Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 10 (SS 2011) Abgabetermin: Donnerstag, 23. Juni.

Größe: px
Ab Seite anzeigen:

Download "Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 10 (SS 2011) Abgabetermin: Donnerstag, 23. Juni."

Transkript

1 Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 10 (SS 2011) Abgabetermin: Donnerstag, 23. Juni Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Das Tensorprodukt Siehe auch den Text auf Präsenzblatt P6. Das Tensorprodukt zweier Vektorräume V, W über einem Körper K wird bezeichnet mit V K W oder einfach mit V W Zunächst einige allgemeine Anmerkungen dazu. Für Vektoren v V, w W bezeichnet man mit v w V W das Tensorprodukt von v und w. Dies ist ein Element des Vektorraumes V W. Elemente der Form v w heißen elementare Tensoren. Summen davon heißen Tensoren. Diese haben folgende Eigenschaften: (1) Die elementaren Tensoren v w erzeugen V W als Vektorraum. Dies bedeutet, daß jedes Element von V W geschrieben werden kann als Summe N a l (v l w l ) l=1 mit N > 0, a l K, v l V, w l W. Eine solche Darstellung ist keineswegs eindeutig.

2 2 (2) Es gelten folgende Rechenregeln (a, a K, v, v V, w, w W): Die erste wichtige Regel ist die Tensor-Regel : a(v w) = (av) w = v (aw) Es macht man also keinen Unterschied welchen der Vektoren v, w, v w man mit einem Skalar multipliziert. Dementsprechend braucht man hier keine Klammern setzen. Ferner versteht man wie üblich Punkt vor Strich, oder vor + : v w +v w = (v w)+(v w ) Die zweite wichtige Regel ist die Bilinearität: (av +a v ) w = av w+av w v (aw +a w ) = av w+av w Wie definiert man nun das Tensorprodukt? Kurz gesagt: V W ist der Vektorraum erzeugt von Symbolen v w mit v V, w W für die die Regeln in (2) gelten. Ferner sollen keine weiteren Regeln erlaubt sein. Dies zu präzisieren, ist die Hauptschwierigkeit bei der Definition. Ein Spaßvogel könnte ja einfach die Regel v w = 0 betrachten. Dann wäre das Tensorprodukt trivial, V W = 0 und die Regeln (2) wären sicherlich erfüllt. Es gibt verschiedene Methoden zur Definition die weiter unten besprochen werden. Egal welchen Weg man wählt, schließlich erhält man das Tensorprodukt V W. Es ist nicht trivial, denn es gilt Lemma. Hat V die Basis und W die Basis so hat V W die Basis v i w j (i = 1,...,n) (j = 1,...,m) v i w j ( i = 1,...,n, j = 1,...,m) Korollar. Es gilt dim(v W) = dimv dimw

3 Schließlich seien noch folgende Regeln erwähnt: (V V ) W = V W V W V (W W ) = V W V W Das Gleichheitszeichen = steht hier für kanonische Isomorphie. Dies kann man mit der universellen Eigenschaft präzisieren, nach Basiswahlen wird die Isomorphie aber offensichtlich: Es sei v i eine Basis von V, v i eine Basis von V und w j eine Basis von W. Dann bilden die v i, v i eine Basis von V V und daher ist v i w j, v i w j eine Basis von (V V ) W. Ferner bilden die v i w j eine Basis von V W und die v i w j eine Basis V W. Daraus ergibt sich die Identifikation in Analog für die andere Behauptung. (V V ) W = V W V W 3 Der Rest des Textes behandelt die Definition des Tensorproduktes. Dieser Teil ist etwa für Aufgaben nicht relevant. Es sei aber nochmal auf Präsenzblatt P6 verwiesen.

4 4 Definition des Tensorproduktes als Quotient Wie präzisiert man die Definition? Wie in der Vorlesung angesprochen, gibt es dazu eine allgemeine Konstruktion. Man betrachtet zunächst den Vektorraum T = e v,w K v V, w W Dabei nimmt für jedes Paar (v,w) ein Symbol e v,w und defniert T als den Vektorraum mit diesen Symbolen als Basis. Dies ist im allgemeinen ein riesiger Raum, schon für V = W = K = Q. Aus T soll nun V W gebildet werden, wobei die Elemente e v,w die Tensoren v w ergeben sollen. Dazu betrachtet man einen Unterraum R T der die gewünschten Regeln beschreibt: R ist der Untervektorraum von T der erzeugt wird von den Elementen der Form e av,w ae v,w e v,aw ae v,w e av+a v,w ae v,w a e v,w e v,aw+a w ae v,w a e v,w Man definiert nun V W als den Quotientenraum von T nach R: V W := T/R Quotientenräume wurden in LA1 nur im Ansatz besprochen, daher sei hier Folgendes bemerkt: Es ist T/R = T/ wobei die Äquivalenzrelation (im Sinne des Vorkurses) ist gegeben durch x y x y R Man rechnet nun nach, daß T/ wieder ein Vektorraum ist, der seine Addition und Skalarmultiplikation von T erbt: Man hat [ax+by] = a[x]+b[y] für a, b K und x, y T, wobei [x] die Äquivalenzklasse von x bezeichnet. Die Äquivalenzklassen [e v,w ] der Elemente e v,w nach dieser Äquivalenzrelation sind dann die Elementartensoren: v w := [e v,w ] Für diese Elemente gelten die Regeln aus (2), wie man schnell nachrechnet. Z.B. weil e av+a v,w e av,w e a v,w R folgt e av+a v,w e av,w e a v,w 0

