3.5 Duale Vektorräume und Abbildungen

Größe: px
Ab Seite anzeigen:

Download "3.5 Duale Vektorräume und Abbildungen"

Transkript

1 3.5. DUALE VEKTORRÄUME UND ABBILDUNGEN Duale Vektorräume und Abbildungen Wir wollen im Folgenden auch geometrische Zusammenhänge mathematisch beschreiben und beginnen deshalb jetzt mit der Einführung hierfür geeigneter Begriffe. Betrachten wir zunächst eine einzelne homogene lineare Gleichung a ik x k = 0 k unter geometrischen Aspekten. Wenn nicht sämtliche Koeffizienten verschwinden, dann hat die (einzeilige) Koeffizientenmatrix den Rang 1, der Lösungsraum des einzeiligen homogenen Systems also die Dimension n 1, solche Unterräume heißen Hyperebenen, in Verallgemeinerung der Definition von Ebene als Raum der Dimension 2 = 3 1, also als Hyperebene im Dreidimensionalen. Ein homogenes lineares Gleichungssystem hat also als Lösungsgesamtheit einen Schnitt von Hyperebenen. Wir werden bald zeigen können, daß auch umgekehrt zu vorgegebenen Hyperebenen leicht ein Gleichungssystem aufgestellt werden kann, das den Schnitt dieser Hyperebenen als Lösungsgesamtheit besitzt. Wir verweisen deshalb zunächst auf die abbildungstheoretische Interpretation einer einzelnen linearen Gleichung: Zu K V ergibt sich auf natürliche Weise der Vektorraum L(V ) := Hom K (V, K) der Linearformen λ auf V. Beispiele von Linearformen sind linke Seiten einzelner homogener linearer Gleichungen: λ: K n K, x k a ik x k. Eine Verallgemeinerung des Begriffs der Linearform ist der der Bilinearform, worunter man Abbildungen β: V V K versteht (für K-Vektorräume V, V ), die in beiden Komponenten linear sind, d.h. für alle v V bzw. v V ist β(v, ): v β(v, v) bzw. β(, v): v β(v, v) Linearform. Die Menge aller solchen Bilinearformen sei mit bezeichnet. BLF (V, V ) Definition (Skalarprodukte) Sei β BLF (V, V ). i) Als Nullräume von β bezeichnet man den Unterraum N V (β) := {v v: β(v, v) = 0} von V und den analog definierten Unterraum N V (β) in V. ii) β heißt nicht ausgeartet, wenn die Nullräume trivial sind: N V (β) = {0 V } und N V (β) = {0 V }. Solche nicht ausgearteten Bilinearformen bezeichnen wir auch oft mit, schreiben also v v statt β(v, v).

2 104 iii) Ist BLF (V, V ) nicht ausgeartet, dann heißen V und V dual bzgl.. Die Bilinearform heißt dann Skalarprodukt und v v das skalare Produkt von v und v Beispiele i) : K n K n K, (v, v) n 1 i=0 v i v i heißt das Standardskalarprodukt auf K n. K n ist also diesbezüglich zu sich selbst dual. ii) : L(V ) V K, (λ, v) λ(v) wird ebenfalls häufig herangezogen. Es zeigt, daß L(V ) dual ist zu V. Der Raum der Linearformen ist geradezu der Prototyp der zu V dualen Vektorräume! iii) Sind B, B Basisfolgen von V, V, m = dim K (V ), n = dim K (V ), und A K m n, dann ist β: V V K, (v, v) (v0,..., vm 1) A. = t v A v v n 1 eine Bilinearform. Für A := E m, die Einheitsmatrix, ergibt sich so das Standardskalarprodukt. Umgekehrt gilt für β BLF (V, V ) mit B := (β(b i, b k)) : β(v, v) = (v0,..., vm 1) B. = t v Bv. v n 1 iv) β BLF (V, V ) ergibt, für U K V, U K V, die Einschränkung v 0 β U U BLF (U, U). Umgekehrt liefert β BLF (U, U), mit f 1 Hom K (V, U ) und f 2 Hom K (V, U) die Bilinearform β: V V K, (v, v) β (f 1 (v ), f 2 (v)). v) Ist β BLF (V, V ), dann ergibt sich durch Ausfaktorisieren der Nullräume wie folgt eine nicht ausgeartete Bilinearform: β: (V /N V (β)) (V/N V (β)) K, (v + N V (β), v + N V (β)) β(v, v). v Definition (orthogonal) Sei : V V K ein Skalarprodukt, v V, v V.

3 3.5. DUALE VEKTORRÄUME UND ABBILDUNGEN 105 i) v, v heißen zueinander orthogonal, kurz: v v, wenn gilt v v = 0. ii) Als orthogonales Komplement von U K V bezeichnet man den Unterraum U := {v V u U : u v = 0} von V. Analog ist das orthogonale Komplement U von U K V definiert Beispiele Sei BLF (V, V ) ein Skalarprodukt. Es gilt: i) V = {0 V }, V = {0 V }, da nicht ausgeartet ist. ii) Offenbar gilt, für U K V, U K U. iii) U i K V (U 1 + U 2 ) = U 1 U Definition (duale Abbildungen) Sind V, V und W, W Paare dualer K Vektorräume, dann heißen f Hom K (V, W ) und f Hom K (W, V ) zueinander dual, wenn gilt: Beispiele f (w ) v = w f(v). i) V := L(V ) ist dual zu V. Ist außerdem W dual zu W bzgl. sowie f Hom K (V, W ), dann ist zu dieser Abbildung dual: f : W L(V ), w w f( ). ii) Sind V, V zueinander dual und ist U K V, dann sind V /U und U zueinander dual bzgl. (vgl v)) Satz : (V /U ) U K, (v + U, u) v u. Dual zur Einbettung ι U : U V, u u ist die Abbildung ν U : V V /U, v v + U. i) Duale Abbildungen sind (gegebenenfalls) eindeutig bestimmt. ii) Sind f, g dual zu f, g Hom K (V, W ), dann gilt (f + g) = f + g, (κ f) = κ f.

