Affine und projektive Ebenen, WS 2018/2019 Mittwoch 9.1. $Id: trans.tex,v /01/10 10:54:32 hk Exp $

Größe: px
Ab Seite anzeigen:

Download "Affine und projektive Ebenen, WS 2018/2019 Mittwoch 9.1. $Id: trans.tex,v /01/10 10:54:32 hk Exp $"

Transkript

1 $Id: trans.tex,v /01/10 10:54:32 hk Exp $ 7 Translationsebenen Wir hatten einen Unterkörper F Kern(K des Kerns eines Quasikörpers K zentral in K genannt wenn ab = ba für alle a K, b F gilt und begonnen ein Lemma über diesen Begriff zu beweisen. Lemma 7.7 (Charakterisierung der endlichen zentralen Unterkörper Seien (K, +, ein Quasikörper und F Kern(K ein Unterkörper des Kerns von K. (a Sei F zentral in K. Dann hat die Linklsmultiplikation L a für kein a K\F einen Eigenwert in F. (b Ist F endlich und hat L a für kein a K\F einen Eigenwert in F so ist F zentral in K. Beweis: (a Dies hatten wir bereits eingesehen. (b Sei a K\F. Für jedes λ F gibt es dann wegen a 0 genau ein σ a (λ K mit aλ = σ a (λa. Dann ist L σa(λ(a = aλ, d.h. λ ist ein Eigenwert von L σa(λ und somit muss σ a (λ F sein. Damit haben wir eine Abbildung σ a : F F. Sind λ, µ F mit λ µ so ist wegen a 0 auch aσ a (λ = aλ aµ = σ a (µa, d.h. σ a (λ σ a (µ. Damit ist σ a injektiv und somit sogar bijektiv. Sei jetzt λ F gegeben. Dann ist zunächst L λ (F = λf F. Ist a K\F so existiert ein µ F mit λ = σ a (µ und wir haben L λ (a = λa = σ a (µa = aµ af, es gilt also auch L λ (af af. Damit fixiert L λ jeden eindimensionalen Untervektorraum von K und somit existiert ein µ F mit L λ = id K µ. Insbesondere ist λ = L λ (1 = 1µ = µ und wir haben L λ = id K λ gezeigt. Somit ist F zentral in K. Wir setzen unsere Vorüberlegungen zur Konstruktion von Quasikörpern fort und kommen nun zum Isomorphieproblem für diese hypothetischen Quasikörper. Angenommen wir haben zwei Quasikörper K und K die wir jeweils über einem Unterschiefkörper F Kern(K beziehungsweise F Kern(K konstruiert haben. Wir wollen dann wissen unter welchen Bedingungen K und K isomorph sind, wann es also einen Isomorphismus ϕ : K K von Quasikörpern gibt. Zunächst schränkt man sich dann meist auf Isomorphismen ein die die getroffene Wahl eines Unterschiefkörpers im Kern respektieren also mit ϕ(f = F. In diesem Fall induziert ϕ einen Isomorphismus γ := ϕ F : F F von Schiefkörpern. Für alle x, y K, λ F hat man dann ϕ(x + y = ϕ(x + ϕ(y und ϕ(xλ = ϕ(xϕ(λ = ϕ(xλ γ, 19-1

2 d.h. ϕ ist ein semilinearer Isomorphismus von Vektorräumen. Dies schränkt die Suche nach solchen Isomorphismen oftmals deutlich ein. Wir schauen uns den kleinstmöglichen nicht trivialen Fall etwas näher an, in diesem ist K zweidimensional über dem betrachteten Schiefkörper. Wie gerade festgehalten wollen wir Isomorphismen als spezielle semilineare Isomorphismen zwischen Vektorräumen konstruieren. Solche sind bereits Homomorphismen bezüglich der additiven Verknüpfung und wir können uns auf die multiplikative Verknüpfung konzentrieren. Wir zeigen nun das es im zweidimensionalen Fall bereits ausreicht Quadrate zu erhalten, zumindest solange unsere beiden Quasikörper über zentralen Unterkörpern definiert sind.. Lemma 7.8 (Konstruktion von Isomorphismen im zweidimensionalen Fall Seien K, K zwei Quasikörper und F Kern(K sowie F Kern(K zwei zentrale Unterkörper mit dim F K = dim F K = 2. Weiter sei A : K K ein semilinearer Vektorraumisomorphismus mit A(1 = 1 und A(x 2 = A(x 2 für alle x K\F. Dann ist A ein Isomorphismus von Quasikörpern mit A(F = F. Beweis: Sei γ : F F der Isomorphismus von Körpern mit A(xλ = A(xλ γ für alle x K, λ F. Für jedes λ F gilt dann auch A(λ = A(1λ = A(1λ γ = λ γ. Damit ist γ = A F und insbesondere A(F = F. Wir müssen zeigen das für alle x, y K stets A(xy = A(xA(y gilt. Seien also x, y K gegeben. Wir unterscheiden drei verschiedene Fälle. Fall 1. Zunächst sei y F. Dann gilt A(xy = A(xy γ = A(xA(y. Fall 2. Nun nehme x F an. Da F in K und F in K zentral sind haben wir dann mit dem bereits erledigten Fall A(xy = A(yx = A(yA(x = A(xA(y. Fall 3. Im verbleibenden Fall sind x, y / F. Dann ist 1, y eine Basis von K über F also existieren λ, µ F mit x = λ + yµ. Wegen x / F ist µ 0. Wir erhalten ( A(xy = A((λ + yµy = A (λ + yµ(λ + yµ λ 1 µ = ( A ( (λ + yµ 2 A((λ + yµλ 1 µ = ( A(λ + yµ 2 A(λ + yµλ γ 1 γ µ γ = A(λ + yµ (A(λ + yµ A(λ 1 = A(λ + yµa(y = A(xA(y. µ γ Damit ist A(xy = A(xA(y für alle x, y K und somit ist A ein Isomorphismus von Quasikörpern. Seien K ein Quasikörper und F Kern(K ein Unterschiefkörper. Dann hatten wir uns bereits überlegt das {ϕ Aut(K ϕ(f = F } ΓL F (K 19-2