5 5 Daher in T/R. Es folgt bzw. [e av+a v,w e av,w e a v,w] = 0 [e av+a v,w] [e av,w ] [e a v,w] = 0 (av +a v ) w av w a v w = 0 Diese Definition des Tensorproduktes mag anfangs als komplizert und aufwendig erscheinen. Schließlich hat man für V = W = K = R einfach R R = R und hier wird der 1-dimensionale Vektorraum R R als Quotient des Vektorraumes T mit überabzählbarer Dimension nach dem Vektorraum R mit ebenfalls überabzählbarer Dimension definiert. Andererseits drückt diese Konstruktion auf präzise Weise genau das aus, was man unter dem Tensorprodukt versteht: V W wird erzeugt von den v w zusammen mit den Regeln (2) (und keinen weiteren Regeln). Charakterisierung durch eine universelle Eigenschaft Dies wurde in der Vorlesung ausführlich besprochen. Details findet man auf Präsenzblatt P6. Wichtig dabei war, daß je zwei Paare (T, t), die die universelle Eigenschaft haben, kanonisch isomorph sind. Man kann also von dem Tensorprodukt sprechen. Was die oben erwähnte Definition als Quotienten angeht, so stellt man fest, das auch diese Definition die universelle Eigenschaft erfüllt. Genauer: Die Abbildung t: V W V W := T/R (v,w) v w := [e v,w ] ist bilinear und das Paar (T/R, t) hat die universelle Eigenschaft des Tensorproduktes. Damit ist T/R kanonisch isomorph zu jeder anderen Konstruktion von V W. Definition nach Basiswahlen Wir nehmen an, daß V und W endlich-dimensional sind. Man wähle in V eine Basis und in W eine Basis v i w j (i = 1,...,n) (j = 1,...,m)

6 6 Man kann dann V W definieren als den Vektorraum mit der Basis ( v i w j i = 1,...,n, j = 1,...,m) In der Vorlesung wurde hierfür die universelle Eigenschaft nachgewiesen, man erhält also auf diese Weise das Tensorprodukt.

7 7 Wieder einmal nur 3 Aufgaben. Aufgabe 1. Man betrachte in V = K 2 die Basis f 1 = e 1 und in W = K 3 die Basis f 2 = e 1 +e 2 g 1 = e 1 g 2 = e 1 e 2 g 3 = e 1 +e 2 +e 3 Man drücke die Basis f i g j von V W durch die Basis e ij := e i e j aus. Aufgabe 2. Wir betrachten C als Vektorraum über R. Man gebe eine Basis des R-Vektorraumes C R C an. Es seien V, W Vektorräume über C mit dim C V = n und dim C W = m. V und W werden ggf. wie üblich auch als Vektorräume über R aufgefaßt. Man bestimme dim C (V C W), dim R (V C W), dim R (V R W) Aufgabe 3. Man präziere folgende Aussage über Polynomringe: C[x] = C R R[x] Hinweis. Gemeint ist hier, daß Sie einen natürlichen Isomorphismus herstellen, mit der universellen Eigenschaft und/oder Basen. Anmerkung. Die Aussage hat gar nichts mit R und C zu tun. Allgemein gilt für beliebige Körper K L: L[x] = L K K[x]

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 12 (SS 2011) Abgabetermin: Donnerstag, 7. Juli.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 12 (SS 2011) Abgabetermin: Donnerstag, 7. Juli. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 12 (SS 2011) Abgabetermin: Donnerstag, 7. Juli http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Hier

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 6 (WS 2010/2011) Abgabetermin: Donnerstag, 27. November

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 6 (WS 2010/2011) Abgabetermin: Donnerstag, 27. November Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 6 (WS 2010/2011) Abgabetermin: Donnerstag, 27. November http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzugen zur Vorlesung: Der Vollständigkeit

Mehr

Algebra II. Prof. Dr. M. Rost. Übungen Blatt 3 (SS 2016) 1. Abgabetermin: Freitag, 6. Mai.

Algebra II. Prof. Dr. M. Rost. Übungen Blatt 3 (SS 2016) 1. Abgabetermin: Freitag, 6. Mai. Algebra II Prof. Dr. M. Rost Übungen Blatt 3 (SS 2016) 1 Abgabetermin: Freitag, 6. Mai http://www.math.uni-bielefeld.de/~rost/a2 Erinnerungen an die Vorlesung: Im Folgenden werden manchmal einige Definitionen

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 9 (SS 2011) Abgabetermin: Donnerstag, 16. Juni.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 9 (SS 2011) Abgabetermin: Donnerstag, 16. Juni. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 9 (SS 2011) Abgabetermin: Donnerstag, 16. Juni http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Affine

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 8 (SS 2011) Abgabetermin: Donnerstag, 9. Juni.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 8 (SS 2011) Abgabetermin: Donnerstag, 9. Juni. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 8 (SS 2011) Abgabetermin: Donnerstag, 9. Juni http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Hermitesche

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 57 Lineare Abbildungen bei Körperwechsel Definition 57.1. Zu einer linearen Abbildung ϕ: V W zwischen K-Vektorräumen

Mehr

Aufgabe 1. Die ganzen Zahlen Z sind ein R-Vektorraum bezüglich der gewöhnlichen Multiplikation in R.