4 106 iii) Sind f, g dual zu f Hom K (U, V ), g Hom K (V, W ), dann ist (g f) = f g. iv) Sind f, f zueinander dual, dann gilt Kern(f ) = Bild(f), Kern(f) = Bild(f ). Beweis: i) gilt, da Skalarprodukte nicht ausgeartet sind, ii) und iii) sind leicht nachzurechnen. Zum Beweis von iv) bemerken wir: w Kern(f ) v: 0 = f (w ) v = w f(v) w Bild(f). Die zweite Identität Kern(f) = Bild(f ) ergibt sich ganz analog Folgerungen V, V und W, W seien Paare zueinander dualer K Vektorräume, und zu f Hom K (V, W ) sei f Hom K (W, V ) dual. Dann gilt: i) W /Bild(f) = W /Kern(f ) und Bild(f) sind dual bzgl. w + Bild(f) f(v) := w f(v). ii) Bild(f ) und V/Bild(f ) = V/Kern(f) sind dual bzgl. f (w ) v + Kern(f) := f (w ) v. Beweis: ii). Das Paradebeispiel für ein Paar dualer Vektorräume ist L(V ), V wir fassen zusammen, was wir darüber bereits wissen und zeigen noch einiges darüber hinaus: Satz Zu V ist L(V ) dual bzgl. : L(V ) V K, (λ, v) λ(v). Zu einer linearen Abbildung f Hom K (V, W ) dual ist f : L(W ) L(V ), µ µ f. Für die Kerne und Bilder dieser Abbildungen gilt: und analog Kern(f) = Bild(f ), Kern(f ) = Bild(f), Bild(f ) = Kern(f), Bild(f) = Kern(f ). Schließlich ist noch für orthogonale Komplemente folgendes richtig: U = U.

5 3.5. DUALE VEKTORRÄUME UND ABBILDUNGEN 107 Beweis: Die Aussagen über die Dualität von V und L(V ) wie auch die Aussage über die Form der dualen Abbildung sind bereits bekannt. Wir wissen auch schon, daß Kern(f ) = Bild(f), Kern(f) = Bild(f ). Es bleibt also noch zu zeigen, daß Bild(f ) = Kern(f), Bild(f) = Kern(f ). Zum Beweis der ersten Gleichung bemerken wir, daß λ Kern(f) Kern(f) Kern(λ). Nach dem Abbildungssatz ist dies äquivalent zur Existenz einer kommutativen Ergänzung µ L(W ) des folgenden Diagramms: f V W λ µ K Hierfür gilt also λ = µ f und damit ist λ Kern(f) äquivalent zu λ Bild(f ), was zu zeigen war. Vor dem Beweis von Bild(f) = Kern(f ) beweisen wir U = U, für U K V. Dazu betrachten wir die kanonische Projektion π: V V/U, v v + U. Mit Hilfe des bereits Bewiesenen ergibt sich: U = Kern(π) = Bild(π ) = Kern(π) = U. Hiermit können wir jetzt den Beweis vervollständigen: Kern(f ) = Bild(f) = Bild(f). Wir fragen nun nach Dimension und Basen von zueinander dualen Vektorräumen. Sind B, B, endliche Basisfolgen für V und V, dann gilt offenbar Hom K (V, V ) K K m n = K ,

6 108 denn K m n hat (als K-Vektorraum) diejenigen Matrizen als Basis, die neben Nullen nur eine Eins enthalten. Die von diesen Matrizen dargestellten Abbildungen bilden demnach eine Basis von Hom K (V, V ) : Hom K (V, V ) = K f ik : b j δ jk b i i m, j n. Dabei bezeichnet δ jk das Kroneckersymbol Also folgt insbesondere δ jk := { 1 falls j = k 0 sonst dim K (Hom K (V, V )) = dim K (V ) dim K (V ). Für V := K 1 = K ergibt das die Folgerung i) L(V ) = K λ i : b j δ ij 1 K i m, ii) dim K (L(V )) = dim K (V ). Das legt die Vermutung nahe, daß endlichdimensionale zueinander duale Vektorräume V, V dieselbe Dimension haben und damit V K L(V ) gilt. Das ist tatsächlich richtig, weshalb L(V ) auch als der zu V duale Vektorraum bezeichnet werden kann. Genauer gilt: Satz Sind V, V dual bzgl. und ist dim K (V ) N, dann gilt: i) ϕ: V K L(V ), v v, ii) dim K (V ) = dim K (V ). Beweis: a) Offensichtlich ist ϕ(v ) L(V ), und da nicht ausgeartet ist, ist ϕ zudem injektiv. b) Die Injektivität von ϕ ergibt dim K (V ) dim K (L(V )) = dim K (V ). c) Betrachten von ψ: V L(V ), v v ergibt ganz analog dim K (V ) dim K (L(V )) = dim K (V ). Mit b) folgt also die Behauptung Definition (duale Basen) Sind V, V dual bzgl., ist dim K (V ) N und sind B, B Basisfolgen, dann heißen diese zueinander dual, wenn gilt { b 1K, i=k, i b k = δ ik 1 K = 0 K, sonst.