3 gilt. Von besonderen Interesse sind nun diejenigen Automorphismen von K die sogar linear über F sind. Ist ϕ Aut(K ein Automorphismus mit ϕ(f = F so ist ϕ ein semilinearer Automorphismus des Vektorraums K über F bezüglich des Körperautomorphismus γ = ϕ F Aut(F. Damit ist ϕ genau dann linear über F wenn ϕ F = id F ist. Dies führt auf die folgende Definition. Definition 7.5 (Galoisgruppe eines Quasikörpers über einem Schiefkörper Seien K ein Quasikörper und F Kern(K ein Unterschiefkörper. Dann heißt die Galoisgruppe von K über F. Aut F (K := {ϕ Aut(K : ϕ F = id F } Tatsächlich ist Aut F (K eine Untergruppe von Aut(K, es ist Aut F (K = Aut(K GL F (K. Die eine Inklusion haben wir bereits eingesehen und ist umgekehrt ϕ Aut(K GL F (K so gilt für jedes λ F stets ϕ(λ = ϕ(1λ = ϕ(1λ = λ also ϕ F = id F. Wir spezialisieren uns nun auf den zweidimensionalen Fall, seien K ein Quasikörper und F Kern(K ein Unterkörper mit dim F K = 2. Für jedes a K ist die Linksmultiplikation L a End F (K dann ein Endomorphismus des Vektorraums K über F und wir betrachten sein charakteristisches Polynom χ a := χ La F [x]. Dies ist ein normiertes Polynom von Grad 2 explizit gilt χ a (x = x 2 tr F (L a x + det F (L a. Es gilt χ a (L a = 0 also L 2 a = L a tr F (L a det F (L a und für jedes x K gilt damit a(ax = ax tr F (L a xdet F (L a und insbesondere a 2 = a tr F (L a det F (L a. Wählen wir also eine Basis 1, t von K über F und schreiben a = x + ty mit x, y F so ist L a (1 = a = x + ty und es gibt u, v F mit L a (t = at = u + tv. Damit hat L a bezüglich dieser Basis die Matrix ( x y L a =. u v Es folgen tr F (L a = x + v und det F (L a = xv yu also sind v = tr F (L a x und yu = xv det F (L a = (x 2 x tr F (L a + det F (L a = χ a (x. Ist nun a / F also y 0 so wird u = χ a (x/y und wir haben ( x y L x+ty =. tr F (L a x χa(x y 19-3

4 Wir spezialisieren die Situation noch weiter, uns interessieren die besonders symmetrischen Fälle in denen die Gruppe Aut F (K in geeigneten Sinne groß ist. Eine mögliche Interpretation dieser Bedingung ist es zu fordern das die Wirkung auf K\F transitiv ist und diese Bedingung kann man in Termen der charakteristischen Polynome χ a interpretieren. Lemma 7.9 (Charakterisierung transitiver Galoisgruppen in Dimension 2 Seien K ein Quasikörper und F Kern(K ein in K zentraler Körper mit dim F K = 2. Dann ist Aut F (K genau dann transitiv auf K\F wenn χ a = χ b für alle a, b K\F gilt. Beweis: = Seien a, b K\F. Dann existiert ein A Aut F (K GL F (K mit A(a = b. Für jedes x K ist dann auch L b (A(x = ba(x = A(aA(x = A(ax = A(L a (x es sind also L b A = AL a und L a = A 1 L b A. Damit sind L a und L b ähnlich und wir haben χ a = χ La = χ Lb = χ b. = Sei p(x = x 2 αx + β F [x] das Polynom mit χ a = p für jedes a K\F. Für jedes x K\F gilt dann x 2 = xα β. Seien a, b K\F. Dann sind 1, a und 1, b beides Basen von K über F also existiert ein A GL F (K mit A(1 = 1 und A(a = b. Für jedes x K\F ist auch A(x K\F und wir haben A(x 2 = A(xα β = A(xα β = A(x 2 und nach Lemma 8 ist A Aut(K also sogar A Aut F (K. Dieses Lemma führt uns auf die Definition der sogenannten Hall-Quasikörper. Definition 7.6 (Hall-Quasikörper Sei F ein Körper. Ein Hall-Quasikörper über F ist ein Quasikörper K mit F Kern(K der F als zentralen Unterkörper mit dim F K = 2 enthält so, dass es ein normiertes Polynom p F [x] von Grad 2 mit χ a = p für alle a K\F gibt. Wir fassen unsere obigen Überlegungen in einem Satz zusammen. Satz 7.10 (Charakterisierung der Hall-Quasikörper Seien K ein Quasikörper und F Kern(K ein in K zentraler Unterkörper des Kerns von K. Dann ist K genau dann ein Hall-Quasikörper über F wenn dim F K = 2 ist und die Galoisgruppe Aut F (K transitiv auf K\F wirkt. In diesem Fall existiert genau ein normiertes Polynom p F [x] von Grad 2 mit χ a = p für jedes a K\F und p ist irreduzibel. Ist p(x = x 2 αx + β so gilt für jedes a K\F stets a 2 = aα β. Beweis: Die erste Aussage ist klar nach Lemma 9. Die Eindeutigkeit von p ist klar nach nach Lemma 7.(a hat p keine Nullstellen in F ist also irreduzibel. Die Aussage über Quadrate folgt dann aus unserer obigen Überlegung. Wir sprechen daher auch davon das K ein Hallscher Quasikörper über F zum Polynom p ist. Ist K endlich mit K = q 2 so muss man im obigen Satz nicht verlangen das F zentral in K ist, dies wird in Aufgabe (32 bewiesen. 19-4

5 Satz 7.11 (Existenz Hallscher Quasikörper Seien F ein Körper und p(x = x 2 αx+β F [x] ein normiertes, irreduzibles Polybom vom Grad 2 über F. Weiter sei K = F 2 und fasse F = F {0} als Teilmenge von K auf. Für x, y F mit y 0 seien L (x,0 := ( x 0 0 x ( x y und L (x,y := α x p(x y Definieren wir dann für a, b K stets a b := L a (b so ist H(F, p := (K, +, ein Hallscher Quasikörper über F zum Polynom p. Diesen Satz wollen wir in der nächsten Sitzung beweisen