Aufgabe 1. Die ganzen Zahlen Z sind ein R-Vektorraum bezüglich der gewöhnlichen Multiplikation in R. Aufgabe Die ganzen Zahlen Z sind ein Q-Vektorraum bezüglich der gewöhnlichen Multiplikation in Q. Die reellen Zahlen R sind ein Q-Vektorraum bezüglich der gewöhnlichen Multiplikation in R. Die komplexen

Mehr

Summen und direkte Summen

Summen und direkte Summen Summen und direkte Summen Sei V ein K-Vektorraum. Wie früher erwähnt, ist für beliebige Teilmengen M, N V die Teilmenge M +N V wie folgt definiert M +N = {v+w : v M, w N}. Man sieht leicht, dass i.a. M

Mehr

7 Vektorräume und Körperweiterungen

7 Vektorräume und Körperweiterungen $Id: vektor.tex,v 1.4 2009/05/28 16:37:16 hk Exp $ 7 Vektorräume und Körperweiterungen Bisher haben wir zwar die Existenz und Eindeutigkeit von Tensorprodukten bewiesen, und auch einige ihrer Eigenschaften

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Hinweis:

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

10. TENSORPRODUKTE. Lesen Sie den Text sorgfältig und lösen Sie möglichst viele der Übungsaufgaben. Diskutieren Sie die Lösungen.

10. TENSORPRODUKTE. Lesen Sie den Text sorgfältig und lösen Sie möglichst viele der Übungsaufgaben. Diskutieren Sie die Lösungen. Algebra 2 Daniel Plaumann Technische Universität Dortmund Sommersemester 2017 10. TENSORPRODUKTE Arbeitsblatt Lesen Sie den Text sorgfältig und lösen Sie möglichst viele der Übungsaufgaben. Diskutieren

Mehr

Algebra II. Prof. Dr. M. Rost. Übungen Blatt 14 (SS 2016) 1.

Algebra II. Prof. Dr. M. Rost. Übungen Blatt 14 (SS 2016) 1. Algebra II Prof. Dr. M. Rost Übungen Blatt 14 (SS 2016) 1 http://www.math.uni-bielefeld.de/~rost/a2 Auf diesem Blatt geht es vor allem um Klausur-relevante Themen. Die Aufgaben sind von sehr unterschiedlicher

Mehr

2.3 Basis und Dimension

2.3 Basis und Dimension 23 Basis und Dimension Erinnerung Gegeben ein K-Vektorraum V, ein Vektorensystem x,, x n in V Eine Linearkombination in den x i ist ein Vektor der Form λ x + + λ n x n mit λ i K Die λ i heißen Koeffizienten

Mehr

3 Die Strukturtheorie der Vektorräume

3 Die Strukturtheorie der Vektorräume Vorlesung WS 08 09 Lineare Algebra 1 Prof. Dr. Peter Schneider 3 Die Strukturtheorie der Vektorräume Sei V ein K-Vektorraum Sei v 1,...v r V endlich viele vorgegebene Vektoren. Definition: 1. Jeder Vektor

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 1 (SS 2011) Abgabetermin: Donnerstag, 21. April.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 1 (SS 2011) Abgabetermin: Donnerstag, 21. April. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 1 (SS 2011) Abgabetermin: Donnerstag, 21. April http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Symmetrische

Mehr

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2015/16) 1. Abgabetermin: Donnerstag, 15. Januar.

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2015/16) 1. Abgabetermin: Donnerstag, 15. Januar. Algebra I Prof. Dr. M. Rost Übungen Blatt 10 (WS 2015/16) 1 Abgabetermin: Donnerstag, 15. Januar http://www.math.uni-bielefeld.de/~rost/a1 Erinnerungen an die Vorlesung: Im Folgenden werden manchmal einige

Mehr

7 Vektorräume und Körperweiterungen

7 Vektorräume und Körperweiterungen $Id: vektor.tex,v 1.3 2009/05/25 15:03:47 hk Exp $ 7 Vektorräume und Körperweiterungen Wir sind gerade bei der Besprechung derjenigen Grundeigenschaften des Tensorprodukts, die mit vergleichsweise wenig

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 56 Basiswechsel bei Tensorprodukten Lemma 56.1. Es sei K ein Körper und seien V 1,...,V n endlichdimensionale

Mehr

3 Lineare Abbildungen und Matrizen

3 Lineare Abbildungen und Matrizen 3 Lineare Abbildungen und Matrizen Definition 3.1. Es seien V und W zwei Vektorräume über demselben Zahlkörper k. Eine Abbildung heisst linear, falls gilt i) [ λ k ] [ v V ] [ f (λ v) = λ f ( v) ] ii)

Mehr

Algebraische Körpererweiterungen I

Algebraische Körpererweiterungen I Algebraische Körpererweiterungen I Thomas Schmalfeldt, Florian Schuler Seminar über Galoistheorie, 18. Februar 2009 Inhaltsverzeichnis 1 Charakteristik und Primkörper 2 2 Grad einer Körpererweiterung 3

Mehr

Funktionentheorie. Prof. Dr. M. Rost. Übungen Blatt 6 (WS 2016/17) 1. Abgabetermin: Freitag, 9. Dezember.