7 3.5. DUALE VEKTORRÄUME UND ABBILDUNGEN Beispiel Die zur Basisfolge B = (b 0,..., b m 1 ) von V oben bereits angegebene Basisfolge L := (λ 0,..., λ m 1 ) von L(V ) ist die zu B duale Basisfolge Satz Ist V endlichdimensional, B Basisfolge, dann gibt es in jedem zu V dualen Vektorraum V eine zu B duale Basisfolge B. Beweis: Ist L die zu B duale Basisfolge in L(V ), so ergibt die Abbildung ϕ: V K L(V ) vermöge b i ϕ 1 ({λ i }) eine zu B duale Basisfolge B = (b 0,..., b m 1) : b i b k = b i (b k ) = ϕ(b i )(b k ) = λ i (b k ) = δ ik Satz Zueinander duale lineare Abbildungen zwischen endlichdimensionalen K Vektorräumen werden bzgl. dualer Basisfolgen durch zueinander transponierte Matrizen dargestellt. Beweis: V, V und W, W seien Paare endlichdimensionaler dualer K Vektorräume mit zueinander dualen Basisfolgen B, B und C, C. Weiter sei f Hom K (V, W ) mit A = (a ik ) := M(C, f, B), und dazu dual f Hom K (W, V ) mit B = (b ik ) := M(B, f, C ). Dann gilt: f (c k) b j = i b ik b i b j = b jk. Wegen der Dualität ergibt sich andererseits: f (c k) b j = c k f(b j ) = i c k c k a ij = a kj, also folgt insgesamt: b jk = a kj, wie behauptet Satz Ist U V, dim K (V ) N, dann gilt dim K (V ) = dim K (U) + dim K (U ). Beweis: L(V ) und V sind zueinander dual, also auch L(V )/U, U, weshalb gilt dim K (U) = dim K (L(V )) dim K (U ) = dim K (V ) dim K (U ).

8 Satz Sind V, V dual bzgl., und ist β BLF (V, V ) sowie dim K (V ) N, dann gibt es genau ein f β End K (V ) mit Beweis: i) Die Existenz von f β : β(v, v) = v f β (v). Sei ψ: V L(V ), v v. Wegen β(, v) L(V ) gibt es genau ein v V mit ψ(v ) = β(, v), also ist wohldefiniert. ii) f β ist K Endomorphismus: letzteres wegen f β : V V, v v, mit ψ(v ) = β(, v), f β (κ 1 v 1 + κ 2 v 2 ) = (κ 1 v 1 + κ 2 v 2 ) = κ 1 v 1 + κ 2 v 2, (κ 1 v 1 + κ 2 v 2 ) = β(, κ 1 v 1 + κ 2 v 2 ) = κ 1 β(, v 1 ) + κ 2 β(, v 2 ) = κ 1 v 1 + κ 2 v 2 = κ 1 v 1 + κ 2 v 2, woraus sich (κ 1 v 1 +κ 2 v 2 ) = κ 1 v 1+κ 2 v 2 ergibt, da nicht ausgeartet ist. iii) Die Eindeutigkeit: v f β (v) = v f(v) v (f β f)(v) = 0 ergibt f β = f, da nicht ausgeartet ist Folgerung BLF (V, V ) End K (V ) Anwendungen i) Ist f Hom K (V, V ), und sind V, V endlichdimensional, dann heißt der Spaltenrang Sr(A), für irgendeine Matrix A mit M(B, f, B), der Rang von f. Kurz: Rg(f) := Sr(A). Wir wollen (nochmals) zeigen, daß der Spaltenrang dem Zeilenrang gleicht: Rg(f) = dim K (Bild(f)) = dim K (V/Kern(f)) = dim K (V ) dim K (Kern(f)) = dim K (V ) dim K (Bild(f ) ) = dim K (V ) (dim K (V ) dim K (Bild(f )) = dim K (Bild(f )) = Rg(f ).

9 3.5. DUALE VEKTORRÄUME UND ABBILDUNGEN 111 Dies beweist, erneut, daß für Matrizen A gilt Sr(A) = Zr(A), denn wir wissen ja, daß die duale Abbildung bzgl. der dualen Basis durch die Transponierte von A dargestellt wird. ii) Ax = b ist genau dann lösbar, wenn jede Lösung des transponierten homogenen Systems t A y = 0 auf b senkrecht steht: y i b i = 0. Ax = b lösbar b Kern(f ). iii) Ein numerisches Beispiel zu ii): A := R 3 3, b := 3 4 R 3, also Dann ist Wegen R t A = ist das System also nicht lösbar. = L H ( t A). =

4.2 Die adjungierte Abbildung

4.2 Die adjungierte Abbildung 4.2. DIE ADJUNGIERTE ABBILDUNG 177 4.2 Die adjungierte Abbildung Die Vektorräume dieses Paragraphen seien sämtlich euklidisch, die Norm kommt jetzt also vom inneren Produkt her, v = v v. Zu f Hom R (V,

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Der Rangsatz für lineare Abbildungen

Der Rangsatz für lineare Abbildungen Der Rangsatz für lineare Abbildungen Satz Sei f : V W eine lineare Abbildung Dann gilt dim V = dim Kern(f) + dim Bild(f), also gleichbedeutend dim Kern(f) = dim V rg(f) Da uns in der Regel bei gegebenem

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau 312 LinAlg II Version 0 20. Juni 2006 c Rudolf Scharlau 4.3 Bilinearformen Bilinearformen wurden bereits im Abschnitt 2.8 eingeführt; siehe die Definition 2.8.1. Die dort behandelten Skalarprodukte sind

