1 Analytische Geometrie und Grundlagen

Größe: px
Ab Seite anzeigen:

Download "1 Analytische Geometrie und Grundlagen"

Transkript

1 Mathematische Probleme, SS 208 Dienstag 0.4 $Id: vektor.tex,v /07/7 08:09:23 hk Exp hk $ Analytische Geometrie und Grundlagen In dieser Vorlesung wollen wir uns mit Fragen der sogenannten Elementargeometrie in der Ebene und im Raum beschäftigen. Wie der Name der Vorlesung andeutet geht es uns dabei nicht um eine Theorie der Elementargeometrie, wir wollen also nicht mit einem Axiomensystem starten und von diesem ausgehend die geometrischen Grundtatsachen und Sätze herleiten. Wir starten indem wir die Zeichenebene von vornherein als die cartesische Ebene R 2 = R R auffassen und entsprechend den Raum als den R 3 interpretieren. In diesem Rahmen werden dann geometrische Objekte und Fragen über diese untersucht die zwar größtenteils nicht zum Schulstoff gehören sich aber bereits mit in der Schule vermittelten Kenntnissen und Methoden behandeln lassen. Viele der behandelten Probleme sollten auch Schülern und Schülerinnen sinnvoll erscheinen, zumindest sofern überhaupt ein Grundinteresse an geometrischen Fragen besteht. Allerdings wird es in der Vorlesung nicht darum gehen wie man den Stoff in einer Schulstunde vermitteln könnte, dies wird eine ganz normale Mathematikvorlesung mit Definitionen, Sätzen und Beweisen sein und wir werden uns auch nicht auf Schulmethoden beschränken. Weiter wollen wir auch untersuchen wie sich die Schulgeometrie in die Inhalte des Grundstudiums eingliedert. Im Mathematikunterricht der Schule werden begriffliche Fragen nicht ernsthaft behandelt, es werden beispielsweise Winkel, Flächen, Volumina und all diese Dinge berechnet ohne zuvor zu klären was überhaupt ein Winkel oder die Fläche von etwas ist. In der Schule ist es auch durchaus angemessen sich hierfür auf eher vage und intuitive Vorstellungen zu verlassen ohne diese explizit zu thematisieren. Dies geschieht dann in den Grundvorlesungen zur linearen Algebra und zur Analysis, allerdings ist in diesen genug anderes zu tun so, dass der Zusammenhang des dort behandelten Stoffs mit den Begriffen der Schulgeometrie im Hintergrund verbleibt und nicht explizit gemacht wird. Daher wollen wir diese Vorlesung damit beginnen einige geometrische Grundlagenfragen zu klären. Wir beschränken uns dabei auf einige ausgewählte Themen, eine vollständige Behandlung dieser Fragen nimmt andernfalls zu viel Zeit in Anspruch. Wir verwenden einen analytischen Zugang und formulieren alles in Termen der Vektorraumstruktur des R d.. Affine Geometrie im R d In diesem Abschnitt behandeln wir inzidenzgeometrische Aspekte, untersuchen also Begriffe wie Geraden und Ebenen und damit zusammenhängende Fragen. Wie schon -

2 Mathematische Probleme, SS 208 Dienstag 0.4 erwähnt ist unsere Punktmenge der R d wobei d N die betrachtete Dimension ist. Wir werden hauptsächlich an den beiden kleinen Fällen d = 2 für die Ebene und d = 3 für den Raum interessiert sein, in diesem Abschnitt spielt dies aber noch keine Rolle. Die Elemente des R d nennen wir Punkte, insbesondere wollen wir keinen Unterschied zwischen Punkten und Vektoren machen. Geraden, Ebenen und all diese Dinge sind Mengen von Punkten und man kann sie alle gemeinsam behandeln indem der Begriff eines affinen Teilraums des R d verwendet wird. Dieser wurde zwar wahrscheinlich schon in der linearen Algebra eingeführt, wir wollen die Definition hier aber noch einmal wiederholen. Definition. (Affine Teilräume des R d Sei d N. Eine Teilmenge A R d heißt ein affiner Teilraum des R d wenn entweder A = ist oder es einen Punkt a R d und einen Untervektorraum U R d des R d mit gibt. A = a + U = {a + u u U} Da ein Untervektorraum immer den Nullvektor enthält ist dann a = a+0 a+u = A ein Element von A, man nennt a in diesem Zusammenhang auch einen Aufpunkt von A. Während der Aufpunkt ein völlig willkürlicher Punkt des affinen Teilraums ist, ist der zugehörige Untervektorraum eindeutig festgelegt. Lemma. (Richtung und Aufpunkte affiner Teilräume Sei d N. (a Sind U, U R d zwei Untervektorräume und a, a R d so ist genau dann a + U = a + U wenn U = U und a a U gelten. (b Sind U R d ein Untervektorraum, a R d und b A := a + U so ist auch A = b + U. Beweis: (a = Es gilt a + U = a + U = a + a a + U = a + U. = Wegen a = a + 0 a + U = a + U ist a a U und die bereits bewiesene Implikation ergibt a + U = a + U = a + U. Es folgen U = U und a a U = U. (b Wegen b a + U ist b a U und nach (a haben wir auch b + U = a + U = A. Da der zu einem nicht leeren affinen Teilraum gehörende Untervektorraum nach dem Lemma eindeutig festgelegt ist können wir diesem nun auch einen Namen geben. Definition.2 (Richtungen und Dimension affiner Teilräume Sei d N. Ist = A R d ein affiner Teilraum so wählen wir a R d und einen Untervektorraum U R d mit A = a + U und nennen R(A := U die Richtung von A, nach Lemma.(a ist dies wohldefiniert. Für einen affinen Teilraum A R d definieren wir die Dimension von A als { dim R(A, A, dim A :=, A =. -2