Funktionentheorie. Prof. Dr. M. Rost. Übungen Blatt 6 (WS 2016/17) 1. Abgabetermin: Freitag, 9. Dezember. Funktionentheorie Prof. Dr. M. Rost Übungen Blatt 6 (WS 2016/17) 1 Abgabetermin: Freitag, 9. Dezember http://www.math.uni-bielefeld.de/~rost/fun Erinnerungen an die Vorlesung: Im Folgenden werden manchmal

Mehr

5 Vektorräume. (V1) für alle x, y V : x + y = y + x; (V2) für alle x, y, z V : (x + y) + z = x + (y + z);

5 Vektorräume. (V1) für alle x, y V : x + y = y + x; (V2) für alle x, y, z V : (x + y) + z = x + (y + z); 5 Vektorräume Was wir in den vorangegangenen Kapiteln an Matrizen und Vektoren gesehen haben, wollen wir nun mathematisch abstrahieren. Das führt auf den Begriff des Vektorraumes, den zentralen Begriff

Mehr

Kapitel 4. Multilineare Abbildungen. 4.4 Tensorprodukte

Kapitel 4. Multilineare Abbildungen. 4.4 Tensorprodukte Kapitel 4 c M. Roczen und H. Wolter Lineare Algebra individuell Online Ver. 0.52, 3.5.2005 Multilineare Abbildungen In diesem Kapitel werden Abbildungen von Vektorräumen untersucht, die in mehreren Argumenten

Mehr

Lineare Algebra I. - 9.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Korrektur: 2. Klausurtermin:

Lineare Algebra I. - 9.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Korrektur: 2. Klausurtermin: Lineare Algebra I - 9.Vorlesung - rof. Dr. Daniel Roggenkamp & Falko Gauß Korrektur: 2. Klausurtermin: 09.02.2017 Linearkombination von Vektoren lineare Hülle Erzeugendensystem S lineare Unabhängigkeit

Mehr

4.2 Quotientenvektorräume

4.2 Quotientenvektorräume 306 LinAlg II Version 1 6. Juni 2006 c Rudolf Scharlau 4.2 Quotientenvektorräume Zum Verständnis der folgenden Konstruktion ist es hilfreich, sich noch einmal den Abschnitt 1.4 über Restklassen vom Beginn

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 014/015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 7 Abgabetermin: Freitag, 05.1.014, 11 Uhr Aufgabe 7.1 (Vektorräume

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden

Mehr

Vektorräume. Kapitel Definition und Beispiele

Vektorräume. Kapitel Definition und Beispiele Kapitel 3 Vektorräume 3.1 Definition und Beispiele Sei (V,,0) eine abelsche Gruppe, und sei (K, +,, 0, 1) ein Körper. Beachten Sie, dass V und K zunächst nichts miteinander zu tun haben, deshalb sollte

Mehr

6.5 Lineare Abhängigkeit, Basis und Dimension

6.5 Lineare Abhängigkeit, Basis und Dimension 6.5. Lineare Abhängigkeit, Basis und Dimension 123 6.5 Lineare Abhängigkeit, Basis und Dimension Seien v 1,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von

Mehr

Lineare Abbildungen. i=0 c ix i n. K n K m

Lineare Abbildungen. i=0 c ix i n. K n K m Kapitel 4 Lineare Abbildungen In diesem Abschnitt lernen Sie erstmals eine Klasse von strukturerhaltenden Abbildungen kennen. Diese Konzept ist von zentraler Bedeutung in der Algebra. Grob gesagt geht

Mehr

Projektive Räume und Unterräume

Projektive Räume und Unterräume Projektive Räume und Unterräume Erik Slawski Proseminar Analytische Geometrie bei Prof. Dr. Werner Seiler und Marcus Hausdorf Wintersemester 2007/2008 Fachbereich 17 Mathematik Universität Kassel Inhaltsverzeichnis

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 15. April 2018 1/46 Die Dimension eines Vektorraums Satz 2.27 (Basisergänzungssatz) Sei V ein Vektorraum über einem Körper K. Weiter seien v 1,...,

Mehr

1 Der Satz von Poincaré-Birkhoff-Witt. 2 Die freie Algebra. 3 Die universell einhüllende Algebra

1 Der Satz von Poincaré-Birkhoff-Witt. 2 Die freie Algebra. 3 Die universell einhüllende Algebra 1 Der Satz von Poincaré-Birkhoff-Witt Darstellungen von assoziativen Algebren sind oft einfacher zu handhaben als Darstellungen von Lie- Algebren. Die universell einhüllende Algebra einer Lie-Algebra hat

Mehr

2 Grundstrukturen. 2.1 Gruppen. Prof. Dr. Peter Schneider. Vorlesung WS Lineare Algebra 1 2 GRUNDSTRUKTUREN

2 Grundstrukturen. 2.1 Gruppen. Prof. Dr. Peter Schneider. Vorlesung WS Lineare Algebra 1 2 GRUNDSTRUKTUREN Vorlesung WS 08 09 Lineare Algebra 1 Prof. Dr. Peter Schneider 2 Grundstrukturen Notation: Sind M und N zwei Mengen, so heißt die Menge M N := {(m, n) : m M, n N} das cartesische Produkt oder auch die

Mehr

49 Tensorprodukt. Diese Abbildung ist offensichtlich bilinear. Sie hat außerdem die folgende universelle Eigenschaft:

49 Tensorprodukt. Diese Abbildung ist offensichtlich bilinear. Sie hat außerdem die folgende universelle Eigenschaft: 49 Tensorprodukt Zusammenfassung Das Tensorprodukt von Vektorräumen erlaubt die Linearisierung von bilinearen und multilinearen Abbildungen zwischen Vektorräumen. Varianten des Tensorproduktes sind das

Mehr

1 Grundlagen zur Darstellungstheorie

1 Grundlagen zur Darstellungstheorie Seminar Gruppen in der Physik SS 06 Vortrag 1 Gruppen und ihr Darstellung Matthias Nagl 1 Grundlagen zur Darstellungstheorie In diesem Vortrag wird es nur um lineare Darstellungen endlicher Gruppen in