Mehr

LINEARE ALGEBRA II. FÜR PHYSIKER

LINEARE ALGEBRA II. FÜR PHYSIKER LINEARE ALGEBRA II FÜR PHYSIKER BÁLINT FARKAS 4 Rechnen mit Matrizen In diesem Kapitel werden wir zunächst die so genannten elementaren Umformungen studieren, die es ermöglichen eine Matrix auf besonders

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

2.8. ABBILDUNGSMATRIZEN UND BASISWECHSEL 105. gramms kommutativ:

2.8. ABBILDUNGSMATRIZEN UND BASISWECHSEL 105. gramms kommutativ: 2.8. ABBILDUNGSMATRIZEN UND BASISWECHSEL 105 gramms kommutativ: V ϕ W ψ X c B c C c D K n x MC B(ϕ) x K m x MC D (ψ) x K l x M C D (ψ)mb C (ϕ) x Dies bedeutet, dass das gesamte Diagramm kommutativ ist.

Mehr

Kapitel 12. Lineare Abbildungen und Matrizen

Kapitel 12. Lineare Abbildungen und Matrizen Kapitel 12 Lineare Abbildungen und Matrizen Lineare Abbildungen f : R n R m Wir wissen schon: Eine lineare Abbildung f : R n R m ist eindeutig durch ein n-tupel von Vektoren v 1, v 2,, v n des R m bestimmt

Mehr

4.3 Affine Punkträume

4.3 Affine Punkträume 4.3. AFFINE PUNKTRÄUME 185 4.3 Affine Punkträume Es wird jetzt der Übergang von der linearen Algebra zur analytischen Geometrie beschrieben. 4.3.1 Definition (affiner Punktraum) Sei V ein K-Vektorraum,

Mehr

5 Lineare Abbildungen

5 Lineare Abbildungen 5 Lineare Abbildungen Pink: Lineare Algebra HS 2014 Seite 56 5 Lineare Abbildungen 5.1 Definition Gegeben seien Vektorräume U, V, W über einem Körper K. Definition: Eine Abbildung f : V W heisst K-linear,

Mehr

4.4 Symmetrische Bilinearformen

4.4 Symmetrische Bilinearformen 4.4. SYMMETRISCHE BILINEARFORMEN 195 4.4 Symmetrische Bilinearformen Alle betrachteten Vektorräume seien euklidisch. Wir betrachten Bilinearformen Φ: V V R, von denen wir nur voraussetzen, daß sie symmetrisch

Mehr

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2,

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2, Aufgabe I Es sei Q die folgende Teilmenge von C 2 2 : { ( ) a b Q a, b C b a Hier bezeichnet der Querstrich die komplexe Konjugation Zeigen Sie: (a) Mit den üblichen Verknüpfungen + und für Matrizen ist

Mehr

5 Lineare Abbildungen

5 Lineare Abbildungen 5 Lineare Abbildungen Pink: Lineare Algebra 2014/15 Seite 59 5 Lineare Abbildungen 5.1 Definition Gegeben seien Vektorräume U, V, W über einem Körper K. Definition: Eine Abbildung f : V W heisst K-linear,

Mehr

Kapitel 13. Lineare Gleichungssysteme und Basen

Kapitel 13. Lineare Gleichungssysteme und Basen Kapitel 13. Lineare Gleichungssysteme und Basen Matrixform des Rangsatzes Satz. Sei A eine m n-matrix mit den Spalten v 1, v 2,..., v n. A habe den Rang r. Dann ist die Lösungsmenge L := x 1 x 2. x n x

Mehr

1 Lineare Abbildungen

1 Lineare Abbildungen 1 Lineare Abbildungen Definition 1 Sei K ein Körper und V und W K-Vektoräume. Eine Abbildung f : V W heisst linear oder Homomoprhismus, wenn gilt: fv 1 + v 2 = fv 1 + fv 2 v 1, v 2 V fλv = λfv λ K, v V

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

Mathematik I. Vorlesung 16. Eigentheorie

Mathematik I. Vorlesung 16. Eigentheorie Prof Dr H Brenner Osnabrück WS 009/00 Mathematik I Vorlesung 6 Eigentheorie Unter einer Achsenspiegelung in der Ebene verhalten sich gewisse Vektoren besonders einfach Die Vektoren auf der Spiegelungsachse

Mehr

1 Linearkombinationen

1 Linearkombinationen Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 14/15 A 1 Linearkombinationen Unter einer Linearkombination versteht man in der linearen Algebra einen Vektor, der sich durch

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden

Mehr

β 1 x :=., und b :=. K n β m

β 1 x :=., und b :=. K n β m 44 Lineare Gleichungssysteme, Notations Betrachte das lineare Gleichungssystem ( ) Sei A = (α ij ) i=,,m j=,n α x + α x + + α n x n = β α x + α x + + α n x n = β α m x + α m x + + α mn x n = β m die Koeffizientenmatrix

Mehr

3.2 Unabhängigkeitsstrukturen

3.2 Unabhängigkeitsstrukturen 80 3.2 Unabhängigkeitsstrukturen Unser Ziel ist der Nachweis, daß in Vektorräumen, also in Moduln über Körpern, Basen existieren und zwei endliche Basen gegebenenfalls von derselben Ordnung sind. (Basen

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Lösung zu Serie [Aufgabe] Zeige: Das folgende Diagramm kommutiert insgesamt genau dann, wenn alle 6 Teilquadrate kommutieren.