3 Mathematische Probleme, SS 208 Dienstag 0.4 Sind also A R d ein affiner Teilraum des R d und a A, so können wir Lemma.(b auch in der Form A = a + R(A aussprechen, und so werden wir dieses Lemma zumeist verwenden. Ist U R d ein Untervektorraum so ist U = 0 + U also ist U ein affiner Teilraum des R d mit R(U = U und somit stimmen die Dimension von U als Untervektorraum und als affiner Teilraum überein. Da ein Untervektorraum U des R d eine Dimension 0 dim U d hat, gilt auch für jeden affinen Teilraum A des R d stets dim A d. Dabei ist genau dann dim A = wenn A = ist und genau dann dim A = d wenn R(A = R d also A = R d ist. Ein nulldimensionaler affiner Teilraum des R d hat die Form a + {0} = {a} für ein a R d, die nulldimensionalen affinen Teilräume des R d entsprechen also den Punkten des R d. Analog zur Dimension von Untervektorräumen erfüllt auch der affine Dimensionsbegriff eine gewisse Monotonieeigenschaft. Lemma.2 (Monotonie der affinen Dimension Sei d N und seien A, B R d zwei affine Teilräume des R d mit A B. Dann gilt dim A dim B und genau dann ist dim A = dim B wenn A = B ist. Beweis: Dies ist klar wenn A = ist, wir können also A annehmen. Wählen wir nun ein a A B so sind nach Lemma.(b auch a + R(A = A B = a + R(B also R(A R(B und somit gilt dim A = dim R(A dim R(B = dim B. Dabei ist genau dann dim A = dim B wenn R(A = R(B beziehungsweise A = a + R(A = a + R(B = B gilt. Einige spezielle Typen affiner Teilräume erhalten eigene Namen. Definition.3 (Geraden, Ebenen und Hyperebenen Seien d N und A R d ein affiner Teilraum des R d. (a Der Teilraum A heißt eine Gerade wenn dim A = ist. (b Der Teilraum A heißt eine Ebene wenn dim A = 2 ist. (c Der Teilraum A heißt eine Hyperebene wenn dim A = d ist. Ist d = 2 so sind die Hyperebenen die Geraden und ist d = 3 so sind die Hyperebenen die Ebenen. Ist g R d eine Gerade so hat g die Form g = p + U wobei die Richtung U von g ein eindimensionaler Untervektorraum des R d ist und p g ein Punkt von g ist. Weiter können wir U = u = Ru für ein beliebiges u U\{0} schreiben und erhalten g = p + Ru. Diese Darstellung von g nennt man gelegentlich die Aufpunkt Richtung Form von g, der Punkt p heißt weiterhin ein Aufpunkt und u R d \{0} nennt man einen Richtungsvektor, die Richtung von g ist dann R(g = Ru. Weder Aufpunkt noch Richtungsvektor -3

4 Mathematische Probleme, SS 208 Dienstag 0.4 sind dabei durch g bestimmt, nach Lemma.(a gilt für alle p, p R d, u, u R d \{0} p + Ru = p + Ru (λ, µ R : u = λu p p = µu. Bei Ebenen ist die Situation etwas komplizierter, eine Ebene e R d hat die Form e = p + U wobei U ein zweidimensionaler Untervektorraum des R d ist. Dieser hat eine Basis u, u und wir können e = p + Ru + Ru schreiben, der Punkt p ist der Aufpunkt und u, u nennt man Richtungsvektoren von e, die Richtung von e ist dann R(e = u, u = Ru + Ru. Es gibt eine zweite Beschreibung affiner Teilräume als die Lösungsmengen linearer Gleichungssysteme. Ist Ax = b ein linearer Gleichungssystem mit Koeffizientenmatrix A R n d und rechter Seite b R n, wobei n, d N sind, und hat A den Rang r, so ist L := {x R d Ax = b} entweder leer oder ein (d r-dimensionaler affiner Teilraum des R d, die Richtung von L ist die Lösungsmenge R(L = {x R d Ax = 0} des zugehörigen homogenen linearen Gleichungssystems. Ist umgekehrt A ein n-dimensionaler affiner Teilraum des R d so gibt es ein lineares Gleichungssystem aus d n Gleichungen in d Unbekannten von vollen Rang n dessen Lösungsmenge genau A ist. Schreibe hierzu A = p + U mit p R d und einem n-dimensionalen Untervektorraum U des R d. Weiter wähle eine Basis v,..., v n von U. Dann berechnen wir eine (d n d Matrix A über R mit U = {x R d Ax = 0}, hierzu startet man mit der Matrix (v... v n mit Spalten v,..., v n und wendet auf diese das Gaußsche Eliminationsverfahren mit unbestimmter rechter Seite an. Die unteren d n Zeilen der rechten Seite des entstehenden Systems in Stufenform geben uns die gesuchte Matrix A. Setzen wir dann schließlich b := Ap so ist A = p + U = {x R d Ax = b} wie gewünscht. Als ein Beispiel behandeln wir einmal die Ebene 2 e := 3 + R 2 + R 3 4 im R 4. Es sind d = 4, n = 2, also läßt sich e durch d n = 2 Gleichungen in vier Unbekannten beschreiben. Wir führen das beschriebene Verfahren durch und erhalten A = 2 x 2 3 y u 4 v ( x 0 7 y 2x 0 u + x 0 6 v x sowie b = ( x 0 u + x 0 0 7u + y + 5x 0 0 v + 6u + 5x 3 = (