Mehr

15. Quotientenräume und Dimensionsformeln

15. Quotientenräume und Dimensionsformeln 5. Quotientenräume und Dimensionsformeln 73 5. Quotientenräume und Dimensionsformeln Im letzten Kapitel haben wir den zentralen Begriff der Dimension eines Vektorraums eingeführt. Für einen irgendwie konstruierten

Mehr

Mathematik I. Vorlesung 12. Lineare Abbildungen

Mathematik I. Vorlesung 12. Lineare Abbildungen Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 12 Lineare Abbildungen Definition 12.1. Es sei K ein Körper und es seien V und W K-Vektorräume. Eine Abbildung heißt lineare Abbildung,

Mehr

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 23. Mai 2016 Stefan Ruzika 7: Bild, Faser, Kern 23. Mai 2016 1 / 11 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume 4 Basis

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 205/206 Lineare Algebra und analytische Geometrie I Vorlesung 9 Basiswechsel Wir wissen bereits, dass in einem endlichdimensionalen Vektorraum je zwei Basen die gleiche Länge

Mehr

Algebra II. Prof. Dr. M. Rost. Übungen Blatt 4 (SS 2016) 1. Abgabetermin: Freitag, 13. Mai.

Algebra II. Prof. Dr. M. Rost. Übungen Blatt 4 (SS 2016) 1. Abgabetermin: Freitag, 13. Mai. Algebra II Prof. Dr. M. Rost Übungen Blatt 4 (SS 2016) 1 Abgabetermin: Freitag, 13. Mai http://www.math.uni-bielefeld.de/~rost/a2 Erinnerungen an die Vorlesung: Im Folgenden werden manchmal einige Definitionen

Mehr

Aufgabe P33 (Nachrechnen von Eigenschaften linearer Abbildungen des K n ). Gegeben seien folgende Vektoren im R 4 :

Aufgabe P33 (Nachrechnen von Eigenschaften linearer Abbildungen des K n ). Gegeben seien folgende Vektoren im R 4 : Lineare Algebra Prof. Dr. R. Dahlhaus Dr. S. Richter, N. Phandoidaen Wintersemester 8/9 9. Präsenzblatt Lösungen Aufgabe P (Nachrechnen von Eigenschaften linearer Abbildungen des K n ). Gegeben seien folgende

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 15 Unterräume und Dualraum Untervektorräume eines K-Vektorraumes stehen in direkter Beziehung zu Untervektorräumen

Mehr

Kapitel II. Vektorräume. Inhalt: 7. Vektorräume 8. Basis und Dimension 9. Direkte Summen und Faktorräume

Kapitel II. Vektorräume. Inhalt: 7. Vektorräume 8. Basis und Dimension 9. Direkte Summen und Faktorräume Kapitel II. Vektorräume Inhalt: 7. Vektorräume 8. Basis und Dimension 9. Direkte Summen und Faktorräume Die fundamentale Struktur in den meisten Untersuchungen der Linearen Algebra bildet der Vektorraum.

Mehr

3. Übungsblatt Lösungsvorschlag

3. Übungsblatt Lösungsvorschlag Algebraische Geometrie SoSe 2012 Prof. Dr. Urs Hartl Martin Brandenburg 3. Übungsblatt Lösungsvorschlag 2. Seien X 1, X 2 A n (k) algebraische Mengen. Zeigen Sie: (a) I(X 1 X 2 ) = I(X 1 ) I(X 2 ) (b)

Mehr

5.7 Lineare Abhängigkeit, Basis und Dimension

5.7 Lineare Abhängigkeit, Basis und Dimension 8 Kapitel 5. Lineare Algebra 5.7 Lineare Abhängigkeit, Basis und Dimension Seien v,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von v,...,v n, nämlich { n

Mehr

Definitionen. b) Was bedeutet V ist die direkte Summe von U und W? V ist direkte Summe aus U und W, falls V = U + W und U W = {0}.

Definitionen. b) Was bedeutet V ist die direkte Summe von U und W? V ist direkte Summe aus U und W, falls V = U + W und U W = {0}. Technische Universität Berlin Wintersemester 7/8 Institut für Mathematik 9. April 8 Prof. Dr. Stefan Felsner Andrea Hoffkamp Lösungsskizzen zur Nachklausur zur Linearen Algebra I Aufgabe ++ Punkte Definieren

Mehr

2.4 Lineare Abbildungen und Matrizen

2.4 Lineare Abbildungen und Matrizen 24 Lineare Abbildungen und Matrizen Definition 24 Seien V, W zwei K-Vektorräume Eine Abbildung f : V W heißt lineare Abbildung (lineare Transformation, linearer Homomorphismus, Vektorraumhomomorphismus

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 8 Dimensionstheorie Ein endlich erzeugter Vektorraum hat im Allgemeinen ganz unterschiedliche Basen. Wenn

Mehr

Multilineare Algebra

Multilineare Algebra Multilineare Algebra Handout zur Vorlesung Differentialgeometrie Dr. Bernd Ammann, Prof. Chr. Bär Literatur Frank Warner, Foundations of differentiable manifolds and Lie groups, Kapitel 2 1 Tensoren Motivation.