Lösung zu Serie [Aufgabe] Zeige: Das folgende Diagramm kommutiert insgesamt genau dann, wenn alle 6 Teilquadrate kommutieren. Lineare Algebra D-MATH, HS 2014 Prof. Richard Pink Lösung zu Serie 8 1. [Aufgabe] Zeige: Das folgende Diagramm kommutiert insgesamt genau dann, wenn alle 6 Teilquadrate kommutieren. a 1 A 1 a 2 A 2 a 3

Mehr

IV.3. RANG VON MATRIZEN 81

IV.3. RANG VON MATRIZEN 81 IV3 RANG VON MATRIZEN 8 Ist b,,b n eine Basis des reellen Vektorraums V, dann bildet b,,b n auch eine Basis des komplexen Vektorraums V C Mit V ist daher auch V C endlichdimensional und es gilt dim C V

Mehr

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen 1 Zum Aufwärmen 1.1 Notationen In diesem Teil der Vorlesung bezeichnen wir Körper mit K, Matrizen mit Buchstaben A,B,..., Vektoren mit u,v,w,... und Skalare mit λ,µ,... Die Menge der m n Matrizen bezeichnen

Mehr

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009 I. (4 Punkte) Gegeben sei die Menge Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 9 G := { a c b a, b, c R }. (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 15.11.2013 Alexander Lytchak 1 / 12 Erinnerung Eine Abbildung f : V W zwischen reellen Vektorräumen ist linear, wenn

Mehr

Ausgewählte Lösungen zu den Übungsblättern 4-5

Ausgewählte Lösungen zu den Übungsblättern 4-5 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit

Mehr

Mathematik I. Vorlesung 12. Lineare Abbildungen

Mathematik I. Vorlesung 12. Lineare Abbildungen Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 12 Lineare Abbildungen Definition 12.1. Es sei K ein Körper und es seien V und W K-Vektorräume. Eine Abbildung heißt lineare Abbildung,

Mehr

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 23. Mai 2016 Stefan Ruzika 7: Bild, Faser, Kern 23. Mai 2016 1 / 11 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume 4 Basis

Mehr

8 Lineare Abbildungen und Matrizen

8 Lineare Abbildungen und Matrizen 8 Lineare Abbildungen und Matrizen 8.1 Lineare Abbildungen Wir beschäftigen uns nun mit Abbildungen zwischen linearen Räumen. Von besonderem Interesse sind Abbildungen, die die Struktur der linearen Räume

Mehr

Lineare Abbildungen und Matrizen

Lineare Abbildungen und Matrizen Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 31. Mai 2016 Stefan Ruzika 9: Lineare Abbildungen und Matrizen 31. Mai 2016 1 / 16 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume

Mehr

3.3 Skalarprodukte 3.3. SKALARPRODUKTE 153

3.3 Skalarprodukte 3.3. SKALARPRODUKTE 153 3.3. SKALARPRODUKTE 153 Hierzu müssen wir noch die Eindeutigkeit (Unabhängigkeit von der Wahl der Basis bzw. des Koordinatensystems) zeigen. Sei hierzu β eine Bilinearform und q die entsprechende quadratische

Mehr

Lineare Algebra II 11. Übungsblatt

Lineare Algebra II 11. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross 9 / Juni Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Minitest (Bearbeitung innerhalb von Minuten und ohne Benutzung des

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Hinweis:

Mehr

Leitfaden 20. t = dim V dimu.

Leitfaden 20. t = dim V dimu. Leitfaden 2 Einschub (Nachtrag zur LA I): Komplementärbasen Sei V ein Vektorraum, U ein Unterraum Eine Folge (v,, v t ) von Vektoren aus V heißt linear unabhängig modulo U, falls folgendes gilt: sind p

Mehr

Definitionen. b) Was bedeutet V ist die direkte Summe von U und W? V ist direkte Summe aus U und W, falls V = U + W und U W = {0}.

Definitionen. b) Was bedeutet V ist die direkte Summe von U und W? V ist direkte Summe aus U und W, falls V = U + W und U W = {0}. Technische Universität Berlin Wintersemester 7/8 Institut für Mathematik 9. April 8 Prof. Dr. Stefan Felsner Andrea Hoffkamp Lösungsskizzen zur Nachklausur zur Linearen Algebra I Aufgabe ++ Punkte Definieren

Mehr

3 Vektorräume abstrakt

3 Vektorräume abstrakt Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare

Mehr

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt.

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. () In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. a) Es seien A und B beliebige n n-matrizen mit Einträgen in einem Körper K.

Mehr

V. Lineare Algebra. 35 Lineare Abbildungen und Matrizen. 156 V. Lineare Algebra

V. Lineare Algebra. 35 Lineare Abbildungen und Matrizen. 156 V. Lineare Algebra 156 V. Lineare Algebra V. Lineare Algebra 35. Lineare Abbildungen und Matrizen 156 36. Eigenwerte und Eigenvektoren 161 37. Hauptvektoren 165 38. Normen und Neumannsche Reihe 168 39. Numerische Anwendungen

Mehr

Lineare Abbildungen und Gleichungssysteme

Lineare Abbildungen und Gleichungssysteme Lineare Abbildungen und Gleichungssysteme Klaus-R Loeffler Lineare Abbildungen Definition: Lineare Abbildung Es wird vorausgesetzt, dass V und W Vektorräume sind Eine Abbildung f von V in W heißt dann

Mehr

Lösung zu Serie 24. a ij b i b j. v = j=1. v = v j b j.