5 Mathematische Probleme, SS 208 Dienstag 0.4 Damit ist e die Lösungsmenge des linearen Gleichungssystems 5x + y + 7u = 25 5x + 6u + v = 24 Analog zur Situation bei Untervektorräumen können wir aus jeder gegebenen Teilmenge des R d einen erzeugten affinen Teilraum bilden. Lemma.3 (Durchschnitte und Erzeugnisse affiner Teilräume Sei d N. (a Ist (A i i I eine Familie affiner Teilräume des R d so ist auch der Durchschnitt i I A i ein affiner Teilraum des R d. Ist dabei i I A i so haben wir auch ( R A i = R(A i. i I (b Ist M R d eine Teilmenge, so ist i I M := {A R d A ist ein affiner Teilraum des R d mit M A} der kleinste M umfassende affine Teilraum des R d, genannt das affine Erzeugnis oder der affine Aufspann von M. (c Sind A, B R d zwei affine Teilräume des R d so ist AB := A B der kleinste A und B umfassende affine Teilraum des R d. Sind A, B und a A, b B so haben wir R(AB = R(A + R(B + R (b a und genau dann ist b a R(A + R(B wenn A B gilt. Zum Beweis dieses Lemmas kommen wir in der nächsten Sitzung. -5

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.4 2017/04/13 14:48:29 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.1 Affine Geometrie im R d Wir hatten einen affinen Teilraum A des R d als eine Teilmenge der Form A = a + U definiert,

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.31 2018/04/10 15:11:07 hk Exp hk $ 1 Analytische Geometrie und Grundlagen 1.1 Affine Geometrie im R d Wir beschäftigen uns gerade mit den affinen Teilräumen des R d, diese erlauben

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Lineare Algebra und analytische Geometrie. (Herbst 2005, Thema, Aufgabe ) Bestimmen Sie alle reellen Lösungen des folgenden linearen Gleichungssystems:.2

Mehr

Mathematische Probleme, SS 2019 Donnerstag $Id: dreieck.tex,v /04/12 17:03:16 hk Exp $

Mathematische Probleme, SS 2019 Donnerstag $Id: dreieck.tex,v /04/12 17:03:16 hk Exp $ $Id: dreieck.tex,v 1.53 2019/04/12 17:03:16 hk Exp $ 1 Dreiecke 1.1 Rechtwinklige Dreiecke Wir beschäftigen uns gerade mit den primitiven pythagoräischen Tripeln. Haben wir ein solches Tripel, also teilerfremde

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.39 2018/05/03 14:55:15 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel Nachdem wir uns am Ende der letzten Sitzung an den Orthogonalitätsbegriff der linearen

Mehr

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 1 1.1 (Herbst 2005, Thema 1, Aufgabe 1) Bestimmen Sie alle reellen Lösungen des folgenden linearen

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (WS 2014/15): Lineare Algebra und analytische Geometrie 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Lineare Algebra und analytische Geometrie. (Herbst 2005, Thema, Aufgabe ) Bestimmen Sie alle reellen Lösungen des folgenden linearen Gleichungssystems:.2

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.8 017/04/4 15:51:58 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.3 Sätze über Geraden in der Ebene In der letzten Sitzung hatten wir die Sätze von Ceva und Menelaos bewiesen. Wir

Mehr

4 Funktionenfolgen und normierte Räume

4 Funktionenfolgen und normierte Räume $Id: norm.tex,v 1.57 2018/06/08 16:27:08 hk Exp $ $Id: jordan.tex,v 1.34 2018/07/12 20:08:29 hk Exp $ 4 Funktionenfolgen und normierte Räume 4.7 Kompakte Mengen Am Ende der letzten Sitzung hatten wir zwei

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.44 2018/05/17 14:11:13 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.6 Bewegungen und Kongruenzbegriffe Wir untersuchen gerade die Spiegelung an einer Hyperebene h R d. Ist ein

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 03.12.2013 Alexander Lytchak 1 / 16 Wiederholung und Beispiele Der Spaltenrang einer Matrix ist gleich ihrem Zeilenrang.