Mehr

Lineare Algebra Weihnachtszettel

Lineare Algebra Weihnachtszettel Lineare Algebra Weihnachtszettel 4..008 Die Aufgaben auf diesem Zettel sind zum Üben während der Weihnachtspause gedacht, sie dienen der freiwilligen Selbstkontrolle. Die Aufgaben müssen nicht bearbeitet

Mehr

7.3 Unitäre Operatoren

7.3 Unitäre Operatoren Wir können jeden Operator T wie folgt schreiben: Dabei gilt T = 1 2 (T + T ) + i( 1 2 i (T T )) (T + T ) = T + T sowie ( 1 2 i (T T )) = 1 2 i (T T) = 1 2 i (T T ). Wir können T also in zwei lineare Operatoren

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 3 (SS 2011) Abgabetermin: Donnerstag, 5. Mai.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 3 (SS 2011) Abgabetermin: Donnerstag, 5. Mai. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 3 (SS 2011) Abgabetermin: Donnerstag, 5. Mai http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Allgemeine

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

5 Analytische Geometrie

5 Analytische Geometrie 5 Analytische Geometrie Die Grundidee der analytischen Geometrie ist es, geometrische Objekte in Räumen mittels linearer Algebra zu beschreiben 51 Affine Räume Definition 511 Ein affiner Raum (AR) über

Mehr

Kapitel II. Vektorräume

Kapitel II. Vektorräume Inhalt der Vorlesung LAAG I Prof. Dr. Arno Fehm TU Dresden WS2017/18 Kapitel II. Vektorräume In diesem ganzen Kapitel sei K ein Körper. 1 Definition und Beispiele 1.1 Beispiel. Ist K = R, so haben wir

Mehr

Klausur zur Vorlesung Lineare Algebra und Geometrie I

Klausur zur Vorlesung Lineare Algebra und Geometrie I Klausur zur Vorlesung Lineare Algebra und Geometrie I Ruhr-Universität Bochum Prof. Dr. Peter Eichelsbacher 3. April 2007, 9.00-13.00 Uhr, 240 Minuten Name und Geburtsdatum: Matrikelnummer: Hinweise: Überprüfen

Mehr

4.4 Simultane Diagonalisierbarkeit und Trigonalisierbarkeit

4.4 Simultane Diagonalisierbarkeit und Trigonalisierbarkeit 4.4 Simultane Diagonalisierbarkeit und Trigonalisierbarkeit Definition 4.41. Eine Familie F linearer Operatoren heißt vertauschbar oder kommutierend, wenn für je zwei Operatoren U,T in F gilt: UT = TU.

Mehr

Tutorium 4. 1 Bilinearformen. Definition. Seien U, V, W Vektorräume. Eine Abbildung Φ : V W U heißt bilinear: Bemerkung. Dies ist äquivalent zu:

Tutorium 4. 1 Bilinearformen. Definition. Seien U, V, W Vektorräume. Eine Abbildung Φ : V W U heißt bilinear: Bemerkung. Dies ist äquivalent zu: 1 Bilinearformen Tutorium 4 Definition. Seien U, V, W Vektorräume. Eine Abbildung Φ : V W U heißt bilinear: Φ(αv + w, x) = α Φ(v, x) + Φ(w, x) und Φ(v, βx + y) = β Φ(v, x) + Φ(v, y) Bemerkung. Dies ist

Mehr

5.1 Affine Räume und affine Abbildungen

5.1 Affine Räume und affine Abbildungen 402 LinAlg II Version 1.2 21. Juli 2006 c Rudolf Scharlau 5.1 Affine Räume und affine Abbildungen Ein affiner Raum besteht aus zwei Mengen P und G zusammen mit einer Relation der Inzidenz zwischen ihnen.

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 15.11.2013 Alexander Lytchak 1 / 12 Erinnerung Eine Abbildung f : V W zwischen reellen Vektorräumen ist linear, wenn

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 13 Projektionen Zu einer direkten Summenzerlegung V = U 1 U 2 nennt man die Abbildung p 1 : V U 1, v 1

Mehr

PROSEMINAR DARSTELLUNGEN ENDLICHEN GRUPPEN: FUNDAMENTALE BEGRIFFEN. pg 1, g 2 q ÞÑ g 1 G g 2,

PROSEMINAR DARSTELLUNGEN ENDLICHEN GRUPPEN: FUNDAMENTALE BEGRIFFEN. pg 1, g 2 q ÞÑ g 1 G g 2, PROSEMINAR DARSTELLUNGEN ENDLICHEN GRUPPEN: FUNDAMENTALE BEGRIFFEN LOUIS-HADRIEN ROBERT 1. Gruppe und Wirkungen Definition 1.1. Eine Gruppe pg, Gq ist eine Menge G mit einer Multiplikation: so dass G :

Mehr

Verständnisfragen: Lineare Algebra und Analytische Geometrie I und II

Verständnisfragen: Lineare Algebra und Analytische Geometrie I und II Verständnisfragen: Lineare Algebra und Analytische Geometrie I und II Matrizen, lineare Gleichungssysteme Wie kommt man von einem linearen Gleichungssystem zu einer Matrix? Was ist die Zeilenstufenform?

Mehr

Übersicht Kapitel 9. Vektorräume

Übersicht Kapitel 9. Vektorräume Vektorräume Definition und Geometrie von Vektoren Übersicht Kapitel 9 Vektorräume 9.1 Definition und Geometrie von Vektoren 9.2 Teilräume 9.3 Linearkombinationen und Erzeugendensysteme 9.4 Lineare Abhängigkeiten

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Definition. Sei K ein Körper, a ij K für 1 i m, 1 j n und b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2......