Lösung zu Serie 24. a ij b i b j. v = j=1. v = v j b j. Lineare Algebra D-MATH, HS 2014 Prof. Richard Pink Lösung zu Serie 24 1. Zeige: Ist 1 n := min{dim K (V 1 ), dim K (V 2 )} < für Vektorräume V 1 und V 2, so ist jeder Tensor in V 1 K V 2 eine Summe von

Mehr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr TUM Ferienkurs Lineare Algebra WiSe 8/9 Dipl.-Math. Konrad Waldherr Musterlösung Relationen Aufgabe Auf R sei die Relation σ gegeben durch (a, b)σ(c, d) : a + b c + d. Ist σ reflexiv, symmetrisch, transitiv,

Mehr

Lineare Abbildungen und Darstellungsmatrizen

Lineare Abbildungen und Darstellungsmatrizen KAPITEL 4 Lineare Abbildungen und Darstellungsmatrizen 1. Lineare Abbildungen Definition 4.1 (Lineare Abbildungen). Seien V und W zwei Vektorräume über den selben Körper K. Eine Abbildung f : V W heißt

Mehr

Kapitel III. Lineare Abbildungen

Kapitel III. Lineare Abbildungen Kapitel III. Lineare Abbildungen Beispiele: 1 Lineare Abbildungen a) Seien c 1,..., c n K vorgegeben. Betrachte die Funktion F (x 1,..., x n ) = c 1 x 1 + c 2 x 2 +... + c n x n in den Variablen x 1,...,

Mehr

r i w i (siehe (3.7)). r i v, w i = 0.

r i w i (siehe (3.7)). r i v, w i = 0. Orthogonales Komplement und Orthogonalprojektion Wir betrachten weiterhin einen euklidischen Vektorraum V,,. (6.13) Def.: Ist M V, so heißt das orthogonale Komplement von M. (6.14) Fakt. (i) M ist Untervektorraum

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 9 Lineare Abbildungen Definition 9.1. Es sei K ein Körper und es seien V und W Vektorräume über K. Eine Abbildung heißt lineare

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 0/06 Lineare Algebra und analytische Geometrie I Vorlesung... und ein guter Lehrer kann auch einem schlechten Schüler was beibringen Beziehung zwischen Eigenräumen Wir

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

3.4 Der Gaußsche Algorithmus

3.4 Der Gaußsche Algorithmus 94 34 Der Gaußsche Algorithmus Wir kommen jetzt zur expliziten numerischen Lösung des eingangs als eine Motivierung für die Lineare Algebra angegebenen linearen Gleichungssystems 341 n 1 a ik x k = b i,

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik

Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik Universität Karlsruhe (TH) Institut für Algebra und Geometrie Dr. Klaus Spitzmüller Dipl.-Inform. Wolfgang Globke Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik Lösungen zum

Mehr

Technische Universität München. Mathematik für Physiker 1

Technische Universität München. Mathematik für Physiker 1 Tutorübung - Lösungen T: Basiswechsel Technische Universität München Zentrum Mathematik Mathematik für Physiker Wintersemester /2 Michael Kaplan Jan Wehrheim Christian Mendl Übungsblatt 9 Wir betrachten

Mehr

Äquivalenz von Matrizen

Äquivalenz von Matrizen Äquivalenz von Matrizen Wir befassen uns jetzt mit der Fragestellung, ob man zu einer gegebenen linearen Abbildung F : V W geeignete Basen für V und W finden kann, sodass die darstellende Matrix von F

Mehr

Bestimmung der Dimension

Bestimmung der Dimension Bestimmung der Dimension Satz. Sei (v 1, v 2,..., v n ) ein minimales Erzeugendensystem von V, d.h. dieses System ist ein Erzeugendensystem von V, aber keines der nach Weglassen eines v i (1 i n) entstehenden

Mehr

Ferienkurs - Lineare Algebra. Hanna Schäfer. Merkinhalte

Ferienkurs - Lineare Algebra. Hanna Schäfer. Merkinhalte Technische Universität München, Fakultät für Physik Ferienkurs - ineare Algebra Hanna Schäfer 03. März 04 0. inearität. f : M N, x : y = f(x) Merkinhalte. f(x + λy) = f(x) + λf(y), x, y V, λ K 3. ineare

Mehr

11.2 Orthogonalität. Wintersemester 2013/2014

11.2 Orthogonalität. Wintersemester 2013/2014 Universität Konstanz Fachbereich Mathematik und Statistik Wintersemester 2013/2014 Markus Scheighofer Lineare Algebra I 11.2 Orthogonalität Definition 11.2.1. Seien V ein K-Vektorraum mit Skalarprodukt

Mehr

Aufgaben zur linearen Algebra und analytischen Geometrie I

Aufgaben zur linearen Algebra und analytischen Geometrie I Aufgaben zur linearen Algebra und analytischen Geometrie I Es werden folgende Themen behandelt:. Formale und logische Grundlagen 2. Algebraische Grundlagen 3. Vektorräume und LGS 4. Homomorphismen und

Mehr

4 Lineare Abbildungen und Matrizen

4 Lineare Abbildungen und Matrizen 4.1 Lineare Abbildungen Definition 4.1. Es seien V, W K-Vektorräume. Eine Abbildung f : V W heißt linear oder Homomorphismus, wenn für alle u, v V und λ K gilt Beispiel 4.2. L1 f(u + v) = f(u) + f(v),

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Definition. Sei K ein Körper, a ij K für 1 i m, 1 j n und b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2......

Mehr

Kapitel 3 Lineare Algebra

Kapitel 3 Lineare Algebra Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 03.12.2013 Alexander Lytchak 1 / 16 Wiederholung und Beispiele Der Spaltenrang einer Matrix ist gleich ihrem Zeilenrang.

