fall: b = : (a) a = b = : Rang (b) a b = Rang.Fall: b (a) a = b, insbesondere a : Rang (b) a b: Rang Aufgabe Für welche t R hat das folgende LGS keine, genau eine oder mehr als eine Lösung? x + y + tz = x + y + z = t x + ty z = Man berechne für t = und t = alle Lösungen. Lösung Gauß-Algorithmus angewandt auf die erweiterte Koeffizientenmatrix liefert t t t t t 6 t t t + t + 8t 5 Die Matrix hat also genau dann vollen Rang, wenn t t + = (t )(t ), also für t,. In diesen Fällen hat das LGS genau eine Lösung. Betrachten wir nun die Sonderfälle t = sowie t = t = : Dann ist die Zeilenstufenform von der Gestalt 7

5 Damit ergibt sich ein eindimensionaler Lösungsraum: x 5 x x = + R 7 Für t = / erhält man / 7/ /9 An der letzten Zeile sieht man, dass das LGS keine Lösung besitzt. Für t = schließlich ergibt sich aus der Zeilenstufenform die Lösung x x x = /5 8/5 /5 5 Vektorräume, Unterräume, Basis und Dimension Aufgabe Es seien V := C und U := {(z, z ) C z = z }. Man zeige oder widerlege: i) U ist ein Unterraum des C-Vektorraums V, ii) U ist ein Unterraum des R-Vektorraums V. Lösung i) U ist kein Unterraum des C-Vektorraums V : (, ) U, aber i(, ) = (i, i) U. ii) U ist ein Unterraum des R-Vektorraums V : (, ) U also U {}, (a, b), (c, g) U a + c = c + d = c + d, also (a + c, b + d) U, (a, b) U, λ R λa = λb = λb, also (λa, λb) U. Aufgabe (Staatsexamen 98) Im R seien in Abhängigkeit von c R die Mengen gegeben. U = { V c = {λ x x x x R x x =, x + x x = } + µ c λ, µ R} i) Man begründe kurz, warum U und V c Unterräume des R sind. ii) Man berechne eine Basis von U. iii) Für welche Zahlen c gilt R = U + V c. Lösung i) U ist als Lösungsmenge eines homogenen LGS ein Unterraum. V c ist gerade das Erzeugnis zweier Vektoren und daher ein Unterraum.

6 ii) Eine Basis von U erhält man durch das Lösen des zugehörigen LGS: x x x + = R + R x Die beiden angegebenen Vektoren bilden eine Basis von U. iii) Da sowohl U also auch V c von je zwei Vektoren aufgespannt werden, gilt U + V c = R genau dann, wenn, die erzeugenden Vektoren linear unabhängig sind. Linearkombination der Null und Aufstellen des zugehörigen LGS führt auf die Koeffizientenmatrix c c + c/ Vollen Rang der Matrix und damit lineare Unabhängigkeit erhalten wir genau im Fall c 8. Aufgabe Es seien a, b, c und d linear unabhängige Vektoren in einem reellen Vektorraum. Ferner seien v = a + b + c + d, v = b + c, v = c + d, v = a + b und U :=< v, v, v, v >. i) Man bestimme die Dimension von U. ii) Was lässt sich über die Dimension von U aussagen, wenn man nichts über lineare (Un- )Abhängigkeit der Vektoren a, b, c, d weiß? Lösung Wir testen v, v, v und v auf lineare Unabhängigkeit:. λ k v k = λ (a + b + c + d) + λ (b + c) + λ (c + d) + λ (a + b) = k= (λ + λ )a + (λ + λ + λ )b + (λ + λ + λ )c + (λ + λ )d = Aufgrund der linearen Unabhängigkeit von a, b, c, d müssen die zugehörigen Koeffizienten sein, dies führt auf ein homogenes LGS: Damit sind die Vekoren linear abhängig. Da der (Spalten-) Rang der Matrix ist, spannen die Vektoren einen dreidimensionalen Raum auf. Sind a, b, c, d nicht mehr linear unabhängig, so könnte sich aufgrund der Abhängigkeiten die Dimension von U entsprechend reduzieren. Die Dimension ist in diesem Fall dann höchstens. Aufgabe Es seien V = Q und U = U =,, 6, V V