Mehr

3.2 Unabhängigkeitsstrukturen

3.2 Unabhängigkeitsstrukturen 80 3.2 Unabhängigkeitsstrukturen Unser Ziel ist der Nachweis, daß in Vektorräumen, also in Moduln über Körpern, Basen existieren und zwei endliche Basen gegebenenfalls von derselben Ordnung sind. (Basen

Mehr

Affine Geometrie (Einfachere, konstruktive Version)

Affine Geometrie (Einfachere, konstruktive Version) Affine Geometrie (Einfachere, konstruktive Version) Def. Affiner Raum der Dimension n über Körper K ist nach Definition K n. Bemerkung. Man könnte Theorie von affinen Raumen auch axiomatisch aufbauen mit

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 7 Die Lösungsmenge eines homogenen linearen Gleichungssystems in n Variablen über einem Körper K ist ein Untervektorraum

Mehr

Kapitel 4. Multilineare Abbildungen. 4.4 Tensorprodukte

Kapitel 4. Multilineare Abbildungen. 4.4 Tensorprodukte Kapitel 4 Lineare Algebra individuell Online-Fassung, Ver. 0.42 Internes Material, 25.4.2004 c M. Roczen und H. Wolter, W. Pohl, D.Popescu, R. Laza Multilineare Abbildungen In diesem Kapitel werden Abbildungen

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Mathematik I. Vorlesung 11. Lineare Unabhängigkeit

Mathematik I. Vorlesung 11. Lineare Unabhängigkeit Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 11 Lineare Unabhängigkeit Definition 11.1. Es sei K ein Körper und V ein K-Vektorraum. Dann heißt eine Familie von Vektoren v i, i I,

Mehr

Musterlösung zur Probeklausur Lineare Algebra I

Musterlösung zur Probeklausur Lineare Algebra I Musterlösung zur Probeklausur Lineare Algebra I Aufgabe 1 5 Punkte: Welche der folgenden Aussagen sind wahr bzw. falsch? Setzen Sie in jeder Zeile genau ein Kreuz. Für jede korrekte Antwort erhalten Sie

Mehr

Leitfaden 20. t = dim V dimu.

Leitfaden 20. t = dim V dimu. Leitfaden 2 Einschub (Nachtrag zur LA I): Komplementärbasen Sei V ein Vektorraum, U ein Unterraum Eine Folge (v,, v t ) von Vektoren aus V heißt linear unabhängig modulo U, falls folgendes gilt: sind p

Mehr

Vektorräume. Stefan Ruzika. 24. April Mathematisches Institut Universität Koblenz-Landau Campus Koblenz

Vektorräume. Stefan Ruzika. 24. April Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 3: Vektorräume 24. April 2016 1 / 20 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume Erinnerung:

Mehr

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen.

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen. 1. Der Vektorraumbegriff...1 2. Unterräume...2. Lineare Abhängigkeit/ Unabhängigkeit... 4. Erzeugendensystem... 5. Dimension...4 6. Austauschlemma...5 7. Linearität von Abbildungen...6 8. Kern und Bild

Mehr

2.3 Basis und Dimension

2.3 Basis und Dimension Lineare Algebra I WS 205/6 c Rudolf Scharlau 65 2.3 Basis und Dimension In diesem zentralen Abschnitt werden einige für die gesamte Lineare Algebra fundamentale Grundbegriffe eingeführt: Lineare Abhängigkeit

Mehr

2.1 Vektorräume. 1. für alle x, y U ist x + y U und. 2. für alle x U und alle λ R ist λx U. O V (= O U) U, und dass ( 1) x U, also x U.

2.1 Vektorräume. 1. für alle x, y U ist x + y U und. 2. für alle x U und alle λ R ist λx U. O V (= O U) U, und dass ( 1) x U, also x U. Vektorräume Definition Eine nicht leere Menge V, für die eine Addition (dh eine Rechenvorschrift + derart, dass a + b V für alle a, b V ist und eine skalare Multiplikation (dh λa V für alle λ R (λ ist

Mehr

Wiederholung: lineare Abbildungen

Wiederholung: lineare Abbildungen Wiederholung: lineare Abbildungen Def Es seien (V,+, ) und (U, +, ) zwei Vektorräume Eine Abbildung f : V U heißt linear, falls für alle Vektoren v 1, v 2 V und für jedes λ R gilt: (a) f (v 1 + v 2 ) =

Mehr

8 Eigenwerttheorie I 8. EIGENWERTTHEORIE I 139. Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet:

8 Eigenwerttheorie I 8. EIGENWERTTHEORIE I 139. Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet: 8. EIGENWERTTHEORIE I 139 8 Eigenwerttheorie I Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet: K[x] = Abb[N, K] = {P ; P = a n x n + a n 1 x n 1 + + a 0 ; a

Mehr

4 Vektorräume. 4.1 Definition. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48. Sei K ein Körper.

4 Vektorräume. 4.1 Definition. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48. Sei K ein Körper. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48 4 Vektorräume 4.1 Definition Sei K ein Körper. Definition: Ein Vektorraum über K, oder kurz ein K-Vektorraum, ist ein Tupel (V,+,, 0 V ) bestehend aus

Mehr

1 Euklidische und unitäre Vektorräume

1 Euklidische und unitäre Vektorräume 1 Euklidische und unitäre Vektorräume In diesem Abschnitt betrachten wir reelle und komplexe Vektorräume mit Skalarprodukt. Dieses erlaubt uns die Länge eines Vektors zu definieren und (im Fall eines reellen