Mehr

$Id: vektor.tex,v /01/23 11:03:09 hk Exp $ $Id: cartesisch.tex,v /01/23 11:08:08 hk Exp $

$Id: vektor.tex,v /01/23 11:03:09 hk Exp $ $Id: cartesisch.tex,v /01/23 11:08:08 hk Exp $ $Id: vektor.tex,v 1.32 2017/01/23 11:03:09 hk Exp $ $Id: cartesisch.tex,v 1.20 2017/01/23 11:08:08 hk Exp $ 9 Vektorräume 9.5 Lineare Abbildungen In der letzten Sitzung haben wir den Begriff einer linearen

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

9 Lineare Gleichungssysteme

9 Lineare Gleichungssysteme 9 Lineare Gleichungssysteme Eine der häufigsten mathematischen Aufgaben ist die Lösung linearer Gleichungssysteme In diesem Abschnitt beschäftigen wir uns zunächst mit Lösbarkeitsbedingungen und mit der

Mehr

Kapitel V. Affine Geometrie

Kapitel V. Affine Geometrie Kapitel V Affine Geometrie 1 Affine Räume Betrachte ein lineares Gleichungssystem Γ : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 + + a mn x n = b

Mehr

Die lineare Hülle. heißt der Vektor. Linearkombination der Vektoren v i mit Koeffizienten α i. Direkt aus (12.6) folgt

Die lineare Hülle. heißt der Vektor. Linearkombination der Vektoren v i mit Koeffizienten α i. Direkt aus (12.6) folgt Eine Menge v +U mit einem Untervektorraum U nennt man auch eine Nebenklasse des Untervektorraumes U. Sie entsteht, wenn man die Translation τ v auf die Menge U anwendet. Ausdrücke der Form αu + βv, auch

Mehr

Proseminar Einführung in die Mathematik 1 WS 2010/11 2. Dezember 2010 Lösungen

Proseminar Einführung in die Mathematik 1 WS 2010/11 2. Dezember 2010 Lösungen Proseminar Einführung in die Mathematik 1 WS 1/11. Deember 1 Lösungen 46) Wie kann man nach Wahl eines Nullpunktes die Zeichenebene in natürlicher Weise als Vektorraum betrachten? Skriptum Kapitel 4, Par.

Mehr

:= 1. Der affine Unterraum Γ heißt Punkt, Gerade, Ebene oder Hyperebene, wenn dim K dim K

:= 1. Der affine Unterraum Γ heißt Punkt, Gerade, Ebene oder Hyperebene, wenn dim K dim K apitel II Lineare Algebra und analytische Geometrie 4 Punkte, Geraden, Ebenen, affine Unterräume in einem Vektorraum. Wie bisher ist V ein endlichdimensionaler Vektorraum über dem örper, oft ist V = n

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 18.10.2012 Alexander Lytchak 1 / 12 Lineare Gleichungssysteme Wir untersuchen nun allgemeiner Gleichungssysteme der

Mehr

$Id: vektor.tex,v /01/15 13:36:04 hk Exp $

$Id: vektor.tex,v /01/15 13:36:04 hk Exp $ $Id: vektortex,v 35 28//5 3:36:4 hk Exp $ 9 Vektorräume Wir kommen jetzt zum wohl abstraktesten Kapitel dieses ganzen Semesters, der Theorie der sogenannten Vektorräume Normalerweise ist ein Vektor etwas

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.36 2018/04/24 14:50:37 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.3 Sätze über Geraden in der Ebene Wir beschäftigen uns gerade mit dem Schwerpunkt eines Dreiecks, gegeben sind

Mehr

Das inhomogene System. A x = b

Das inhomogene System. A x = b Ein homogenes lineares Gleichungssystem A x = 0 mit m Gleichungen und n Unbestimmten hat immer mindestens die Lösung 0. Ist r der Rang von A, so hat das System n r Freiheitsgrade. Insbesondere gilt: Ist

Mehr

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw. Kapitel 5 Lineare Algebra 51 Lineare Gleichungssysteme und Matrizen Man begegnet Systemen von linearen Gleichungen in sehr vielen verschiedenen Zusammenhängen, etwa bei Mischungsverhältnissen von Substanzen

Mehr

Lineare Algebra und analytische Geometrie I Lösungsvorschlag zum 8. Tutoriumsblatt

Lineare Algebra und analytische Geometrie I Lösungsvorschlag zum 8. Tutoriumsblatt Mathematisches Institut der Universität München Wintersemester 24/5 Daniel Rost Lukas-Fabian Moser Lineare Algebra und analytische Geometrie I Lösungsvorschlag zum 8. Tutoriumsblatt Aufgabe T-. a) Die

Mehr

Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Affine Geometrie. Sommersemester Franz Pauer

Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Affine Geometrie. Sommersemester Franz Pauer Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Affine Geometrie Sommersemester 2009 Franz Pauer INSTITUT FÜR MATHEMATIK, UNIVERSITÄT INNSBRUCK, TECHNIKERSTRASSE 13, 6020

Mehr

$Id: vektor.tex,v /01/24 14:10:45 hk Exp $ $Id: cartesisch.tex,v /01/24 14:28:24 hk Exp $

$Id: vektor.tex,v /01/24 14:10:45 hk Exp $ $Id: cartesisch.tex,v /01/24 14:28:24 hk Exp $ $Id: vektor.tex,v.7 20/0/24 4:0:45 hk Exp $ $Id: cartesisch.tex,v.3 20/0/24 4:28:24 hk Exp $ Vektorräume.5 Lineare Abbildungen Am Ende der letzten Sitzung hatten wir die sogenannten linearen Abbildungen