7 i) Man berechne Basen von U U und U + U. ii) Man bestimme einen Unterraum U V, so dass U + U = V, U U = {}. Lösung i) Zur Berechnung des Schnitts wählen wir den Ansatz λ + λ + λ = λ Für das zugehörige lineare Gleichungssystem erhalten wir λ 5 Der dritten Zeile entnimmt man λ = λ 5 ; für den Schnitt erhalten wir somit U U = λ 5 + λ 5 = λ Eine Basis von U U ist also etwa (,,, ). Ein Erzeugendensystem für die Summe U + U lässt sich direkt angeben: U + U =,,,, 6 Dieses ist jedoch linear abhängig. Um eine Basis zu konstruieren, schreiben wir die erzeugenden Vektoren zeilenweise in eine Matrix und wenden elementare Zeilenumformungen an, da diese den von den Zeilenvektoren aufgespannten Raum unverändert lassen. 6 5 Aus den linear unabhängigen Zeilen können wir nun eine Basis ablesen:,, 5 ii) Auch hier benutzen wir die Eigenschaft, dass elementare Zeilenumformungen den Zeilenraum invariant lassen: Wir schreiben das Erzeugendensystem von U wiederum zeilenweise auf: Da nun die freien Parameter in der dritten und vierten Spalte "sitzen", wählen wir U =< {e, e } >. 6

8 Aufgabe 5 Es seien R[X] der Vektorraum der reellen Polynome vom Grad. i) Man bestimme eine Basis des Unterraums < {x x, x } > < {x x, x} > ii)* Man bestimme die Parameter a, b R, so dass eine Basis von R[X] darstellt. B (a,b) = { + ax + x, + x + bx, + ax ax } iii)* Man stelle das Polynom x + 5x in der Basis {, + x, x } dar. Lösung i) Für den Schnitt der Unterräume wählen wir den Ansatz λ (x x)+λ (x ) = λ (x x)+λ (x) (λ λ )x +( λ +λ +λ λ )x+( λ ) = Da {, x, x } linear unabhängig ist, ergibt sich (mal wieder) ein lineares Gleichungssystem mit der Lösung λ = λ, λ = λ λ =, λ = λ Einsetzen in den Ansatz ergibt Eine Basis ist also gegeben durch {x x}. λ (x x) + λ (x) = λ (x x). ii)* Offensichtlich gilt B (a,b) R[x], wir müssen also die Parameter a und b so wählen, dass B (a,b) linear unabhängig ist. λ ( + ax + x ) + λ ( + x + bx ) + λ ( + ax ax ) = (λ + bλ aλ ) x + (aλ + λ + aλ ) x + (λ + λ + λ ) = Wiederum erhalten wir ein LGS: b a a a a a Im Fall a {, } hat die Matrix vollen Rang; in diesen Fällen ist B (a,b) tatsächlich eine Basis. iii)* Um das Polynom x + 5x in der Basis {, + x, x } darzustellen, wählen wir den Ansatz λ + λ ( + x) + λ ( x ) = x + 5x Das zugehörige LGS ist von der Form 5 Als Lösung erhalten wir λ =, λ =, λ = 8. Aufgabe 6* Man bestimme eine Basis des Unterraums < sin(x), cos(x), sin(x + π/) > Lösung Es gilt sin(x + π/) = cos(x). Eine Basis ist also gegeben durch {sin(x), cos(x)}.

