Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2015/16) 1. Abgabetermin: Donnerstag, 15. Januar.

Größe: px
Ab Seite anzeigen:

Download "Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2015/16) 1. Abgabetermin: Donnerstag, 15. Januar."

Transkript

1 Algebra I Prof. Dr. M. Rost Übungen Blatt 10 (WS 2015/16) 1 Abgabetermin: Donnerstag, 15. Januar Erinnerungen an die Vorlesung: Im Folgenden werden manchmal einige Definitionen und Bemerkungen aus der Vorlesung zusammengefaßt. Man kann die meisten Dinge auch in Büchern oder auf den auf der Homepage angegebenen Links nachlesen. Anmerkungen und Hinweise sind ausdrücklich erwünscht (per oder in der Vorlesung). Zum Grad einer Erweiterung K( d i ) Hier sind Konsequenzen der Überlegungen des letzten Blattes (siehe auch Vorlesung). Es sei K ein Körper mit chark 2. Ferner seien d 1,...,d n K und es sei H ein Oberkörper mit d i H. Wir betrachten den Körper L = K( d 1,..., d n ) H Wie bestimmt man den Grad von L/K? Es seien und damit Wir haben also einen Körperturm L k = K( d 1,..., d k ) L k = L k 1 [ d k ] L = L n /L n 1 / /L 0 = K von Erweiterungen vom Grad 1 oder 2, je nachdem ob L k = L k 1 (also d k L k 1 ) oder nicht. Nach der Gradformel ist [L : K] eine Potenz von 2, mit dem maximalen Wert 2 n. 1 Fassung vom 13. Januar (Korrektur von Aufgabe 2 (2), H 2 H 3 in Aufgabe 3 (3))

2 2 Zunächst eine Folgerung aus Blatt 9, Proposition 14: Korollar 1. Ein Element e K ist ein Quadrat in L genau dann wenn eines der Elemente n e mit r i = 0,1 ein Quadrat in K ist. Beweis. Die Rückrichtung ist klar, weil die d i in L alle Quadrate sind. i=1 Die andere Behauptung folgt induktiv aus Blatt 9, Proposition 14 (dem Fall n = 1). Es sei n 1 und e K sei in L ein Quadrat. Man betrachte die Erweiterung d r i i K := L n 1 L = K ( d n ) Als Element von K liegt e sicherlich in K. Nach Blatt 9, Proposition 14 ist e oder ed n ein Quadrat in K. Also ist e = ed rn n mit geeignetem r n = 0,1 ein Quadrat in L n 1. Nach Induktion gibt es r i = 0,1 so daß e n 1 i=1 ein Quadrat in K ist. Die Behauptung ist nun klar. Korollar 2. Es gilt [L:K] < 2 n genau dann wenn es eine nicht-leere Menge von Indices i j (j = 1,...,r, r > 0) gibt mit d i1 d ir = c 2 für ein c K. Beweis. Gibt es eine Relation d r i i d i1 d ir = c 2 mit r > 0, so folgt di1 d ir = ±c Man kann daher eine Quadratwurzel bei der Bildung von L weglassen, und somit gilt [L:K] 2 n 1. (Es gilt L k = L k 1 mit k = i r.) Umgekehrt, es gelte [L:K] < 2 n. Dann muß L k = L k 1 für ein k gelten, d.h. d k ist in L k 1 ein Quadrat. Nach Korollar 1 ist ein Produkt der Form d k k 1 i=1 d r i i