Mehr

Der Kern einer Matrix

Der Kern einer Matrix Die elementaren Zeilenoperationen p. 1 Der Kern einer Matrix Multipliziert man eine Matrix mit den Spaltenvektoren s 1,..., s m von rechts mit einem Spaltenvektor v := (λ 1,..., λ m ) T, dann ist das Ergebnis

Mehr

Projektive Räume und Unterräume

Projektive Räume und Unterräume Projektive Räume und Unterräume Erik Slawski Proseminar Analytische Geometrie bei Prof. Dr. Werner Seiler und Marcus Hausdorf Wintersemester 2007/2008 Fachbereich 17 Mathematik Universität Kassel Inhaltsverzeichnis

Mehr

$Id: det.tex,v /01/13 14:27:14 hk Exp $ $Id: vektor.tex,v /01/16 12:23:17 hk Exp $

$Id: det.tex,v /01/13 14:27:14 hk Exp $ $Id: vektor.tex,v /01/16 12:23:17 hk Exp $ Mathematik für Physiker I, WS 26/27 Montag 6 $Id: dettex,v 26 27//3 4:27:4 hk Exp $ $Id: vektortex,v 3 27//6 2:23:7 hk Exp $ 8 Determinanten 83 Laplace Entwicklung In der letzten Sitzung haben wir die

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

$Id: matrix.tex,v /12/02 21:08:55 hk Exp $ $Id: vektor.tex,v /12/05 11:27:45 hk Exp hk $

$Id: matrix.tex,v /12/02 21:08:55 hk Exp $ $Id: vektor.tex,v /12/05 11:27:45 hk Exp hk $ $Id: matrixtex,v 14 2008/12/02 21:08:55 hk Exp $ $Id: vektortex,v 12 2008/12/05 11:27:45 hk Exp hk $ II Lineare Algebra 6 Die Matrixmultiplikation 63 Inverse Matrizen und reguläre lineare Gleichungssysteme

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.37 2018/04/26 14:09:00 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.4 Anordnungseigenschaften Am Ende der letzten Sitzung hatten wir begonnen uns mit den konvexen Teilmengen des

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Ingenieure II, SS 9 Freitag 6 $Id: jordantex,v 7 9/6/ :8:5 hk Exp $ 5 Eigenwerte und die Jordansche Normalform 5 Die Jordansche Normalform Nachdem wir bisher das Vorgehen zur Berechnung

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Bernhard Hanke Universität Augsburg 17.10.2012 Bernhard Hanke 1 / 9 Wir beschreiben den folgenden Algorithmus zur Lösung linearer Gleichungssysteme, das sogenannte Gaußsche

Mehr

Definition Sei V ein Vektorraum, und seien v 1,..., v n V. Dann heißt eine Linearkombination. n λ i = 1. mit. v = v i λ i.

Definition Sei V ein Vektorraum, und seien v 1,..., v n V. Dann heißt eine Linearkombination. n λ i = 1. mit. v = v i λ i. Kapitel Geometrie Sei V ein Vektorraum, z.b. V = R 3. Wenn wir uns für geometrische Eigenschaften von R 3 interessieren, so stört manchmal die Ausnahmerolle des Nullvektors, die es ja in V gibt. Beispielsweise

Mehr

Demo für LINEARE ALGEBRA. Vektoren und Vektorraum. Teil 3. Untervektorräume INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Datei Nr.

Demo für   LINEARE ALGEBRA. Vektoren und Vektorraum. Teil 3. Untervektorräume INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Datei Nr. Teil 3 Untervektorräume Stand 1. Juli 011 Datei Nr. 61110 LINEARE ALGEBRA Vektoren und Vektorraum INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Demo für 61110 Vektorrechnung Teil 3 Untervektorräume 51 Inhalt

Mehr

5.7 Lineare Abhängigkeit, Basis und Dimension

5.7 Lineare Abhängigkeit, Basis und Dimension 8 Kapitel 5. Lineare Algebra 5.7 Lineare Abhängigkeit, Basis und Dimension Seien v,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von v,...,v n, nämlich { n

Mehr

$Id: linabb.tex,v /01/13 19:38:02 hk Exp $ $Id: anageo.tex,v /01/13 21:11:17 hk Exp hk $ x y z. t + s t s. t, s R. = w 2, = 2w 1 w 2,

$Id: linabb.tex,v /01/13 19:38:02 hk Exp $ $Id: anageo.tex,v /01/13 21:11:17 hk Exp hk $ x y z. t + s t s. t, s R. = w 2, = 2w 1 w 2, Mathematik für Ingenieure I, WS 8/9 Dienstag 3. $Id: linabb.tex,v.4 9//3 9:38: hk Exp $ $Id: anageo.tex,v. 9//3 ::7 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Matrixdarstellung linearer Abbildungen

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Heimarbeitsblatt 14

Mathematik für Informatiker 1 Wintersemester 2013/14 Heimarbeitsblatt 14 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker Wintersemester 3/4 Heimarbeitsblatt 4 Die Lösungshinweise dienen

Mehr

Anhang A. Etwas affine Geometrie. A.1 Die affine Hülle

Anhang A. Etwas affine Geometrie. A.1 Die affine Hülle Anhang A Etwas affine Geometrie In diesem Anhang stellen wir die wichtigsten Grundbegriffe aus der affinen Geometrie zusammen, soweit sie eben für uns von Nutzen sind. Für weiterführende Ergebnisse sei