9 6 Lineare Abbildungen Aufgabe Welche der folgenden Abbildungen sind linear? i) f : R R, x x +, ii) g : R R, (x, y) (x + y, x cy) mit einer Konstante c R. Lösung i) f : R R, x x + ist nicht linear ii) g : R R, (x, y) (x + y, x cy) mit einer Konstante c R ist linear. Aufgabe Die Abbildung F : R R sei gegeben durch (x, y, z) x + y + z. i) Zu zeigen: die Abbildung F ist linear. ii) Ist F injektiv oder surjektiv? iii) Man bestimme Basen von Bild(F ) und Kern(F ). Lösung i) Nachrechnen: F (λ (x, y, z) + (x, y, z )) = λ F ((x, y, z)) + F ((x, y, z )) ii) F ist nicht injektiv, aber surjektiv? (Beweis siehe iii)) iii) Bild(F ) =< {} > und Kern(F ) =< {(,, ), (,, )} >. Aufgabe Es sei f : R R gegeben durch (x, x, x ) (x,, x ). i) Man zeige, dass f linear ist. ii) Man bestimme Basen von Bild(f) und Kern(f). iii) Ist f injektiv, surjektiv oder sogar bijektiv? Lösung i) Nachrechnen! ii) Bild(f) =< {(,, ), (,, )} > und Kern(f) =< {(,, )} >. iii) Nach ii) ist f weder injektiv noch surjektiv, insbesondere auch nicht bijektiv. Aufgabe Ist die Komposition linearer Abbildungen wieder linear? Lösung Ja. Aufgabe 5 i) Gibt es eine surjektive lineare Abbildung f : R n R n+? ii) Gibt es eine injektive lineare Abbildung f : R n R n? Lösung Nach dem Dimensionssatz für lineare Abbildungen sind beide Fälle i) und ii) nicht möglich. Aufgabe 6 Es sei V := R[X] die Menge aller Polynome vom Grad mit reellen Koeffizienten. i) Zu zeigen: die Abbildung F : V V, F (p(x)) = p (X) ist linear. ii) Man bestimme Bild(F ) und Kern(F ). iii) Man zeige, dass B = {X, X +, X X, X + X } eine Basis von V ist. iv) Wie lauten die Bilder der Basisvektoren in B unter der Abbildung F? Lösung i) Vgl. Ableitungsregeln ii) Bild(F ) = R[X], Kern(F ) = R. iii) Es gilt B V und B ist linear unabhängig (nachrechnen!) iv),, X X, X + X Aufgabe 7 (Staatsexamen 99) Im R seien die Vektoren v =, v = λ, v =, w =, w = µ, w = gegeben. Für welche Parameter λ, µ R gibt es eine lineare Abbildung φ : R φ(v i ) = w i für i=,,? R mit

10 Lösung Lineare Abbildungen sind durch die Bilder der Basisvektoren eindeutig bestimmt. Sind v, v, v linear unabhängig, so existiert zu jedem λ und µ genau eine lineare Abbildung mit den gewünschten Eigenschaften. Das ist der Fall für λ. Für λ = besteht die Abhängigkeit v = v v. Da φ linear sein soll, muss dann auch φ(v ) = φ(v ) φ(v ) gelten. Im Fall λ = führt diese Bedingung auf µ =.

Prof. Dr. Markus Reineke Dr. Anna-Louise Grensing. Musterlösung zur Klausur zur Linearen Algebra I

Prof. Dr. Markus Reineke Dr. Anna-Louise Grensing. Musterlösung zur Klausur zur Linearen Algebra I Prof. Dr. Markus Reineke Dr. Anna-Louise Grensing Musterlösung zur Klausur zur Linearen Algebra I 1 Aufgabe 1: (8 Punkte) Entscheiden Sie, ob die folgenden Aussagen wahr oder falsch sind: Aussage wahr

Mehr

Lösungsskizze zur Hauptklausur Lineare Algebra I

Lösungsskizze zur Hauptklausur Lineare Algebra I Lösungsskizze zur Hauptklausur Lineare Algebra I Aufgabe Seien V und W zwei K-Vektorräume für einen Körper K. a) Wann heißt eine Abbildung f : V W linear? b) Wann heißt eine Abbildung f : V W injektiv?

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

1 Linearkombinationen

1 Linearkombinationen Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 14/15 A 1 Linearkombinationen Unter einer Linearkombination versteht man in der linearen Algebra einen Vektor, der sich durch

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr

Musterlösung zur Klausur Lineare Algebra I

Musterlösung zur Klausur Lineare Algebra I Musterlösung zur Klausur Lineare Algebra I Aufgabe Version A 5 Punkte: Welche der folgenden Aussagen sind wahr bzw. falsch? Setzen Sie in jeder Zeile genau ein Kreuz. Für jede korrekte Antwort erhalten

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Matrizen und Vektoren, LGS, Gruppen, Vektorräume 1.1 Multiplikation von Matrizen Gegeben seien die Matrizen A := 1 1 2 0 5 1 8 7 Berechnen Sie alle möglichen

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16 Name, Vorname Matrikel-Nr. Aufg. Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 25/6 Bearbeiten Sie bitte

Mehr

Wiederholungs-Modulprüfung: zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16 1.Klausur

Wiederholungs-Modulprüfung: zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16 1.Klausur Name, Vorname Matrikel-Nr. Aufg.1 Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Wiederholungs-Modulprüfung: zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16 1.Klausur Bearbeiten

Mehr

Aufgaben zur linearen Algebra und analytischen Geometrie I

Aufgaben zur linearen Algebra und analytischen Geometrie I Aufgaben zur linearen Algebra und analytischen Geometrie I Es werden folgende Themen behandelt:. Formale und logische Grundlagen 2. Algebraische Grundlagen 3. Vektorräume und LGS 4. Homomorphismen und

Mehr

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen.