3 3 mit r i = 0,1 ein Quadrat in K. Die Behauptung ist nun klar. Hier ist eine andere Formulierung von Korollar 2: Korollar 3. Es sei K ein Körper mit chark 2. Ferner seien d 1,...,d n K und es sei H ein Oberkörper mit d i H. Wir betrachten den Körper Dann gilt L = K( d 1,..., d n ) H [L:K] = 2 n genau dann wenn die d i multiplikativ unabhängig modulo Quadraten sind, genauer, wenn gilt: Sind e i Z und gilt für ein c K, so folgt d e i i = c 2 e 1 e 2 e n 0 mod 2 Beweis. Dieswirdklar,nachdemmandiee i durchihrerestklassen mod 2ersetzt: Mit e i = r i +2f i wird zu d r i i = c 2, d e i i = c 2 c = c d f i i Diese multiplikative Unabhängigkeit modulo Quadraten erinnert an die Bedingung der linearen Unabhängigkeit von Vektoren. Sie ist tatsächlich ein Spezialfall. Dazu eine allgemeine Bemerkung. Abelsche Gruppen vom Exponenten p sind F p -Vektorräume Zunächst eine Definition: Definition 4. Der Exponent einer (endlichen) Gruppe ist die kleinste natürliche Zahl n > 0 mit g n = 1 für alle g G. Equivalent: Der Exponent ist das kleinste gemeinsame Vielfache der Ordnungen der Elemente von G.

4 4 Der Exponent ist ein Teiler der Gruppenordnung G (Satz von Lagrange). Hat G den Exponenten n, so kann man in Produkten g e 1 1 ger r die Exponenten e i Z ohne weiteres als Elemente von Z/nZ betrachten. Ist G abelsch und ist die Gruppenverknüpfung additiv geschrieben, so kann man den Exponenten auch schreiben als das kleinste n > 0 mit n G = 0 Wie bereits in der Vorlesung bemerkt, sind die abelschen Gruppen genau die Z- Moduln. Dazu schreibe man die Gruppenverknüpfung besser additiv und definiert k g = g + +g, etc. Entsprechend sind die abelschen Gruppen mit Exponenten n genau die Z/nZ- Moduln. Ein netter Spezialfall tritt auf, falls der Exponent eine Primzahl p ist. Dann ist die Gruppe ein Z/pZ-Modul, also ein F p -Vektorraum. Man kann dann die bekannten Begriffe aus der Linearen Algebra anwenden. Der Klarheit sei bemerkt, daß die triviale Gruppe den Exponenten 1 hat. Mit Ausnahme der triviale Gruppe bzw. des 0-dimensionalen Vektorraumes sind die abelschen Gruppen vom Exponenten p genau die F p -Vektorräume. Ein Beispiel hierzu ist die Quadratklassengruppe: Q(K) = K /(K ) 2 Sie hat den Exponenten 2, ist also (additiv geschrieben) ein F 2 -Vektorraum. Die multiplikative Unabhängigkeit modulo Quadraten wird nach Übergang zu den Quadratklassen zur linearen Unabhängigkeit aus der Linearen Algebra.

5 5 Die Norm N L/K (für quadratische Erweiterungen) Es sei chark 2 und L/K eine quadratische Erweiterung. Lemma 5. Es gibt genau einen nicht-trivialen K-Automorphismus σ: L L Er heißt die kanonische Involution der quadratischen Erweiterung L/K. Ist L = K( d), so gilt σ(a+b d) = a b d Beweis. (Schon in der Vorlesung vor einiger Zeit besprochen.) Man hat L K[t]/(t 2 d) für ein d K. Mittels der universellen Eigenschaften des Polynomringes und von Quotienten-Gruppen sieht man, daß alle K-Automorphismen von K[t]/(t 2 d) gegeben sind durch t ±t. Dies ergibt die Identität und eben σ. Wie bei den komplexen Zahlen heißt σ(x) das Konjugierte von x L. Weil σ ein Ringhomomorphismus ist, gilt natürlich Man schreibt auch oft wie bei den komplexen Zahlen. Für x L ist die Norm definiert als σ(xy) = σ(x)σ(y) σ(x) = x N(x) = N L/K (x) = xσ(x) Wegen (a+b d)(a b d) = a 2 b 2 d liegt die Norm N(x) immer im Grundkörper K. Ferner gilt N(xy) = N(x)N(y) Sie kennen das alles von C/R und es gibt hier algebraisch wirklich keinen Unterschied. Festgehalten werden soll hier: Lemma 6. Die Norm definiert einen Homomorphismus N L/K : L K N L/K = xσ(x) = x x von der multiplikativen Gruppe von L in die multiplikative Gruppe von K.