Mehr

3 Systeme linearer Gleichungen

3 Systeme linearer Gleichungen 3 Systeme linearer Gleichungen Wir wenden uns nun dem Problem der Lösung linearer Gleichungssysteme zu. Beispiel 3.1: Wir betrachten etwa das folgende System linearer Gleichungen: y + 2z = 1 (1) x 2y +

Mehr

5 Vektorräume. (V1) für alle x, y V : x + y = y + x; (V2) für alle x, y, z V : (x + y) + z = x + (y + z);

5 Vektorräume. (V1) für alle x, y V : x + y = y + x; (V2) für alle x, y, z V : (x + y) + z = x + (y + z); 5 Vektorräume Was wir in den vorangegangenen Kapiteln an Matrizen und Vektoren gesehen haben, wollen wir nun mathematisch abstrahieren. Das führt auf den Begriff des Vektorraumes, den zentralen Begriff

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 15. April 2018 1/46 Die Dimension eines Vektorraums Satz 2.27 (Basisergänzungssatz) Sei V ein Vektorraum über einem Körper K. Weiter seien v 1,...,

Mehr

$Id: anageo.tex,v /01/18 21:24:38 hk Exp hk $

$Id: anageo.tex,v /01/18 21:24:38 hk Exp hk $ $Id: anageo.tex,v 1.3 9/1/18 1:4:38 hk Exp hk $ II. Lineare Algebra 1 Analytische Geometrie 1.1 Das Skalarprodukt v w u p Wir wollen noch eine weiteres Ergebnis der eben durchgeführten Überlegung festhalten.

Mehr

6 Lineare Gleichungssysteme

6 Lineare Gleichungssysteme 6 LINEARE GLEICHUNGSSYSTEME 3 6 Lineare Gleichungssysteme Unter einem linearen Gleichungssystem verstehen wir ein System von Gleichungen α ξ + + α n ξ n = β α m ξ + + α mn ξ n = β m mit Koeffizienten α

Mehr

$Id: vektor.tex,v /01/21 14:35:13 hk Exp $

$Id: vektor.tex,v /01/21 14:35:13 hk Exp $ Mathematik für Physiker I, WS 2/2 Freitag 2 $Id: vektortex,v 5 2//2 4:35:3 hk Exp $ Vektorräume 2 Untervektorräume und Erzeugendensysteme Am Ende der letzten Sitzung hatten wir wieder einmal den Lösungsraum

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen Mathematische Probleme, SS 28 Dienstag 29.5 $Id: vektor.tex,v.46 28/5/29 6:4: hk Exp $ Analytische Geometrie und Grundlagen.6 Bewegungen und Kongruenzbegriffe Am Ende der letzten Sitzung hatten wir bereits

Mehr

7 Matrizen über R und C

7 Matrizen über R und C Mathematik für Physiker I, WS 06/07 Montag 9 $Id: matrixtex,v 7 06//9 :58: hk Exp $ 7 Matrizen über R und C 7 Addition und Multiplikation von Matrizen In der letzten Sitzung haben wir begonnen uns mit

Mehr

7 Vektorräume und Körperweiterungen

7 Vektorräume und Körperweiterungen $Id: vektor.tex,v 1.4 2009/05/28 16:37:16 hk Exp $ 7 Vektorräume und Körperweiterungen Bisher haben wir zwar die Existenz und Eindeutigkeit von Tensorprodukten bewiesen, und auch einige ihrer Eigenschaften

Mehr

Kapitel II. Vektoren und Matrizen

Kapitel II. Vektoren und Matrizen Kapitel II. Vektoren und Matrizen Vektorräume A Körper Auf der Menge R der reellen Zahlen hat man zwei Verknüpfungen: Addition: R R R(a, b) a + b Multiplikation: R R R(a, b) a b (Der Malpunkt wird oft

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

9 Matrizen über R und C

9 Matrizen über R und C Mathematik für Physiker I, WS 00/0 Montag 0 $Id: matrixtex,v 6 0/0/0 :6:7 hk Exp $ $Id: dettex,v 0/0/0 ::59 hk Exp hk $ 9 Matrizen über R und C 9 Transposition von Matrizen Im letzten Abschnitt hatten

Mehr

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 23. Mai 2016 Stefan Ruzika 7: Bild, Faser, Kern 23. Mai 2016 1 / 11 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume 4 Basis

Mehr

$Id: vektor.tex,v /02/04 13:59:04 hk Exp $

$Id: vektor.tex,v /02/04 13:59:04 hk Exp $ $Id: vektortex,v 42 29/2/4 3:59:4 hk Exp $ Vektorräume Wir kommen jetzt zum wohl abstraktesten Kapitel dieses ganzen Semesters, der Theorie der sogenannten Vektorräume Normalerweise ist ein Vektor etwas

Mehr

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }.