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen. 1. Der Vektorraumbegriff...1 2. Unterräume...2. Lineare Abhängigkeit/ Unabhängigkeit... 4. Erzeugendensystem... 5. Dimension...4 6. Austauschlemma...5 7. Linearität von Abbildungen...6 8. Kern und Bild

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 5. April 2018 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Übungen zur Diskreten Mathematik I Blatt 6

Übungen zur Diskreten Mathematik I Blatt 6 1 Blatt 6 Aufgabe 19 Es sei M := {n N : n 2} und R := {(n, m) M M : n teilt m}. a) Zeigen Sie, dass R eine Ordnungsrelation auf M ist. b) Überprüfen Sie, ob R eine totale Ordnung auf M ist. c) Zeigen Sie,

Mehr

6. f : Abb(R, R) R mit ϕ f(ϕ) := ϕ(1) Hinweis:f :V W über K bedeutet Abbildung f zwischen den Vektorräumen V und W über demselben

6. f : Abb(R, R) R mit ϕ f(ϕ) := ϕ(1) Hinweis:f :V W über K bedeutet Abbildung f zwischen den Vektorräumen V und W über demselben Aufgabe 74. Untersuchen Sie die folgenden Abbildungen auf Linearität. 1. f : R 2 R 2 mit (x, y) f(x, y) := (3x + 2y, x) 2. f : R R mit x f(x) := ϑx + ζ für feste ϑ, ζ R 3. f : Q 2 R mit (x, y) f(x, y)

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW

AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW Lineare Gleichungssysteme Lösen Sie folgende Gleichungssysteme über R: a) x + x + x = 6x + x + x = 4 x x x = x 7x x = 7 x x = b) x + x 4x + x 4 = 9 x + 9x x x

Mehr

2.4 Lineare Abbildungen und Matrizen

2.4 Lineare Abbildungen und Matrizen 24 Lineare Abbildungen und Matrizen Definition 24 Seien V, W zwei K-Vektorräume Eine Abbildung f : V W heißt lineare Abbildung (lineare Transformation, linearer Homomorphismus, Vektorraumhomomorphismus

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Eintageskurs Lineare Algebra 1

Eintageskurs Lineare Algebra 1 Wintersemester 2011/2012 Eintageskurs Lineare Algebra 1 Garching, Februar 2012 Konrad Waldherr Technische Universität München Überblick Kein neuer Stoff, keine Voraussetzung für die Klausur Wiederholung

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 2 2. (Frühjahr 29, Thema 3, Aufgabe 3) Gegeben sei die reelle 3 3 Matrix 4 2 A = 2 7 2 R 3 3. 2 2 a)

Mehr

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller

technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 4.3 und 4.4

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b

Mehr

β 1 x :=., und b :=. K n β m

β 1 x :=., und b :=. K n β m 44 Lineare Gleichungssysteme, Notations Betrachte das lineare Gleichungssystem ( ) Sei A = (α ij ) i=,,m j=,n α x + α x + + α n x n = β α x + α x + + α n x n = β α m x + α m x + + α mn x n = β m die Koeffizientenmatrix

Mehr

i=1 j= 5 2. Verifizieren Sie die Gleichung indem Sie die Ausdrücke ohne Summenzeichen schreiben. j=0

i=1 j= 5 2. Verifizieren Sie die Gleichung indem Sie die Ausdrücke ohne Summenzeichen schreiben. j=0 Übungen zur Einführung in die Analysis (Einführung in das mathematische Arbeiten WS 2017 1. Schreiben Sie die folgenden Ausdrücke ohne Verwendung von Summen- bzw. Produktzeichen: 7 2 3 5 k 2k+1, a k, 2

Mehr

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen Aufgaben mit Musterlösung 21. März 2011 Tanja Geib 1 Aufgabe 1 Geben Sie zu B = {0, 2, 4} und

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt.

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. () In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. a) Es seien A und B beliebige n n-matrizen mit Einträgen in einem Körper K.

Mehr

Ausgewählte Lösungen zu den Übungsblättern 4-5

Ausgewählte Lösungen zu den Übungsblättern 4-5 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine Vektorräume (Teschl/Teschl 9 Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen: Eine

Mehr

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 2 Prof. Dr. Markus Schweighofer 11.11.2009 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 2.1: Behauptung:

Mehr

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }.