Mehr

AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW

AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW Lineare Gleichungssysteme Lösen Sie folgende Gleichungssysteme über R: a) x + x + x = 6x + x + x = 4 x x x = x 7x x = 7 x x = b) x + x 4x + x 4 = 9 x + 9x x x

Mehr

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016,

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016, Klausur zur Vorlesung Lineare Algebra II, SoSe 6, 6.7.6 Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen und Sätze aus der Vorlesung korrekt zu formulieren

Mehr

Lineare Abbildungen. i=0 c ix i n. K n K m

Lineare Abbildungen. i=0 c ix i n. K n K m Kapitel 4 Lineare Abbildungen In diesem Abschnitt lernen Sie erstmals eine Klasse von strukturerhaltenden Abbildungen kennen. Diese Konzept ist von zentraler Bedeutung in der Algebra. Grob gesagt geht

Mehr

4 Lineare Abbildungen und Matrizen

4 Lineare Abbildungen und Matrizen Mathematik I für inf/swt, Wintersemester /, Seite 8 4 Lineare Abbildungen und Matrizen 4 Kern und Injektivität 4 Definition: Sei : V W linear Kern : {v V : v } ist linearer eilraum von V Ü68 und heißt

Mehr

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung Kapitel 3 Lineare Abbildungen Lineare Abbildungen sind eine natürliche Klasse von Abbildungen zwischen zwei Vektorräumen, denn sie vertragen sich per definitionem mit der Struktur linearer Räume Viele

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I UND II 2. Oktober 2008 MUSTERLÖSUNG

KLAUSUR ZUR LINEAREN ALGEBRA I UND II 2. Oktober 2008 MUSTERLÖSUNG KLAUSUR ZUR LINEAREN ALGEBRA I UND II 2. Oktober 2008 MUSTERLÖSUNG Aufgabe 1 Es sei K ein Körper, V ein K-Vektorraum, und seien v 1,..., v n V (n N). (a) Definieren Sie, wann die endliche Familie v 1,...,

Mehr

Lösung 7: Bilinearformen

Lösung 7: Bilinearformen D-MATH Lineare Algebra II FS 207 Dr. Meike Akveld Lösung 7: Bilinearformen. a). Seien u, u 2 V, λ K, dann gelten nach Voraussetzung: L v (u + λu 2 ) =β(v, u + λu 2 ) = β(v, u ) + β(v, λu 2 ) =β(v, u )

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 9 Lineare Abbildungen Definition 9.1. Es sei K ein Körper und es seien V und W Vektorräume über K. Eine Abbildung ϕ : V W

Mehr

Grundlegende Definitionen aus HM I

Grundlegende Definitionen aus HM I Grundlegende Definitionen aus HM I Lucas Kunz. März 206 Inhaltsverzeichnis Vektorraum 2 2 Untervektorraum 2 Lineare Abhängigkeit 2 4 Lineare Hülle und Basis 5 Skalarprodukt 6 Norm 7 Lineare Abbildungen

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

Mathematik I. Vorlesung 18. Vielfachheiten und diagonalisierbare Abbildungen. µ λ = dim(eig λ (ϕ))

Mathematik I. Vorlesung 18. Vielfachheiten und diagonalisierbare Abbildungen. µ λ = dim(eig λ (ϕ)) Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 18 Vielfachheiten und diagonalisierbare Abbildungen Satz 18.1. Es sei K ein Körper und es sei V ein endlichdimensionaler K- Vektorraum.

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

6. Normale Abbildungen

6. Normale Abbildungen SKALARPRODUKE 1 6 Normale Abbildungen 61 Erinnerung Sei V ein n-dimensionaler prä-hilbertraum, also ein n-dimensionaler Vektorraum über K (R oder C) versehen auch mit einer Skalarprodukt, ra K Die euklidische

Mehr

4 Vektorräume. 4.1 Definition. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48. Sei K ein Körper.

4 Vektorräume. 4.1 Definition. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48. Sei K ein Körper. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48 4 Vektorräume 4.1 Definition Sei K ein Körper. Definition: Ein Vektorraum über K, oder kurz ein K-Vektorraum, ist ein Tupel (V,+,, 0 V ) bestehend aus

Mehr

3 Bilinearformen und quadratische Formen

3 Bilinearformen und quadratische Formen 3 Bilinearformen und quadratische Formen Sei V ein R Vektorraum. Definition: Eine Bilinearform auf V ist eine Abbildung s : V V R, welche linear in beiden Variablen ist, d.h.: Für u, v, w V und λ, µ R

Mehr

6 Lineare Gleichungssysteme

6 Lineare Gleichungssysteme 6 LINEARE GLEICHUNGSSYSTEME 3 6 Lineare Gleichungssysteme Unter einem linearen Gleichungssystem verstehen wir ein System von Gleichungen α ξ + + α n ξ n = β α m ξ + + α mn ξ n = β m mit Koeffizienten α

Mehr

Vektorräume und lineare Abbildungen

Vektorräume und lineare Abbildungen Kapitel 11. Vektorräume und lineare Abbildungen 1 11.1 Vektorräume Sei K ein Körper. Definition. Ein Vektorraum über K (K-Vektorraum) ist eine Menge V zusammen mit einer binären Operation + einem ausgezeichneten

Mehr

Mathematik II. Vorlesung 46. Der Gradient

Mathematik II. Vorlesung 46. Der Gradient Prof. Dr. H. Brenner Osnabrück SS 2010 Mathematik II Vorlesung 46 Der Gradient Lemma 46.1. Es sei K ein Körper und V ein K-Vektorraum, der mit einer Bilinearform, versehen sei. Dann gelten folgende Aussagen

Mehr

44 Spektralzerlegung normaler Operatoren im endlichdimensionalen Fall

44 Spektralzerlegung normaler Operatoren im endlichdimensionalen Fall 44 Spektralzerlegung normaler Operatoren im endlichdimensionalen Fall 44 1 Zusammenfassung Dieser Paragraf richtet sich im Aufbau weitgehend nach 42, um den Zerlegungssatz (44.7) analog zum Satz über die