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }. 154 e Gegeben sind die Vektoren v 1 = ( 10 1, v = ( 10 1. Sei V 1 = v 1 der von v 1 aufgespannte Vektorraum in R 3. 1 Dann besteht V 1 aus allen Vielfachen von v 1, V 1 = { c v 1 c R }. ( 0 ( 01, v 3 =

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

Nachklausur (Modulprüfung) zum Lehrerweiterbildungskurs 6 Lineare Algebra/Analytische Geometrie I WiSe 2016/17

Nachklausur (Modulprüfung) zum Lehrerweiterbildungskurs 6 Lineare Algebra/Analytische Geometrie I WiSe 2016/17 Name, Vorname Matrikel-Nr. Aufg.1 Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Nachklausur (Modulprüfung) zum Lehrerweiterbildungskurs 6 Lineare Algebra/Analytische Geometrie I WiSe 2016/17 Bearbeiten

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine Vektorräume (Teschl/Teschl 9 Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen: Eine

Mehr

Affine Geometrie (Einfachere, konstruktive Version)

Affine Geometrie (Einfachere, konstruktive Version) Affine Geometrie (Einfachere, konstruktive Version) Def. Affiner Raum der Dimension n über Körper K ist nach Definition K n. Bemerkung. Man könnte Theorie von affinen Raumen auch axiomatisch aufbauen mit

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.24 2017/05/18 11:18:04 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.6 Bewegungen und Kongruenzbegriffe In diesem Abschnitt wollen wir die Automorphismengruppe der euklidischen

Mehr

$Id: vektor.tex,v /01/16 15:50:24 hk Exp $ $Id: cartesisch.tex,v /01/19 11:05:27 hk Exp $

$Id: vektor.tex,v /01/16 15:50:24 hk Exp $ $Id: cartesisch.tex,v /01/19 11:05:27 hk Exp $ $Id: vektortex,v 125 2015/01/16 15:50:24 hk Exp $ $Id: cartesischtex,v 116 2015/01/19 11:05:27 hk Exp $ 9 Vektorräume 94 Koordinatentransformationen Am Ende der letzten Sitzung hatten wir die sogenannten

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme 2 Lineare Gleichungssysteme Betrachte ein beliebiges System von m linearen Gleichungen in den n Unbekannten x,,x n : a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n = b 2 () a m x + a m2 x

Mehr

6.5 Lineare Abhängigkeit, Basis und Dimension

6.5 Lineare Abhängigkeit, Basis und Dimension 6.5. Lineare Abhängigkeit, Basis und Dimension 123 6.5 Lineare Abhängigkeit, Basis und Dimension Seien v 1,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Ingenieure II, SS 9 Dienstag $Id: jordantex,v 8 9// 4:48:9 hk Exp $ $Id: quadrattex,v 9// 4:49: hk Exp $ Eigenwerte und die Jordansche Normalform Matrixgleichungen und Matrixfunktionen Eine

Mehr

Zeigen Sie, dass der einzige Gruppenhomomorphismus von (G, ) nach (Z 5, +) die Abbildung Φ : G Z 5

Zeigen Sie, dass der einzige Gruppenhomomorphismus von (G, ) nach (Z 5, +) die Abbildung Φ : G Z 5 Aufgabe I (4 Punkte) Es sei G : {e, g, g, g } eine 4-elementige Gruppe mit neutralem Element e Die Verknüpfung auf G werde mit bezeichnet Außerdem seien in G folgende Gleichungen erfüllt: g g g und g g

Mehr

2 Extrema unter Nebenbedingungen

2 Extrema unter Nebenbedingungen $Id: lagrangetex,v 18 01/11/09 14:07:08 hk Exp $ $Id: untermfgtex,v 14 01/11/1 10:00:34 hk Exp hk $ Extrema unter Nebenbedingungen Lagrange-Multiplikatoren In der letzten Sitzung hatten wir begonnen die

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 22.10.2013 Alexander Lytchak 1 / 16 Wiederholung des Beispiels 3x 6 + x 7 = 2 2x 2 + 4x 4 + 6x 5 + 5x 7 = 3 2x 2 + x

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Mathematik I für Biologen, Geowissenschaftler und Geoökologen 5. Dezember 2007 Definition : Tomographie (Fortsetzung) : Tomographie Definition: Ein lineares Gleichungssystem (LGS) ist ein System von n

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 06 Lineare Algebra analytische Geometrie II Vorlesung 35 Winkeltreue Abbildungen Definition 35.. Eine lineare Abbildung ϕ: V W zwischen euklidischen Vektorräumen V W heißt

Mehr

5.1 Affine Räume und affine Abbildungen

5.1 Affine Räume und affine Abbildungen 402 LinAlg II Version 1.2 21. Juli 2006 c Rudolf Scharlau 5.1 Affine Räume und affine Abbildungen Ein affiner Raum besteht aus zwei Mengen P und G zusammen mit einer Relation der Inzidenz zwischen ihnen.

Mehr

Lineare Gleichungssysteme - Grundlagen

Lineare Gleichungssysteme - Grundlagen Lineare Gleichungssysteme - Grundlagen Betrachtet wird ein System linearer Gleichungen (im deutschen Sprachraum: lineares Gleichungssystem mit m Gleichungen für n Unbekannte, m, n N. Gegeben sind m n Elemente

Mehr

4. Vektorräume und Gleichungssysteme

4. Vektorräume und Gleichungssysteme technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof Dr H M Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 41 und 42 4 Vektorräume

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Wintersemester 2014/15 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Kapitel 6 Lineare Gleichungssysteme 6. Gaußalgorithmus Aufgabe 6. : Untersuchen Sie die folgenden linearen Gleichungssysteme mit dem Gaußalgorithmus auf Lösbarkeit und bestimmen Sie jeweils die Lösungsmenge.