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }. 154 e Gegeben sind die Vektoren v 1 = ( 10 1, v = ( 10 1. Sei V 1 = v 1 der von v 1 aufgespannte Vektorraum in R 3. 1 Dann besteht V 1 aus allen Vielfachen von v 1, V 1 = { c v 1 c R }. ( 0 ( 01, v 3 =

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 25 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 8 Aufgabe 8 Basen für Bild und Kern Gegeben sind die beiden 2 Matrizen:

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Lineare Algebra I. Probeklausur - Lösungshinweise

Lineare Algebra I. Probeklausur - Lösungshinweise Institut für Mathematik Wintersemester 2012/13 Universität Würzburg 19. Dezember 2012 Prof. Dr. Jörn Steuding Dr. Anna von Heusinger Frederike Rüppel Lineare Algebra I Probeklausur - Lösungshinweise Aufgabe

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2

Mehr

Musterlösung zur Probeklausur Lineare Algebra I

Musterlösung zur Probeklausur Lineare Algebra I Musterlösung zur Probeklausur Lineare Algebra I Aufgabe 1 5 Punkte: Welche der folgenden Aussagen sind wahr bzw. falsch? Setzen Sie in jeder Zeile genau ein Kreuz. Für jede korrekte Antwort erhalten Sie

Mehr

, Uhr Dr. Thorsten Weist. Name Vorname Matrikelnummer. Geburtsort Geburtsdatum Studiengang

, Uhr Dr. Thorsten Weist. Name Vorname Matrikelnummer. Geburtsort Geburtsdatum Studiengang Nachklausur zur Linearen Algebra I - Nr. 1 Bergische Universität Wuppertal Sommersemester 2011 Prof. Dr. Markus Reineke 06.10.2011, 10-12 Uhr Dr. Thorsten Weist Bitte tragen Sie die folgenden Daten leserlich

Mehr

Kapitel V. Affine Geometrie

Kapitel V. Affine Geometrie Kapitel V Affine Geometrie 1 Affine Räume Betrachte ein lineares Gleichungssystem Γ : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 + + a mn x n = b

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Wintersemester 2014/15 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax

Mehr

i) ii) iii) iv) i) ii) iii) iv) v) gilt (Cauchy-Schwarz-Ungleichung): Winkel zwischen zwei Vektoren : - Für schreibt man auch.

i) ii) iii) iv) i) ii) iii) iv) v) gilt (Cauchy-Schwarz-Ungleichung): Winkel zwischen zwei Vektoren : - Für schreibt man auch. Abbildungen Rechnen Matrizen Rechnen Vektoren Äquivalenzrelation Addition: Skalarmultiplikation: Skalarprodukt: Länge eines Vektors: Vektorprodukt (im ): i ii i ii v) gilt (Cauchy-Schwarz-Ungleichung):

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I Wintersemester 3/ Aufgabenblatt 6. Januar Präsenzaufgaben

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGEBRA Ferienkurs Hanna Schäfer Philipp Gadow INHALT 1 Grundbegriffe 1 1.1 Aussagen und Quantoren 1 1.2 Mengen 2 1.3 Gruppen 3 1.4 Körper 4 1.5 Vektorräume 5 1.6 Basis und Dimension 7 Aufgaben

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

5.7 Lineare Abhängigkeit, Basis und Dimension

5.7 Lineare Abhängigkeit, Basis und Dimension 8 Kapitel 5. Lineare Algebra 5.7 Lineare Abhängigkeit, Basis und Dimension Seien v,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von v,...,v n, nämlich { n

Mehr

m 2 m 3 m 5, m m 2

m 2 m 3 m 5, m m 2 Musterlösung zum 8. Blatt 7. Aufgabe: Seien die folgenden Vektoren im R 4 gegeben: 2m 5 + 2 2m 2 2m 7 + m 2 m 3 m 5 v = m 5, v 2 = m 2, v 3 = m 7 m 2 m 3 m 5 m 2 m 3 m 5, m 5 + m 2 m 7 2m + m 2 m 4 2m

Mehr

3 Systeme linearer Gleichungen

3 Systeme linearer Gleichungen 3 Systeme linearer Gleichungen Wir wenden uns nun dem Problem der Lösung linearer Gleichungssysteme zu. Beispiel 3.1: Wir betrachten etwa das folgende System linearer Gleichungen: y + 2z = 1 (1) x 2y +