4 Isomorphismen affiner und projektiver Ebenen

4 Isomorphismen affiner und projektiver Ebenen $Id: isomorphie.tex,v 1.3 2018/11/26 18:45:03 hk Exp $ 4 Isomorphismen affiner und projektiver Ebenen Wir haben gezeigt das alle Ternärkörper der projektiven Ebene PG(V ) über einem Vektorraum V isomorph

Mehr

6 Die Lenz Klassifikation

6 Die Lenz Klassifikation $Id: lenz.tex,v 1.6 2018/12/19 19:38:42 hk Exp $ $Id: trans.tex,v 1.3 2018/12/20 08:02:27 hk Exp $ 6 Die Lenz Klassifikation Wir sind gerade mit dem Beweis des folgenden Lemmas beschäftigt. Lemma 6.16

Mehr

4 Funktionenfolgen und normierte Räume

4 Funktionenfolgen und normierte Räume $Id: norm.tex,v 1.57 2018/06/08 16:27:08 hk Exp $ $Id: jordan.tex,v 1.34 2018/07/12 20:08:29 hk Exp $ 4 Funktionenfolgen und normierte Räume 4.7 Kompakte Mengen Am Ende der letzten Sitzung hatten wir zwei

Mehr

Vorlesung 6: Gruppen und Homomorphismen

Vorlesung 6: Gruppen und Homomorphismen Vorlesung 6: Gruppen und Homomorphismen Gabriele Link 11.11.2013 Gabriele Link Vorlesung 6: Gruppen und Homomorphismen 1 Erinnerung: Verknüpfung Gegeben sei eine Menge M. Eine (innere) Verknüpfung auf

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.44 2018/05/17 14:11:13 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.6 Bewegungen und Kongruenzbegriffe Wir untersuchen gerade die Spiegelung an einer Hyperebene h R d. Ist ein

Mehr

Lineare Algebra I Lösungsvorschlag

Lineare Algebra I Lösungsvorschlag Aufgabe Lineare Algebra I Lösungsvorschlag Wir bezeichnen mit a, a 2, a 3 Q 4 die Spalten der Matrix A. Es ist 7 a + 2a 2 = 7 4 = 7a 3, und wir sehen im l A = a, a 2, a 3 = a, a 2. Da die Vektoren a und

Mehr

n (als K 0 -Vektorraum) und insbesondere

n (als K 0 -Vektorraum) und insbesondere Algebra I c Rudolf Scharlau, 2002 2010 209 4.3 Endliche Körper. Wir beschäftigen uns in diesem Abschnitt mit endlichen Körpern. Zum einen kann hier die allgemeine Theorie (auch die der folgenden Abschnitte

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 8 Erzeugte Algebra und erzeugter Körper Satz 8.1. Sei K L eine Körpererweiterung und sei f L ein algebraisches Element. Dann ist

Mehr

Scheinklausur, 2. Teil, Lineare Algebra I, WS 2001, Prof. Dr. G. Hiß. Ja oder

Scheinklausur, 2. Teil, Lineare Algebra I, WS 2001, Prof. Dr. G. Hiß. Ja oder Gruppe A Scheinklausur 2. Teil 15.2.2002 Lineare Algebra I WS 2001 Prof. Dr. G. Hiß Name: Matrikelnummer: Kreuzen Sie bei jeder Frage entweder Ja oder Nein oder nichts an. Auswertung der Multiple-Choice-Aufgaben:

Mehr

1 2. Körpererweiterungen

1 2. Körpererweiterungen 1 2. Körpererweiterungen 1 2. 1. Definition: Sind K, L Körper und i: K L ein Ringhomomorphismus, so ist i injektiv, wir fassen K vermöge i als Unterkörper von L auf, schreiben dafür L K und nennen L eine

Mehr

3 Definition: 1. Übungsblatt zur Vorlesung Lineare Algebra I. im WS 2003/2004 bei Prof. Dr. S. Goette

3 Definition: 1. Übungsblatt zur Vorlesung Lineare Algebra I. im WS 2003/2004 bei Prof. Dr. S. Goette 1. Übungsblatt zur Vorlesung Abgabe Donnerstag, den 30.10.03 1 Finden 2 Sei Sie reelle Zahlen a, b, c, so dass a (2, 3, 1) + b (1, 2, 2) + c (2, 5, 3) = (3, 7, 5). (V,, ) ein euklidischer Vektorraum. Zeigen

Mehr

Kapitel III. Ringerweiterungen

Kapitel III. Ringerweiterungen Inhalt der Vorlesung Algebraische Zahlentheorie Prof. Dr. Arno Fehm, TU Dresden SS2017 Kapitel III. Ringerweiterungen 0 Ringerweiterungen Seien R S Ringe. 0.1 Definition. Für A S bezeichnet R[A] den kleinsten

Mehr

Aufgabe I.1 (4 Punkte) Gegeben seien die Matrix H := und die Menge L := {A R 4 4 A HA = H} Zeigen Sie:

Aufgabe I.1 (4 Punkte) Gegeben seien die Matrix H := und die Menge L := {A R 4 4 A HA = H} Zeigen Sie: Aufgabe I (4 Punkte Gegeben seien die Matrix und die Menge Zeigen Sie: H := L := {A R 4 4 A HA = H} a L ist bezüglich der Matrizenmultiplikation eine Gruppe b Die Matrizen der Form ( E O, O B wobei E R

Mehr

4 Rein transzendente Körpererweiterungen

4 Rein transzendente Körpererweiterungen $Id: transzendent.tex,v 1.7 29/5/6 13:34:24 hk Exp $ $Id: trgrad.tex,v 1.3 29/5/6 13:2:32 hk Exp $ 4 Rein transzendente Körpererweiterungen Wir hatten den rationalen Funktionenkörper K(T ) in der Hoffnung

Mehr

Übungen zur Diskreten Mathematik I Blatt 6

Übungen zur Diskreten Mathematik I Blatt 6 1 Blatt 6 Aufgabe 19 Es sei M := {n N : n 2} und R := {(n, m) M M : n teilt m}. a) Zeigen Sie, dass R eine Ordnungsrelation auf M ist. b) Überprüfen Sie, ob R eine totale Ordnung auf M ist. c) Zeigen Sie,