6 6 Man beachte (N C/R (i) = +1) N K( d)/k ( d) = d Man definiert übrigens auch noch die Spur (trace): T L/K = Spur L/K : L K T L/K = x+σ(x) = x+ x Bei C/R ist der Realteil offensichtlich 1/2 die Spur. Die Norm und Spur kann man auch für endliche von beliebigen Grad definieren. Dazu an anderer Stelle mehr.

7 Aufgabe 1. Es sei chark 2 und es sei L = K( a, b) eine biquadratische Erweiterung, genauer: L/K ist eine Körpererweiterung vom Grad 4 und für gewisse a,b K gilt L = K(α,β) mit α 2 = a, β 2 = b. (1) Man bestimme alle Körper-Automorphismen η von L mit η(c) = c für c K. Hinweis. Wenn Sie das richtige Ergebnis haben, wird offensichtlich sein, daß die Gruppe Aut K (L) dieser Automorphismen eine abelsche Gruppe mit 4 Elementen und dem Exponenten 2 ist. Als F 2 -Vektorraum mit 4 Elementen ist sie somit isomorph zu (Z/2Z) 2. (2) Für jeden nicht-trivialen solchen Automorphismus η von L/K gebe man den Fixkörper L η = {z L η(z) = z} an. 7 Aufgabe 2. Es sei L/K eine quadratische Erweiterung (chark 2 und N, σ wie oben). Man zeige, daß für x L äquivalent ist: (1) N(x) = 1 (2) Es gibt ein y L mit x = y σ(y) Hinweis. Zu (1) (2): Probieren Sie erst mal selbst, dann versuchen Sie es mit y = x+1. Anmerkung. Die Aussage der Aufgabe ist der Spezialfall des sog. Hilbert Satz 90 für quadratische Erweiterungen.

8 8 Notationen: m-te Einheitswurzel: ζ m = e 2πi m C Die Potenzen ζ h m sind die Lösungen von tm = 1. Aufgabe 3. Man zeige (1) (2) (3) Es seien Q(ζ 4 ) = Q( 1) Q(ζ 8 ) = Q( 1, 2) L = Q(ζ 8 ), H 1 = Q( 1), H 2 = Q( 2), H 3 = Q( 2) Man bestimme für i = 1, 2, 3. N L/Hi (ζ 8 ) H i Hinweis. Für Teil (1) gibt es keine Punkte... Aufgabe 4. Es seien und Man zeige für alle k > 2: (1) (2) α k = ζ 2 k L k = Q(α k ) C [L k+1 :L k ] = 2 N Lk+1 /L k (α k+1 ) = α k Hinweis. Die Fälle k 2 sind in Aufgabe 3 behandelt. (2) ist als Hilfe für einen induktiven Beweis von 1 gedacht.

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 11 (WS 2015/16) 1. Abgabetermin: Donnerstag, 22. Januar.

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 11 (WS 2015/16) 1. Abgabetermin: Donnerstag, 22. Januar. Algebra I Prof. Dr. M. Rost Übungen Blatt 11 (WS 2015/16) 1 Abgabetermin: Donnerstag, 22. Januar http://www.math.uni-bielefeld.de/~rost/a1 Erinnerungen an die Vorlesung: Im Folgenden werden manchmal einige

Mehr

Algebra II. Prof. Dr. M. Rost. Übungen Blatt 3 (SS 2016) 1. Abgabetermin: Freitag, 6. Mai.

Algebra II. Prof. Dr. M. Rost. Übungen Blatt 3 (SS 2016) 1. Abgabetermin: Freitag, 6. Mai. Algebra II Prof. Dr. M. Rost Übungen Blatt 3 (SS 2016) 1 Abgabetermin: Freitag, 6. Mai http://www.math.uni-bielefeld.de/~rost/a2 Erinnerungen an die Vorlesung: Im Folgenden werden manchmal einige Definitionen

Mehr

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 12 (WS 2015/16) 1. Abgabetermin: Donnerstag, 28. Januar.