Mehr

Klausurvorbereitungsblatt Lineare Algebra

Klausurvorbereitungsblatt Lineare Algebra Klausurvorbereitungsblatt Lineare Algebra Sommersemester 25 Aufgabe 2 2 Sei A 3 3 8 2 4 3 R4 5. 5 2 a) Bestimmen Sie die Lösungsmenge des linearen Gleichungssystems Ax b) Ist Ax b mit b lösbar? (Begründen

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 13. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 13. Übungsblatt UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum

Mehr

Lineare Abbildungen und Orthonormalsysteme

Lineare Abbildungen und Orthonormalsysteme KAPITEL Lineare Abbildungen und Orthonormalsysteme. Lineare Abbildungen und Koordinatendarstellungen.. Lineare Abbildungen und ihre Basisdarstellung. Seien V, W Vektorraume uber R. Mit einer Abbildung

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 2014/2015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 10 Abgabetermin: Freitag, 16.01.2015, 11 Uhr Auf diesem

Mehr

2) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 +bx 2 +c mit a, b, c R.

2) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 +bx 2 +c mit a, b, c R. Übung 6 1) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 + bx 2 + c mit a, b, c R und nennen diesen V. Die Vektoren f 1 (x) = 2x 4 + 2x 2 + 2 und f 2 (x) = 3x 4 + x 2 + 4 sind in diesem Vektorraum

Mehr

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4)

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4) FU Berlin: WiSe 13-14 (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5 Aufgabe 18 (siehe Musterlösung Zettel 4) Aufgabe 20 In der Menge R der reellen Zahlen sei die Relation 2 R 2 definiert durch: x 2 y :

Mehr

Grundlegende Definitionen aus HM I

Grundlegende Definitionen aus HM I Grundlegende Definitionen aus HM I Lucas Kunz. März 206 Inhaltsverzeichnis Vektorraum 2 2 Untervektorraum 2 Lineare Abhängigkeit 2 4 Lineare Hülle und Basis 5 Skalarprodukt 6 Norm 7 Lineare Abbildungen

Mehr

Übungsaufgaben. Mathematik I für Informatiker WS 2006/07 Otto-von-Guericke Universität Magdeburg Prof. Dr. M. Henk, Dr. M. Höding

Übungsaufgaben. Mathematik I für Informatiker WS 2006/07 Otto-von-Guericke Universität Magdeburg Prof. Dr. M. Henk, Dr. M. Höding Mathematik I für Informatiker WS 2006/07 Otto-von-Guericke Universität Magdeburg Prof. Dr. M. Henk, Dr. M. Höding Übungsaufgaben Aufgabe 0.1 Ermitteln Sie x R aus folgenden Gleichungen (a) log 2 (x + 14)

Mehr

Grundlagen der Mathematik 1

Grundlagen der Mathematik 1 Fachbereich Mathematik Sommersemester 2010, Blatt 14 Thomas Markwig Stefan Steidel Grundlagen der Mathematik 1 Die Lösungen müssen nicht eingereicht werden und werden auch nicht korrigiert. Die Aufgaben

Mehr

Kapitel 3 Lineare Algebra

Kapitel 3 Lineare Algebra Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND

Mehr

Bestimmung der Dimension

Bestimmung der Dimension Bestimmung der Dimension Satz. Sei (v 1, v 2,..., v n ) ein minimales Erzeugendensystem von V, d.h. dieses System ist ein Erzeugendensystem von V, aber keines der nach Weglassen eines v i (1 i n) entstehenden

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 017 Prof Dr N Hungerbühler Serie 8: Online-Test Einsendeschluss: Freitag, der 4 November um 14:00 Uhr Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen

Mehr

Klausur Lineare Algebra I

Klausur Lineare Algebra I Klausur Lineare Algebra I Fachbereich Mathematik WS / Prof. Dr. Kollross 9. März Name:.................................................. Vorname:............................................... Studiengang:...........................................