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

$Id: lgs.tex,v /11/26 08:24:56 hk Exp hk $ Definition 5.1: Ein lineares Gleichungssystem besteht aus m linearen Gleichungen

$Id: lgs.tex,v /11/26 08:24:56 hk Exp hk $ Definition 5.1: Ein lineares Gleichungssystem besteht aus m linearen Gleichungen $Id: lgs.tex,v 1.2 2008/11/26 08:24:56 hk Exp hk $ II. Lineare Algebra 5 Lineare Gleichungssysteme Definition 5.1: Ein lineares Gleichungssystem besteht aus m linearen Gleichungen a 11 x 1 + a 12 x 2 +

Mehr

Homogene und inhomogene Koordinaten und das Hyperboloid

Homogene und inhomogene Koordinaten und das Hyperboloid Seminararbeit zum Seminar aus Reiner Mathematik Homogene und inhomogene Koordinaten und das Hyperboloid Gernot Holler 1010674 WS 2012/13 28.November 2012 1 Inhaltsverzeichnis 1 Einleitung 3 2 Homogene

Mehr

2.2 Lineare Gleichungssysteme

2.2 Lineare Gleichungssysteme Lineare Algebra I WS 2015/16 c Rudolf Scharlau 55 22 Lineare Gleichungssysteme Das Lösen von Gleichungen (ganz unterschiedlichen Typs und unterschiedlichen Schwierigkeitsgrades) gehört zu den Grundproblemen

Mehr

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html karin.halupczok@math.uni-freiburg.de

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 5. April 2018 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

7 Vektorräume und Körperweiterungen

7 Vektorräume und Körperweiterungen $Id: vektor.tex,v 1.3 2009/05/25 15:03:47 hk Exp $ 7 Vektorräume und Körperweiterungen Wir sind gerade bei der Besprechung derjenigen Grundeigenschaften des Tensorprodukts, die mit vergleichsweise wenig

Mehr

2 Affine und projektive Ebenen

2 Affine und projektive Ebenen $Id: ebenen.tex,v 1.3 2018/11/06 12:51:04 hk Exp $ 2 Affine und projektive Ebenen Nachdem wir in der letzten Sitzung affine Ebenen definiert und ein wenig untersucht haben kommen wir nun zu den sogenannten

Mehr

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw. Kapitel 5 Lineare Algebra 5 Lineare Gleichungssysteme und Matrizen Man begegnet Systemen von linearen Gleichungen in sehr vielen verschiedenen Zusammenhängen, etwa bei Mischungsverhältnissen von Substanzen

Mehr

4 Affine Koordinatensysteme

4 Affine Koordinatensysteme 4 Affine Koordinatensysteme Sei X φ ein affiner Raum und seien p,, p r X Definition: Nach ( c ist der Durchschnitt aller affinen Unterräume Z X, welche die Menge {p,,p r } umfassen, selbst ein affiner

Mehr

2 Vektorräume und Gleichungssysteme

2 Vektorräume und Gleichungssysteme 2 Vektorräume und Gleichungssysteme 21 Der n-dimensionale K-Vektorraum 2 Vektorräume und Gleichungssysteme 21 Der n-dimensionale K-Vektorraum Definition 21 Seien K = (K, +, ) ein Körper, V eine Menge und

Mehr

Kapitel 14. Geometrie Eine kurze Einführung in die affine Geometrie

Kapitel 14. Geometrie Eine kurze Einführung in die affine Geometrie Kapitel 14 Geometrie Sei V ein Vektorraum, z.b. V = R 3. Wenn wir uns für geometrische Eigenschaften vonr 3 interessieren, so stört manchmal dieausnahmerolle des Nullvektors, die es ja in V gibt. Beispielsweise

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.34 018/04/19 14:11:43 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.3 Sätze über Geraden in der Ebene Wir beschäftigen uns gerade mit Aussagen über ebene Geraden und haben einige

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr

05. Lineare Gleichungssysteme

05. Lineare Gleichungssysteme 05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a

Mehr

Lineare Algebra und analytische Geometrie I Lösungsvorschlag zum 9. Tutoriumsblatt

Lineare Algebra und analytische Geometrie I Lösungsvorschlag zum 9. Tutoriumsblatt Mathematisches Institut der Universität München Wintersemester 4/5 Daniel Rost Lukas-Fabian Moser Lineare Algebra und analytische Geometrie I Lösungsvorschlag zum 9. Tutoriumsblatt Aufgabe T-. a) Diese

Mehr

a i j (B + C ) j k = n (a i j b j k + a i j b j k ) =

a i j (B + C ) j k = n (a i j b j k + a i j b j k ) = Lösungen Lineare Algebra für Physiker, Serie 2 Abgabe am 25.10.2007 1. Es seien A K m n, B,C K n p und D K p q gegeben. 9 P (a) Beweisen Sie das Distributivgesetz A(B + C ) = A B + AC. (b) Beweisen Sie

Mehr