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 12 (WS 2015/16) 1. Abgabetermin: Donnerstag, 28. Januar. Algebra I Prof. Dr. M. Rost Übungen Blatt 12 (WS 2015/16) 1 Abgabetermin: Donnerstag, 28. Januar http://www.math.uni-bielefeld.de/~rost/a1 Erinnerungen an die Vorlesung: Im Folgenden werden manchmal einige

Mehr

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG MATHEMATISCHES INSTITUT SEMINAR: QUADRATISCHE FORMEN ÜBER DEN RATIONALEN ZAHLEN SOMMERSEMESTER 2007 DOZENT: PROF. DR. KAY WINGBERG ASSISTENT: JOHANNES BARTELS KAPITEL

Mehr

Übungsblatt 11. Hausübungen

Übungsblatt 11. Hausübungen Übungsblatt 11 Hausübungen Die Hausübungen müssen bis Mittwoch, den 09.01.19, um 18:00 Uhr in den Briefkasten Algebra mit Ihrer Übungsgruppennummer im Mathematischen Institut, Raum 301 abgegeben werden.

Mehr

Algebra II. Prof. Dr. M. Rost. Übungen Blatt 4 (SS 2016) 1. Abgabetermin: Freitag, 13. Mai.

Algebra II. Prof. Dr. M. Rost. Übungen Blatt 4 (SS 2016) 1. Abgabetermin: Freitag, 13. Mai. Algebra II Prof. Dr. M. Rost Übungen Blatt 4 (SS 2016) 1 Abgabetermin: Freitag, 13. Mai http://www.math.uni-bielefeld.de/~rost/a2 Erinnerungen an die Vorlesung: Im Folgenden werden manchmal einige Definitionen

Mehr

In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0.

In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0. Kapitel 5: Die Einheitengruppe von Z/Z und Primitivwurzeln modulo In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0. 16

Mehr

n (als K 0 -Vektorraum) und insbesondere

n (als K 0 -Vektorraum) und insbesondere Algebra I c Rudolf Scharlau, 2002 2010 209 4.3 Endliche Körper. Wir beschäftigen uns in diesem Abschnitt mit endlichen Körpern. Zum einen kann hier die allgemeine Theorie (auch die der folgenden Abschnitte

Mehr

Algebraische Körpererweiterungen I

Algebraische Körpererweiterungen I Algebraische Körpererweiterungen I Thomas Schmalfeldt, Florian Schuler Seminar über Galoistheorie, 18. Februar 2009 Inhaltsverzeichnis 1 Charakteristik und Primkörper 2 2 Grad einer Körpererweiterung 3

Mehr

Lösungen zur Algebra-Klausur vom Es sei G eine Gruppe, die von je einem Element der Ordnung 7, 11 und 13 erzeugt wird.

Lösungen zur Algebra-Klausur vom Es sei G eine Gruppe, die von je einem Element der Ordnung 7, 11 und 13 erzeugt wird. Aufgabe 1 Lösungen zur Algebra-Klausur vom 3.4.9 Es sei G eine Gruppe, die von je einem Element der Ordnung 7, 11 und 13 erzeugt wird. a) Zeigen Sie, dass es keine transitive Operation von G auf einer

Mehr

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 5 (WS 2015/16) 1. Abgabetermin: Donnerstag, 26. November.

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 5 (WS 2015/16) 1. Abgabetermin: Donnerstag, 26. November. Algebra I Prof. Dr. M. Rost Übungen Blatt 5 (WS 2015/16) 1 Abgabetermin: Donnerstag, 26. November http://www.math.uni-bielefeld.de/~rost/a1 Erinnerungen an die Vorlesung: Im Folgenden werden manchmal einige

Mehr

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 4 (WS 2015/16) 1. Abgabetermin: Donnerstag, 19. November.