Mehr

4 Rein transzendente Körpererweiterungen

4 Rein transzendente Körpererweiterungen $Id: transzendent.tex,v 1.3 2009/04/29 15:55:59 hk Exp $ 4 Rein transzendente Körpererweiterungen Nachdem wir im letzten Abschnitt die endlichen Körper besprochen haben, nähern wir uns nun dem anderen

Mehr

Seminar über Darstellungstheorie endlicher Gruppen: Lemma von Schur, Darstellungen abelscher Gruppen, Räume von Darstellungshomomorphismen

Seminar über Darstellungstheorie endlicher Gruppen: Lemma von Schur, Darstellungen abelscher Gruppen, Räume von Darstellungshomomorphismen Seminar über Darstellungstheorie endlicher Gruppen: Lemma von Schur, Darstellungen abelscher Gruppen, Räume von Darstellungshomomorphismen Aline Kaszuba, Lukas Böke 15. März 2016 Die folgende Diskussion

Mehr

1. Übungsblatt: Lineare Algebra I Abgabe: 1. November 2001 in den Übungsgruppen

1. Übungsblatt: Lineare Algebra I Abgabe: 1. November 2001 in den Übungsgruppen Hannover, den 25. Oktober 200. Übungsblatt: Lineare Algebra I Abgabe:. November 200 in den Übungsgruppen (je 3 Punkte) Beweisen oder widerlegen Sie die folgenden Aussagen über Mengen. a) A (B C) = (A B)

Mehr

2 Affine und projektive Ebenen

2 Affine und projektive Ebenen $Id: ebenen.tex,v 1.3 2018/11/06 12:51:04 hk Exp $ 2 Affine und projektive Ebenen Nachdem wir in der letzten Sitzung affine Ebenen definiert und ein wenig untersucht haben kommen wir nun zu den sogenannten

Mehr

Hilbertpolynom von I, i.z. a HP I.

Hilbertpolynom von I, i.z. a HP I. 9.4.4 Korollar/Def. Sei (1) I k[x 1,..., X n ] ein Ideal. Dann ist die affine Hilbertfunktion a HF I (s) für s 0 ein Polynom in s mit Koeffizienten in Q; es heißt das affine Hilbertpolynom von I, i.z.

Mehr

Algebra II, SS 2009 Montag $Id: endlich.tex,v /04/27 13:49:37 hk Exp $ GF(q) := {x A p x q = x}

Algebra II, SS 2009 Montag $Id: endlich.tex,v /04/27 13:49:37 hk Exp $ GF(q) := {x A p x q = x} $Id: endlich.tex,v 1.4 2009/04/27 13:49:37 hk Exp $ 3 Endliche Körper Wir waren gerade mit dem Beweis von Satz 1 beschäftigt, und hatten die Existenzteile des Satzes bereits eingesehen. Satz 3.1 (Klassifikation

Mehr

1 Eingebettete Untermannigfaltigkeiten des R d

1 Eingebettete Untermannigfaltigkeiten des R d $Id: unter.tex,v 1.5 2014/04/28 14:01:50 hk Exp $ $Id: diff.tex,v 1.2 2014/04/28 14:24:56 hk Exp hk $ 1 Eingebettete Untermannigfaltigkeiten des R d Am Ende der letzten Sitzung hatten wir die Tangentialvektoren

Mehr

21 Körperhomomorphismen

21 Körperhomomorphismen 21 Körperhomomorphismen Definition 21.1. Seien K, L, M... Körper. (i) Ein Ringhomomorphismus σ : K L heißt Körperhomomorphismus. Die Menge der Körperhomomorphismen K L bezeichnen wir mit Hom(K, L). Ein

Mehr

7 Vektorräume und Körperweiterungen

7 Vektorräume und Körperweiterungen $Id: vektor.tex,v 1.4 2009/05/28 16:37:16 hk Exp $ 7 Vektorräume und Körperweiterungen Bisher haben wir zwar die Existenz und Eindeutigkeit von Tensorprodukten bewiesen, und auch einige ihrer Eigenschaften

Mehr

$Id: korper.tex,v /05/10 12:25:27 hk Exp $

$Id: korper.tex,v /05/10 12:25:27 hk Exp $ $Id: korper.tex,v 1.17 2012/05/10 12:25:27 hk Exp $ 4 Körper In der letzten Sitzung hatten wir den Körperbegriff eingeführt und einige seiner elementaren Eigenschaften vorgeführt. Insbesondere hatten wir

Mehr

6. Vortrag - Das Kernstück der Galoistheorie

6. Vortrag - Das Kernstück der Galoistheorie Proseminar Körpertheorie 6. Vortrag - Das Kernstück der Galoistheorie Von: Nguyen Hoai Viet Dang 06.06.2013 Prof. K. Wingberg, K. Hübner 1. Hauptsatz Galois-Korrespondenz Satz 1.1: Sei (i) (ii) K L eine

Mehr

Lineare Algebra I für Mathematiker Lösungen

Lineare Algebra I für Mathematiker Lösungen Lineare Algebra I für Mathematiker Lösungen Anonymous 24. April 2016 Aufgabe 1 Beantworten Sie bitte die folgenden Fragen. Jeder Vektorraum hat mindestens ein Element. Q ist ein R-Vektorraum (mit der Multiplikation

Mehr

19 Körperhomomorphismen

19 Körperhomomorphismen 19 Körperhomomorphismen Definition und Bemerkung 19.1. (i) Seien K, L Körper. Ein Ringhomomorphismus σ : K L heißt Körperhomomorphismus. Die Menge der Körperhomomorphismen K L bezeichnen wir mit Hom(K,

Mehr

8 Eigenwerttheorie I 8. EIGENWERTTHEORIE I 139. Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet:

8 Eigenwerttheorie I 8. EIGENWERTTHEORIE I 139. Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet: 8. EIGENWERTTHEORIE I 139 8 Eigenwerttheorie I Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet: K[x] = Abb[N, K] = {P ; P = a n x n + a n 1 x n 1 + + a 0 ; a