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

4 Affine Koordinatensysteme

4 Affine Koordinatensysteme 4 Affine Koordinatensysteme Sei X φ ein affiner Raum und seien p,, p r X Definition: Nach ( c ist der Durchschnitt aller affinen Unterräume Z X, welche die Menge {p,,p r } umfassen, selbst ein affiner

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 014/015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 7 Abgabetermin: Freitag, 05.1.014, 11 Uhr Aufgabe 7.1 (Vektorräume

Mehr

Lineare Algebra für Physiker 11. Übungsblatt

Lineare Algebra für Physiker 11. Übungsblatt Lineare Algebra für Physiker 11. Übungsblatt Fachbereich Mathematik SS 01 Prof. Dr. Matthias Schneider./. Juli 01 Dr. Silke Horn Dipl.-Math. Dominik Kremer Gruppenübung Aufgabe G1 (Minitest) (a) Welche

Mehr

Lineare Algebra. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra 7. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching November 9, 27 Erinnerung 2 Vektoräume Sei V ein Vektorraum, U V, U {}. U hiesst Untervektorraum, Unterraum,

Mehr

1 Eigenschaften von Abbildungen

1 Eigenschaften von Abbildungen Technische Universität München Christian Neumann Ferienkurs Lineare Algebra für Physiker Vorlesung Dienstag WS 2008/09 Thema des heutigen Tages sind zuerst Abbildungen, dann spezielle Eigenschaften linearer

Mehr

Übungsklausur zur Linearen Algebra I

Übungsklausur zur Linearen Algebra I Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik 14.12.2009 Übungsklausur zur Linearen Algebra I Name: Prüfen Sie sofort, ob Sie alle 8 Aufgaben erhalten haben. Entfernen

Mehr

3.5 Duale Vektorräume und Abbildungen

3.5 Duale Vektorräume und Abbildungen 3.5. DUALE VEKTORRÄUME UND ABBILDUNGEN 103 3.5 Duale Vektorräume und Abbildungen Wir wollen im Folgenden auch geometrische Zusammenhänge mathematisch beschreiben und beginnen deshalb jetzt mit der Einführung

Mehr

Lineare Algebra I. Lösung 9.2:

Lineare Algebra I. Lösung 9.2: Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 9 Prof. Dr. Markus Schweighofer 20.01.2010 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 9.1: Voraussetzung:

Mehr

Klausur Analysis für Informatiker Musterlösung

Klausur Analysis für Informatiker Musterlösung Prof. Dr. Torsten Wedhorn WS 9/ Dr. Ralf Kasprowitz Elena Fink Klausur Analysis für Informatiker Musterlösung 9.2.2 Name, Vorname Studienfach Matrikelnummer Semester Übungsgruppe Zugelassene Hilfsmittel:

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 5/.. Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Stefan Lell 2. Juli 2 Aufgabe. Sei t Q und A t = t 4t + 2 2t + 2 t t 2t 2t Mat 3Q a Bestimmen Sie die Eigenwerte von A t in Abhängigkeit

Mehr

13. Übungsblatt zur Mathematik I für Maschinenbau

13. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 3. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 00/ 07.0.-.0. Aufgabe G Stetigkeit) a) Gegeben

Mehr

Vektorräume und lineare Abbildungen

Vektorräume und lineare Abbildungen Kapitel 11. Vektorräume und lineare Abbildungen 1 11.1 Vektorräume Sei K ein Körper. Definition. Ein Vektorraum über K (K-Vektorraum) ist eine Menge V zusammen mit einer binären Operation + einem ausgezeichneten

Mehr

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen 1 Lineare Abhängigkeit 1.1 Für welche t sind die folgenden Vektoren aus 3 linear abhängig? (1, 3, 4), (3, t, 11), ( 1, 4, 0). Das zur Aufgabe gehörige LGS führt auf die Matrix 1 3 4 3 t 11. 1 4 0 Diese

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Lineare Algebra. 6. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 6. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra 6. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching November, 7 Vektoräume Eine Menge E zusammen mit zwei Verknüpfungen + : E E E, x, y x + y Addition : E E E,

Mehr

LINEARE ALGEBRA II. FÜR PHYSIKER

LINEARE ALGEBRA II. FÜR PHYSIKER LINEARE ALGEBRA II FÜR PHYSIKER BÁLINT FARKAS 4 Rechnen mit Matrizen In diesem Kapitel werden wir zunächst die so genannten elementaren Umformungen studieren, die es ermöglichen eine Matrix auf besonders

Mehr

Kapitel 15. Aufgaben. Verständnisfragen

Kapitel 15. Aufgaben. Verständnisfragen Kapitel 5 Aufgaben Verständnisfragen Aufgabe 5 Zeigen Sie, dass die Menge K m n aller m n-matrizen über einem Körper K mit komponentenweiser Addition und skalarer Multiplikation einen K-Vektorraum bildet