Mehr

Projektive algebraische Mengen

Projektive algebraische Mengen Projektive algebraische Mengen Rostislav Doganov, Stefan Lörwald 29. April 2009 1 Motivation An dem anen Raum stört uns die Möglichkeit, dass Geraden, Flächen etc. parallel zueinander liegen können und

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 21 Algebren Definition 21.1. Seien R und A kommutative Ringe und sei R A ein fixierter Ringhomomorphismus. Dann nennt man A eine

Mehr

D-Math/Phys Lineare Algebra I HS 2017 Dr. Meike Akveld. Clicker Fragen

D-Math/Phys Lineare Algebra I HS 2017 Dr. Meike Akveld. Clicker Fragen D-Math/Phys Lineare Algebra I HS 2017 Dr. Meike Akveld Clicker Fragen Frage 1 Die Aussage Dieser Satz ist falsch ist wahr falsch Dies ist die einfachste Form des Lügner-Paradoxes ist der folgende selbstbezügliche

Mehr

β 1 x :=., und b :=. K n β m

β 1 x :=., und b :=. K n β m 44 Lineare Gleichungssysteme, Notations Betrachte das lineare Gleichungssystem ( ) Sei A = (α ij ) i=,,m j=,n α x + α x + + α n x n = β α x + α x + + α n x n = β α m x + α m x + + α mn x n = β m die Koeffizientenmatrix

Mehr

3 Moduln. Analogon zu K-Vektorräumen, aber statt über einem Körper, über einem Ring definiert.

3 Moduln. Analogon zu K-Vektorräumen, aber statt über einem Körper, über einem Ring definiert. 3 Moduln Analogon zu K-Vektorräumen, aber statt über einem Körper, über einem Ring definiert. Beispiele: (1) (Z n, +, (Z, )), wobei (Z, ) Skalarmultiplikation. k (a 1,...,a n )=(ka 1,...,ka n )inz. (2)

Mehr

Lineare Abbildungen. i=0 c ix i n. K n K m. linear. Wir können also jeder Matrix eine lineare Abbildung zuordnen.

Lineare Abbildungen. i=0 c ix i n. K n K m. linear. Wir können also jeder Matrix eine lineare Abbildung zuordnen. Kapitel 4 Lineare Abbildungen In diesem Abschnitt lernen Sie erstmals eine Klasse von strukturerhaltenden Abbildungen kennen. Diese Konzept ist von zentraler Bedeutung in der Algebra. Grob gesagt geht

Mehr

Lineare Algebra Weihnachtszettel

Lineare Algebra Weihnachtszettel Lineare Algebra Weihnachtszettel 0..08 Die Aufgaben auf diesem Zettel sind zum Üben während der Weihnachtspause gedacht, sie dienen der freiwilligen Selbstkontrolle. Die Aufgaben müssen nicht bearbeitet

Mehr

6.2 Basen. Wintersemester 2013/2014. Definition Seien V ein K-Vektorraum, n N 0 und v 1,..., v n V. (a) Man nennt

6.2 Basen. Wintersemester 2013/2014. Definition Seien V ein K-Vektorraum, n N 0 und v 1,..., v n V. (a) Man nennt Universität Konstanz Fachbereich Mathematik und Statistik Wintersemester 213/214 Markus Schweighofer Lineare Algebra I 6.2 Basen Definition 6.2.1. Seien V ein K-Vektorraum, n N und v 1,..., v n V. (a)

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof Dr H Brenner Osnabrück SS 26 Lineare Algebra und analytische Geometrie II Vorlesung 2 Orthogonalität Mit dem Skalarprodukt kann man die Eigenschaft zweier Vektoren, aufeinander senkrecht zu stehen,

Mehr

technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller

technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 4.3 und 4.4

Mehr

5 Lineare Abbildungen

5 Lineare Abbildungen 5 Lineare Abbildungen Pink: Lineare Algebra 2014/15 Seite 59 5 Lineare Abbildungen 5.1 Definition Gegeben seien Vektorräume U, V, W über einem Körper K. Definition: Eine Abbildung f : V W heisst K-linear,

Mehr

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 5 (WS 2015/16) 1. Abgabetermin: Donnerstag, 26. November.

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 5 (WS 2015/16) 1. Abgabetermin: Donnerstag, 26. November. Algebra I Prof. Dr. M. Rost Übungen Blatt 5 (WS 2015/16) 1 Abgabetermin: Donnerstag, 26. November http://www.math.uni-bielefeld.de/~rost/a1 Erinnerungen an die Vorlesung: Im Folgenden werden manchmal einige

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 4

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 4 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 4 4. (Frühjahr 27, Thema, Aufgabe ) Zeigen Sie, dass die beiden folgenden Unterräume des R 3 übereinstimmen:

Mehr

1 Lineare Abbildungen

1 Lineare Abbildungen 1 Lineare Abbildungen Definition 1 Sei K ein Körper und V und W K-Vektoräume. Eine Abbildung f : V W heisst linear oder Homomoprhismus, wenn gilt: fv 1 + v 2 = fv 1 + fv 2 v 1, v 2 V fλv = λfv λ K, v V

Mehr

1 Definition und Grundeigenschaften

1 Definition und Grundeigenschaften Christian Bönicke Vektorbündel I Im Folgenden sei immer F = R, C oder H. 1 Definition und Grundeigenschaften 1.1 Definition Ein k-dimensionales Vektorbündel ξ über F ist ein Bündel (E, p, B) mit folgenden

Mehr