Mehr

7.3 Unitäre Operatoren

7.3 Unitäre Operatoren Wir können jeden Operator T wie folgt schreiben: Dabei gilt T = 1 2 (T + T ) + i( 1 2 i (T T )) (T + T ) = T + T sowie ( 1 2 i (T T )) = 1 2 i (T T) = 1 2 i (T T ). Wir können T also in zwei lineare Operatoren

Mehr

Gruppen. Kapitel Operationen Definiton Gruppe, symmetrische Gruppen. Gruppen und Untergruppen, Lernziele 1. Erzeugendensysteme,

Gruppen. Kapitel Operationen Definiton Gruppe, symmetrische Gruppen. Gruppen und Untergruppen, Lernziele 1. Erzeugendensysteme, Kapitel 1 Gruppen 1.1 Operationen Lernziele 1. Gruppen und Untergruppen, Erzeugendensysteme, Operationen und Bahnen 1.1.1 Definiton Gruppe, symmetrische Gruppen Definition 1.1. Sei G eine nicht leere Menge

Mehr

7.2 Die adjungierte Abbildung

7.2 Die adjungierte Abbildung 7.2 Die adjungierte Abbildung Definition 7.2.1 Eine lineare Abbildung f : V K heißt lineares Funktional oder Linearform. (Diese Definition gilt für beliebige K-Vektorräume, nicht nur für innere Produkträume.)

Mehr

Algebra II, SS 2009 Mittwoch [L : K] := dim K L.

Algebra II, SS 2009 Mittwoch [L : K] := dim K L. $Id: wh.tex,v 1.2 2009/04/15 14:24:38 hk Exp $ 1 Wiederholung Zur Einstimmung wollen wir uns noch einmal an die Theorie der Körpererweiterungen erinnern, und bei dieser Gelegenheit auch gleich die in diesem

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG MATHEMATISCHES INSTITUT SEMINAR: QUADRATISCHE FORMEN ÜBER DEN RATIONALEN ZAHLEN SOMMERSEMESTER 2007 DOZENT: PROF. DR. KAY WINGBERG ASSISTENT: JOHANNES BARTELS KAPITEL

Mehr

α i e i. v = α i σ(e i )+µ

α i e i. v = α i σ(e i )+µ Beweis: Der Einfachheit halber wollen wir annehmen, dass V ein endlich-dimensionaler Vektorraum mit Dimension n ist. Wir nehmen als Basis B {e 1,e 2,...e n }. Für beliebige Elemente v V gilt dann v α i

Mehr

(a) Welche der folgenden Gruppen hat 24 Elemente? D 6 GL 2 (F 2 ) X Die Tetraedergruppe. (b) Welche der folgenden Aussagen ist wahr?

(a) Welche der folgenden Gruppen hat 24 Elemente? D 6 GL 2 (F 2 ) X Die Tetraedergruppe. (b) Welche der folgenden Aussagen ist wahr? Aufgabe 1. (10 Punkte) Bei den folgenden Teilaufgaben ist jeweils genau eine Antwort richtig; diese ist anzukreuzen. Beweise oder Begründungen sind nicht erforderlich. Für jede richtige Antwort erhalten

Mehr

21. Affine Koordinaten und affine Abbildungen

21. Affine Koordinaten und affine Abbildungen 21.1. Grundbegriffe Definition: Sei A ein affiner Raum mit Richtungs-VRm V der Dimension n. (a) Sei B die Menge aller Basen von V. Ein Paar K := (O, B) A B heißt affines Koordinatensystem, wobei O der

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.24 2017/05/18 11:18:04 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.6 Bewegungen und Kongruenzbegriffe In diesem Abschnitt wollen wir die Automorphismengruppe der euklidischen

Mehr

43911: Lineare Algebra/Geometrie Prüfungstermin Frühjahr 2015 Lösungsvorschlag

43911: Lineare Algebra/Geometrie Prüfungstermin Frühjahr 2015 Lösungsvorschlag Dr. Erwin Schörner 439: Lineare Algebra/Geometrie Prüfungstermin Frühjahr 5 Lösungsvorschlag I.. Für n N mit n ist das inhomogene lineare Gleichungssystem in den n Unbekannten x,..., x n mit den n Gleichungen

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I UND II 2. Oktober 2008 MUSTERLÖSUNG

KLAUSUR ZUR LINEAREN ALGEBRA I UND II 2. Oktober 2008 MUSTERLÖSUNG KLAUSUR ZUR LINEAREN ALGEBRA I UND II 2. Oktober 2008 MUSTERLÖSUNG Aufgabe 1 Es sei K ein Körper, V ein K-Vektorraum, und seien v 1,..., v n V (n N). (a) Definieren Sie, wann die endliche Familie v 1,...,

Mehr

Rangsatz. d.) (2P) Formulieren Sie den

Rangsatz. d.) (2P) Formulieren Sie den Probeklausur Lineare Algebra I am 14.11.09 Die Klausur ist in drei Teile unterteilt, die grob als Definitions-, Rechenund Beweisteil bezeichnet werden können (optisch durch Linien getrennt). In jedem Teil

Mehr

3 Konstruktion von Maßräumen

3 Konstruktion von Maßräumen $Id: caratheodory.tex,v 1.10 2011/11/17 11:43:55 hk Exp hk $ 3 Konstruktion von Maßräumen 3.4 Der Fortsetzungssatz von Caratheodory Wir hatten in der letzten Sitzung mit dem Beweis des Satzes von Caratheodory

Mehr

Lineare Algebra. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra 7. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching November 9, 27 Erinnerung 2 Vektoräume Sei V ein Vektorraum, U V, U {}. U hiesst Untervektorraum, Unterraum,

Mehr

Klausur zur Linearen Algebra I HS 2012, Universität Mannheim, Dr. Ralf Kurbel, Dr. Harald Baum

Klausur zur Linearen Algebra I HS 2012, Universität Mannheim, Dr. Ralf Kurbel, Dr. Harald Baum Klausur zur Linearen Algebra I HS 01, 1.1.01 Universität Mannheim, Dr. Ralf Kurbel, Dr. Harald Baum Name: Sitzplatznummer: Die Bearbeitungszeit für diese Klausur beträgt 90 Minuten. Die Klausur umfaßt