Mehr

Spickzettel Mathe C1

Spickzettel Mathe C1 Spickzettel Mathe C1 1 Mengenlehre 1.1 Potenzmenge Die Potenzmenge P (Ω) einer Menge Ω ist die Menge aller Teilmengen von Ω. Dabei gilt: P (Ω) := {A A Ω} card P (Ω) = 2 card Ω P (Ω) 1.2 Mengenalgebra Eine

Mehr

1 Lineare Abbildungen

1 Lineare Abbildungen 1 Lineare Abbildungen Definition 1 Sei K ein Körper und V und W K-Vektoräume. Eine Abbildung f : V W heisst linear oder Homomoprhismus, wenn gilt: fv 1 + v 2 = fv 1 + fv 2 v 1, v 2 V fλv = λfv λ K, v V

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

MATHEMATIK II FÜR STUDIERENDE DER INFORMATIK UND WIRTSCHAFTSINFORMATIK (ANALYSIS UND LINEARE ALGEBRA) IM SOMMERSEMESTER Inhaltsverzeichnis

MATHEMATIK II FÜR STUDIERENDE DER INFORMATIK UND WIRTSCHAFTSINFORMATIK (ANALYSIS UND LINEARE ALGEBRA) IM SOMMERSEMESTER Inhaltsverzeichnis MATHEMATIK II FÜR STUDIERENDE DER INFORMATIK UND WIRTSCHAFTSINFORMATIK (ANALYSIS UND LINEARE ALGEBRA) IM SOMMERSEMESTER 206 STEFAN GESCHKE Inhaltsverzeichnis Einleitung 3 Literatur 3. Lineare Gleichungssysteme

Mehr

MATHEMATIK II FÜR STUDIERENDE DER INFORMATIK UND WIRTSCHAFTSINFORMATIK (ANALYSIS UND LINEARE ALGEBRA) IM SOMMERSEMESTER Inhaltsverzeichnis

MATHEMATIK II FÜR STUDIERENDE DER INFORMATIK UND WIRTSCHAFTSINFORMATIK (ANALYSIS UND LINEARE ALGEBRA) IM SOMMERSEMESTER Inhaltsverzeichnis MATHEMATIK II FÜR STUDIERENDE DER INFORMATIK UND WIRTSCHAFTSINFORMATIK (ANALYSIS UND LINEARE ALGEBRA) IM SOMMERSEMESTER 208 STEFAN GESCHKE Inhaltsverzeichnis Einleitung 3 Literatur 3. Lineare Gleichungssysteme

Mehr

1 Matrizen und Vektoren

1 Matrizen und Vektoren Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 14/15 A 1 Matrizen und Vektoren Definition 1.1 (Matrizen) Ein rechteckiges Zahlenschema aus m mal n Elementen eines Körpers

Mehr

Beweis. Bei (a) handelt es sich um eine Umformulierung des ersten Teils von Satz 6.2, während (b) aus dem zweiten Teil des genannten Satzes folgt.

Beweis. Bei (a) handelt es sich um eine Umformulierung des ersten Teils von Satz 6.2, während (b) aus dem zweiten Teil des genannten Satzes folgt. 82 Kapitel III: Vektorräume und Lineare Abbildungen Beweis. Bei (a) handelt es sich um eine Umformulierung des ersten Teils von Satz 6.2, während (b) aus dem zweiten Teil des genannten Satzes folgt. Wir

Mehr

1 0 1, V 3 = M, und λ A = λa

1 0 1, V 3 = M, und λ A = λa Aufgabe 57. Magische Quadrate Eine reelle 3 3-Matrix A = a 11 a 12 a 13 a 21 a 22 a 23 heißt magisches Quadrat, falls alle Zeilensummen, alle Spaltensummen und die beiden Diagonalsummen a 11 + a 22 + a

Mehr

Vorlesung Mathematik für Informatiker I. WS 2013/14 Klausur 29. März 2014

Vorlesung Mathematik für Informatiker I. WS 2013/14 Klausur 29. März 2014 Vorlesung Mathematik für Informatiker I Prof. Dr. B. Steffen WS 2013/14 Klausur 29. März 2014 Name: Vorname: Matrikelnummer: Studiengang: Unterschrift: Pseudonym (zur Veröffentlichung der Klausurergebnisse):

Mehr