Mehr

5.7 Lineare Abhängigkeit, Basis und Dimension

5.7 Lineare Abhängigkeit, Basis und Dimension 8 Kapitel 5. Lineare Algebra 5.7 Lineare Abhängigkeit, Basis und Dimension Seien v,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von v,...,v n, nämlich { n

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

70 IV. ENDLICH-DIMENSIONALE VEKTORRÄUME

70 IV. ENDLICH-DIMENSIONALE VEKTORRÄUME IV. Endlich-dimensionale Vektorräume Unter einem endlich-dimensionalen Vektorraum verstehen wir einen Vektorraum, der eine endliche Basis besitzt. Die entscheidende Beobachtung ist die Tatsache, dass in

Mehr

9 Vektorräume mit Skalarprodukt

9 Vektorräume mit Skalarprodukt 9 Skalarprodukt Pink: Lineare Algebra 2014/15 Seite 79 9 Vektorräume mit Skalarprodukt 9.1 Normierte Körper Sei K ein Körper. Definition: Eine Norm auf K ist eine Abbildung : K R 0, x x mit den folgenden

Mehr

3 Lineare Algebra Vektorräume

3 Lineare Algebra Vektorräume 3 Lineare Algebra Vektorräume (31) Sei K ein Körper Eine kommutative Gruppe V bzgl der Operation + ist ein Vektorraum über K, wenn eine Operation : K V V (λ, v) λv existiert mit i) v,w V λ,µ K: λ (v +

Mehr

9. Übung zur Linearen Algebra II -

9. Übung zur Linearen Algebra II - 9. Übung zur Linearen Algebra II - en Kommentare an Hannes.Klarner@Fu-Berlin.de FU Berlin. SS 00. Aufgabe 33 (i) Beweise oder widerlege: In einem euklidischen VR gilt x + y = x + y x y (Satz von Pythagoras).

Mehr

1 Eigenschaften von Abbildungen

1 Eigenschaften von Abbildungen Technische Universität München Christian Neumann Ferienkurs Lineare Algebra für Physiker Vorlesung Dienstag WS 2008/09 Thema des heutigen Tages sind zuerst Abbildungen, dann spezielle Eigenschaften linearer

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 12 Wege entstehen dadurch, dass man sie geht Franz Kafka Invertierbare Matrizen Definition 121 Es sei K ein

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Wintersemester 2014/15 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax

Mehr

$Id: vektor.tex,v /01/21 14:35:13 hk Exp $

$Id: vektor.tex,v /01/21 14:35:13 hk Exp $ Mathematik für Physiker I, WS 2/2 Freitag 2 $Id: vektortex,v 5 2//2 4:35:3 hk Exp $ Vektorräume 2 Untervektorräume und Erzeugendensysteme Am Ende der letzten Sitzung hatten wir wieder einmal den Lösungsraum

Mehr

Kapitel 5. Vektorräume mit Skalarprodukt

Kapitel 5. Vektorräume mit Skalarprodukt Kapitel 5 Vektorräume mit Skalarprodukt 119 120 Kapitel V: Vektorräume mit Skalarprodukt 5.1 Elementare Eigenschaften des Skalarprodukts Dienstag, 20. April 04 Wollen wir in einem Vektorraum wie in der

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Matrizen und Vektoren, LGS, Gruppen, Vektorräume 1.1 Multiplikation von Matrizen Gegeben seien die Matrizen A := 1 1 2 0 5 1 8 7 Berechnen Sie alle möglichen

Mehr

Euklidische und unitäre Vektorräume

Euklidische und unitäre Vektorräume Euklidische und unitäre Vektorräume In allgemeinen Vektorräumen gibt es keine Möglichkeit der Längenmessung von Vektoren und der Winkelmessung zwischen zwei Vektoren. Dafür ist eine zusätzliche Struktur

Mehr

2.2 Kern und Bild; Basiswechsel

2.2 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 35 Jede lineare Abbildung definiert charakteristische Unterräume, sowohl im Ausgangsraum als auch im Bildraum 22 Satz Sei L: V W eine lineare

Mehr

a) Ein Gruppenhomomorphismus von G nach H ist eine Abbildung Φ : G H, sodass für alle g 1, g 2 G die Gleichung Φ(g 1 g 2 ) = Φ(g 1 ) Φ(g 2 )

a) Ein Gruppenhomomorphismus von G nach H ist eine Abbildung Φ : G H, sodass für alle g 1, g 2 G die Gleichung Φ(g 1 g 2 ) = Φ(g 1 ) Φ(g 2 ) I. (4 Punkte) Es seien (G, ) eine Gruppe mit neutralem Element e G und (H, ) eine weitere Gruppe. a) Geben Sie die Definition eines Gruppenhomomorphismus Φ : G H an und beweisen Sie, dass für solch einen

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 205/206 Lineare Algebra und analytische Geometrie I Vorlesung 2 Ein guter Schüler lernt auch bei einem schlechten Lehrer Eigentheorie Unter einer Achsenspiegelung in der

Mehr

Lineare Algebra für Physiker 11. Übungsblatt

Lineare Algebra für Physiker 11. Übungsblatt Lineare Algebra für Physiker 11. Übungsblatt Fachbereich Mathematik SS 01 Prof. Dr. Matthias Schneider./. Juli 01 Dr. Silke Horn Dipl.-Math. Dominik Kremer Gruppenübung Aufgabe G1 (Minitest) (a) Welche

Mehr