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 24./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 24./ in den Übungsgruppen Hannover, den 0. April 2006. Übungsblatt: Lineare Algebra II Abgabe: 24./25.4.2006 in den Übungsgruppen ( ) 2 5 a) Zeigen Sie, dass A = und B = 2 ( 7 6 invertierbare Matrix T an mit T AT = B. b) Zeigen

Mehr

Klausur vom Algebra I. Rolf Farnsteiner

Klausur vom Algebra I. Rolf Farnsteiner Klausur vom 31.03.2010 Algebra I Rolf Farnsteiner Lösungen Daiva Pučinskaitė Aufgabe 1. Sei p R ein Primideal eines Integritätsbereichs R. Beweisen Sie folgende Aussagen: (1 S := R \ p ist eine multiplikativ

Mehr

1.4 Homomorphismen und Isomorphismen

1.4 Homomorphismen und Isomorphismen Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 28 1.4 Homomorphismen und Isomorphismen Definition 1.4.1 Es seien (G, ) und (H, ) zwei Gruppen. Eine Abbildung ϕ : G H heißt (Gruppen-)Homomorphismus,

Mehr

R 3 und U := [e 2, e 3 ] der von e 2, e 3 erzeugte

R 3 und U := [e 2, e 3 ] der von e 2, e 3 erzeugte Aufgabe ( Es seien e =, e = Untervektorraum (, e = ( R und U := [e, e ] der von e, e erzeugte Weiter sei G := {A GL(, R A e = e und A U U} (a Zeigen Sie, dass G eine Untergruppe von GL(, R ist (b Geben

Mehr

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009 I. (4 Punkte) Gegeben sei die Menge Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 9 G := { a c b a, b, c R }. (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen Mathematische Probleme, SS 28 Dienstag 29.5 $Id: vektor.tex,v.46 28/5/29 6:4: hk Exp $ Analytische Geometrie und Grundlagen.6 Bewegungen und Kongruenzbegriffe Am Ende der letzten Sitzung hatten wir bereits

Mehr

Algebra I. Gal(K/Q), Gal(K/Q), a σa.

Algebra I. Gal(K/Q), Gal(K/Q), a σa. WS 05/06 Priv.-Doz. Dr. S. Wewers Andreas Martin Algebra I 12. Übungsblatt Aufgabe 1: (6 1 P) Sei ζ = ζ 7 = exp(2πi/7) und K := Q[ζ]. Wir nehmen an, dass K/Q eine Galois-Erweiterung ist und dass es einen

Mehr

Seminar über Darstellungstheorie endlicher Gruppen Darstellungen

Seminar über Darstellungstheorie endlicher Gruppen Darstellungen Seminar über Darstellungstheorie endlicher Gruppen Darstellungen Fabia Weber, Samet Armagan 25. Februar 2016 Inhaltsverzeichnis 1.1 Denition einer linearen Darstellung 2 1.2 Die Gruppenalgebra F G 4 1.3

Mehr

5 Lineare Abbildungen

5 Lineare Abbildungen 5 Lineare Abbildungen Pink: Lineare Algebra HS 2014 Seite 56 5 Lineare Abbildungen 5.1 Definition Gegeben seien Vektorräume U, V, W über einem Körper K. Definition: Eine Abbildung f : V W heisst K-linear,

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

T := {σ S 4 σ 3 = Id}. a) Es seien V ein Vektorraum und Φ ein Endomorphismus von V, sodass

T := {σ S 4 σ 3 = Id}. a) Es seien V ein Vektorraum und Φ ein Endomorphismus von V, sodass I. a) Es sei (G, ) eine abelsche Gruppe mit neutralem Element e G. Zeigen Sie, dass U := {g G g 3 = e G } eine Untergruppe von G ist. b) In der symmetrischen Gruppe S 4 definieren wir analog zu a) die

Mehr

Galois-Erweiterungen und Hauptsatz der Galois-Theorie

Galois-Erweiterungen und Hauptsatz der Galois-Theorie Galois-Erweiterungen und Hauptsatz der Galois-Theorie Stephanie Zube Andy Schärer 8. April 2009 Inhaltsverzeichnis 1 Erinnerungen 2 2 Galois-Erweiterungen 3 3 Der Hauptsatz der Galois-Theorie 5 A Literaturverzeichnis

Mehr

Determinanten. Motivation: Man betrachte das lineare Gleichungssystem =. (1) y = Sei o.b.d.a a 0 und c 0. Dann ist (1) äquivalent zu. = ac ad y.

Determinanten. Motivation: Man betrachte das lineare Gleichungssystem =. (1) y = Sei o.b.d.a a 0 und c 0. Dann ist (1) äquivalent zu. = ac ad y. Determinanten Motivation: Man betrachte das lineare Gleichungssystem [ [ [ a b x u = (1) c d y v Sei obda a und c Dann ist (1) äquivalent zu [ [ ca cb x = ac ad y und ferner zu [ [ ca cb x ad cb y Falls

Mehr

Lösung zu Serie [Aufgabe] Zeige: Das folgende Diagramm kommutiert insgesamt genau dann, wenn alle 6 Teilquadrate kommutieren.

Lösung zu Serie [Aufgabe] Zeige: Das folgende Diagramm kommutiert insgesamt genau dann, wenn alle 6 Teilquadrate kommutieren. Lineare Algebra D-MATH, HS 2014 Prof. Richard Pink Lösung zu Serie 8 1. [Aufgabe] Zeige: Das folgende Diagramm kommutiert insgesamt genau dann, wenn alle 6 Teilquadrate kommutieren. a 1 A 1 a 2 A 2 a 3

Mehr

Wiederholungsserie II

Wiederholungsserie II Lineare Algebra II D-MATH, FS 205 Prof. Richard Pink Wiederholungsserie II. Zeige durch Kopfrechnen, dass die folgende reelle Matrix invertierbar ist: 205 2344 234 990 A := 224 423 990 3026 230 204 9095

Mehr

Kapitel III. Lineare Abbildungen

Kapitel III. Lineare Abbildungen Kapitel III. Lineare Abbildungen Beispiele: 1 Lineare Abbildungen a) Seien c 1,..., c n K vorgegeben. Betrachte die Funktion F (x 1,..., x n ) = c 1 x 1 + c 2 x 2 +... + c n x n in den Variablen x 1,...,

Mehr

5 Lineare Abbildungen

5 Lineare Abbildungen 5 Lineare Abbildungen Pink: Lineare Algebra 2014/15 Seite 59 5 Lineare Abbildungen 5.1 Definition Gegeben seien Vektorräume U, V, W über einem Körper K. Definition: Eine Abbildung f : V W heisst K-linear,

Mehr

m 1 Die Bewegung der drei Kugeln wird beschrieben durch das folgende Differentialgleichungssystem x 1 (t) x 2 (t) x 3 (t) k 12 k 12 k 12 k k 23

m 1 Die Bewegung der drei Kugeln wird beschrieben durch das folgende Differentialgleichungssystem x 1 (t) x 2 (t) x 3 (t) k 12 k 12 k 12 k k 23 Kapitel 5 Eigenwerte 5. Definition und Beispiele Wir sehen uns ein System dreier schwingender Kugeln der Massen m, m und m 3 an, die durch Federn aneinander gekoppelt sein sollen. m k m k 3 m 3 x ( t x

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 23 Die Gradformel Satz 1. Seien K L und L M endliche Körperweiterungen. Dann ist auch K M eine endliche Körpererweiterung und

Mehr

technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller

technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 4.3 und 4.4

Mehr

Kapitel 2. Endliche Körper und Anwendungen. 2.1 Körpererweiterungen

Kapitel 2. Endliche Körper und Anwendungen. 2.1 Körpererweiterungen Kapitel 2 Endliche Körper und Anwendungen 2.1 Körpererweiterungen Deinition Sei L ein Körper und K ein Unterkörper von L. Dann sagen wir, dass L ein Erweiterungskörper von K ist. Wir sagen dann auch: K

Mehr

Darstellungstheorie endlicher Gruppen Charaktere

Darstellungstheorie endlicher Gruppen Charaktere Darstellungstheorie endlicher Gruppen Charaktere Ramon Braunwarth, Georg Grützner. März 016 Die folgenden Ausführungen sind eine geringfügig veränderte Exposition des Kapitels 13 aus [1]. Sei F ein algebraisch

Mehr

4 Funktionenfolgen und normierte Räume

4 Funktionenfolgen und normierte Räume $Id: norm.tex,v 1.48 2017/06/14 15:16:10 hk Exp $ $Id: jordan.tex,v 1.26 2017/06/16 10:59:58 hk Exp $ 4 Funktionenfolgen und normierte Räume 4.7 Kompakte Mengen Zum Abschluss dieses Kapitels behandeln

Mehr

Klausur Lineare Algebra I am Es sind insgesamt 60 Punkte bei der Klausur zu erreichen.

Klausur Lineare Algebra I am Es sind insgesamt 60 Punkte bei der Klausur zu erreichen. Klausur Lineare Algebra I am 03.02.10 Es sind insgesamt 60 Punkte bei der Klausur zu erreichen. Aufgabe 1. (6 Punkte insgesamt) a.) (3P) Definieren Sie, was eine abelsche Gruppe ist. b.) (3P) Definieren

Mehr

Serie 17: Satz von Cayley-Hamilton & spezielle Endomorphismen

Serie 17: Satz von Cayley-Hamilton & spezielle Endomorphismen D-MATH Lineare Algebra I/II HS 2017/FS 2018 Dr. Meike Akveld Serie 17: Satz von Cayley-Hamilton & spezielle Endomorphismen 1. Sei V ein K-Vektorraum. a) Sei T End(V ). Zeigen Sie, dass die folgenden alles

Mehr

4.4 Zerfällungskörper von Polynomen

4.4 Zerfällungskörper von Polynomen Algebra I c Rudolf Scharlau, 2002 2010 214 4.4 Zerfällungskörper von Polynomen Dieser Abschnitt enthält eine ganze Reihe von eher technischen Resultaten über Nullstellen von Polynomen und die hiervon erzeugten

Mehr

Lineare Algebra I. Lösung 9.2:

Lineare Algebra I. Lösung 9.2: Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 9 Prof. Dr. Markus Schweighofer 20.01.2010 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 9.1: Voraussetzung:

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 215/216 Lineare Algebra und analytische Geometrie I Vorlesung 27 In der letzten Vorlesung haben wir die Haupträume zu einem Eigenwert λ zu einem Endomorphismus ϕ als Kern

Mehr

Lineare Abbildungen und Matrizen

Lineare Abbildungen und Matrizen Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 31. Mai 2016 Stefan Ruzika 9: Lineare Abbildungen und Matrizen 31. Mai 2016 1 / 16 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume

Mehr

Vektorräume und lineare Abbildungen

Vektorräume und lineare Abbildungen Kapitel 11. Vektorräume und lineare Abbildungen 1 11.1 Vektorräume Sei K ein Körper. Definition. Ein Vektorraum über K (K-Vektorraum) ist eine Menge V zusammen mit einer binären Operation + einem ausgezeichneten

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 11 Zerfällungskörper Wir wollen zu einem Polynom F K[X] einen Körper konstruieren, über dem F in Linearfaktoren zerfällt. Dies

Mehr

5.4 Affine Abbildungen in C 2 und R 2

5.4 Affine Abbildungen in C 2 und R 2 5.4 Affine Abbildungen in C 2 und R 2 Notation. Wir erinnern an die affine Ähnlichkeit von Matrizen (5.3.8): L 1, L 1 AM n (K). Dann: L 1 a L 2 falls C AGL n (K) mit C 1 L 2 C = L 1. Die aus 3.2.9 bekannte

Mehr

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2,

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2, Aufgabe I Es sei Q die folgende Teilmenge von C 2 2 : { ( ) a b Q a, b C b a Hier bezeichnet der Querstrich die komplexe Konjugation Zeigen Sie: (a) Mit den üblichen Verknüpfungen + und für Matrizen ist

Mehr

1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe

1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe 1 Halbgruppen Übersicht 11 Definitionen 5 12 Unterhalbgruppen 8 13 InvertierbareElemente 9 14 AllgemeinesAssoziativ-undKommutativgesetz 11 15 PotenzenundVielfache 11 16 Homomorphismen,Isomorphismen 12

Mehr

1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe

1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe 1 Halbgruppen Übersicht 11 Definitionen 5 12 Unterhalbgruppen 8 13 InvertierbareElemente 9 14 AllgemeinesAssoziativ-undKommutativgesetz 11 15 PotenzenundVielfache 11 16 Homomorphismen,Isomorphismen 12

Mehr

1 Grundlagen zur Darstellungstheorie

1 Grundlagen zur Darstellungstheorie Seminar Gruppen in der Physik SS 06 Vortrag 1 Gruppen und ihr Darstellung Matthias Nagl 1 Grundlagen zur Darstellungstheorie In diesem Vortrag wird es nur um lineare Darstellungen endlicher Gruppen in

Mehr

Lineare Algebra II, Lösungshinweise Blatt 9

Lineare Algebra II, Lösungshinweise Blatt 9 Prof Dr Katrin Wendland Priv Doz Dr Katrin Leschke Christoph Tinkl SS 27 Lineare Algebra II, Lösungshinweise Blatt 9 Aufgabe (4 Punkte) Sei 2 3 4 A = 5 6 Berechnen Sie A k für alle k N und verifizieren

Mehr

Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik

Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik Universität Karlsruhe (TH) Institut für Algebra und Geometrie Dr. Klaus Spitzmüller Dipl.-Inform. Wolfgang Globke Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik Lösungen zum

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016 Name, Vorname Matrikel-Nr. Aufg. Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 206 Bearbeiten Sie bitte

Mehr

Algebra II, SS 2009 Montag $Id: algebren.tex,v /06/15 14:14:10 hk Exp $ $Id: moduln.tex,v /06/15 14:14:27 hk Exp $

Algebra II, SS 2009 Montag $Id: algebren.tex,v /06/15 14:14:10 hk Exp $ $Id: moduln.tex,v /06/15 14:14:27 hk Exp $ $Id: algebren.tex,v 1.3 2009/06/15 14:14:10 hk Exp $ $Id: moduln.tex,v 1.2 2009/06/15 14:14:27 hk Exp $ 8 Algebren Am Ende der letzten Vorlesung hatten wir den folgenden Satz bewiesen: Satz 8.2 (Klassifikation

Mehr

5 Diagonalisierbarkeit

5 Diagonalisierbarkeit 5 Diagonalisierbarkeit Sei V ein K Vektorraum mit einer Basis B = (v 1,..., v n ) Wiederholung aus 2: Sei f : V V K linear. Stelle f(v j ) für j = 1,..., n dar in der Form a 1j Das n Tupel a j =. a nj

Mehr

Lineare Algebra II Lösungen zu ausgewählten Aufgaben

Lineare Algebra II Lösungen zu ausgewählten Aufgaben Lineare Algebra II Lösungen zu ausgewählten Aufgaben Blatt 2, Aufgabe 3 a) Wir zeigen, daß das Ideal (2, X) kein Hauptideal in Z[X] ist. (Dieses Ideal besteht aus allen Elementen in Z[X], die von der Form

Mehr

Übungsblatt

Übungsblatt Prof Dr Fabien Morel Lineare Algebra II Dr Anand Sawant Sommersemester 2018 Übungsblatt 11 20062018 Aufgabe 1 (2 Punkte) Berechnen Sie eine Jordan-Basis für die Matrix 3 1 1 M = 2 2 0 M 3 (R) 1 1 3 Wir

Mehr

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau 312 LinAlg II Version 0 20. Juni 2006 c Rudolf Scharlau 4.3 Bilinearformen Bilinearformen wurden bereits im Abschnitt 2.8 eingeführt; siehe die Definition 2.8.1. Die dort behandelten Skalarprodukte sind

Mehr

Probeklausur Lineare Algebra 1 Achten Sie auf vollständige, saubere und schlüssige Argumentation! 100 Punkte sind 100%. Inhaltsverzeichnis

Probeklausur Lineare Algebra 1 Achten Sie auf vollständige, saubere und schlüssige Argumentation! 100 Punkte sind 100%. Inhaltsverzeichnis Prof. Dr. Wolfgang Arendt Manuel Bernhard Wintersemester 5/6 Probeklausur Lineare Algebra Achten Sie auf vollständige, saubere und schlüssige Argumentation! Punkte sind %. Inhaltsverzeichnis Aufgabe Aufgabe

Mehr

5. Galoisgruppen. 5. Galoisgruppen 45

5. Galoisgruppen. 5. Galoisgruppen 45 5. Galoisgruppen 45 5. Galoisgruppen Nach dem Studium von Zerfällungskörpern im letzten Kapitel wollen wir nun wieder zu unseren Problemen aus der Einleitung zurückkehren. Dazu erinnern wir uns zunächst

Mehr

Lineare Schieberegisterfolgen

Lineare Schieberegisterfolgen Lineare Schieberegisterfolgen Sei K ein endlicher Körper. Man nehme zwei Vektoren x 0 a0 x n 1, a n 1 K n n 1 x n := a i x i und betrachte die lineare Abbildung : K n K n, die durch i=0, berechne x 0 x

Mehr

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink Lineare Algebra D-MATH, HS 201 Prof. Richard Pink Lösung zu Serie 18 1. Sei V,, ein endlich-dimensionaler unitärer Vektorraum. Zeige, dass zu jeder Sesquilinearform f : V V C eine eindeutige lineare Abbildung

Mehr

Lineare Algebra I Ferienblatt

Lineare Algebra I Ferienblatt Wintersemester 09/0 Prof. Dr. Frank-Olaf Schreyer Dr. Janko Boehm Lineare Algebra I Ferienblatt. Sei, das Euklidische Skalarprodukt auf R. Das Kreuzprodukt a b von Vektoren a, b R ist durch die Formel

Mehr

Darstellungstheorie. Manfred Hörz

Darstellungstheorie. Manfred Hörz Darstellungstheorie Manfred Hörz Die (lineare) Darstellungstheorie versucht schwer zu durchschauende Eigenschaften von gewissen Gruppen (oder Algebren) durch strukturerhaltende Abbildungen auf Matrizen,

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 44 In den folgenden Vorlesungen werden wir unsere Methoden um einige wesentliche Aspekte erweitern, indem wir

Mehr