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 4 (WS 2015/16) 1. Abgabetermin: Donnerstag, 19. November. Algebra I Prof. Dr. M. Rost Übungen Blatt 4 (WS 2015/16) 1 Abgabetermin: Donnerstag, 19. November http://www.math.uni-bielefeld.de/~rost/a1 Erinnerungen an die Vorlesung: Im Folgenden werden manchmal einige

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 23 Die Gradformel Satz 1. Seien K L und L M endliche Körperweiterungen. Dann ist auch K M eine endliche Körpererweiterung und

Mehr

19 Körperhomomorphismen

19 Körperhomomorphismen 19 Körperhomomorphismen Definition und Bemerkung 19.1. (i) Seien K, L Körper. Ein Ringhomomorphismus σ : K L heißt Körperhomomorphismus. Die Menge der Körperhomomorphismen K L bezeichnen wir mit Hom(K,

Mehr

Algebra II. Prof. Dr. M. Rost. Übungen Blatt 14 (SS 2016) 1.

Algebra II. Prof. Dr. M. Rost. Übungen Blatt 14 (SS 2016) 1. Algebra II Prof. Dr. M. Rost Übungen Blatt 14 (SS 2016) 1 http://www.math.uni-bielefeld.de/~rost/a2 Auf diesem Blatt geht es vor allem um Klausur-relevante Themen. Die Aufgaben sind von sehr unterschiedlicher

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 12 (SS 2011) Abgabetermin: Donnerstag, 7. Juli.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 12 (SS 2011) Abgabetermin: Donnerstag, 7. Juli. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 12 (SS 2011) Abgabetermin: Donnerstag, 7. Juli http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Hier

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 9 Graduierte Körpererweiterungen Definition 9.1. Es sei K ein Körper und D eine kommutative Gruppe. 1 Eine K-Algebra A heißt D-graduiert,

Mehr

3. Übungsblatt Lösungsvorschlag

3. Übungsblatt Lösungsvorschlag Algebraische Geometrie SoSe 2012 Prof. Dr. Urs Hartl Martin Brandenburg 3. Übungsblatt Lösungsvorschlag 2. Seien X 1, X 2 A n (k) algebraische Mengen. Zeigen Sie: (a) I(X 1 X 2 ) = I(X 1 ) I(X 2 ) (b)

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 3 (WS 2010/2011) Abgabetermin: Donnerstag, 4. November.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 3 (WS 2010/2011) Abgabetermin: Donnerstag, 4. November. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 3 (WS 2010/2011) Abgabetermin: Donnerstag, 4. November http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Im Folgenden

Mehr

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante

Mehr

Übungsblatt 12: Abschluss

Übungsblatt 12: Abschluss Übungsblatt 1: Abschluss 1. PRIMITIVE ELEMENTE V 1.1. (a) Sei E K eine endliche Galoiserweiterung. Zeigen Sie (mit Hilfe der Galoiskorrespondenz), dass für α E die beiden Aussagen äquivalent sind: (i)

Mehr

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte)

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte) Aufgabe 1 (6 Punkte) Einführung in Algebra und Zahlentheorie svorschläge zur Klausur vom 23.09.2016 a) Bestimmen Sie das multiplikativ inverse Element zu 22 in Z/61Z. b) Finden Sie ein x Z mit folgenden

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 8 (SS 2011) Abgabetermin: Donnerstag, 9. Juni.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 8 (SS 2011) Abgabetermin: Donnerstag, 9. Juni. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 8 (SS 2011) Abgabetermin: Donnerstag, 9. Juni http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Hermitesche

Mehr

1 2. Körpererweiterungen

1 2. Körpererweiterungen 1 2. Körpererweiterungen 1 2. 1. Definition: Sind K, L Körper und i: K L ein Ringhomomorphismus, so ist i injektiv, wir fassen K vermöge i als Unterkörper von L auf, schreiben dafür L K und nennen L eine

Mehr

14 Kreisteilungskörper

14 Kreisteilungskörper 14 Kreisteilungskörper Wir wenden unsere Ergebnisse auf einen Fall an, mit dem die Algebraische Zahlentheorie begann und der bis heute im Zentrum der Forschung steht. 14.1 Erweiterungen mit Einheitswurzeln

Mehr

Klausur vom Algebra I. Rolf Farnsteiner

Klausur vom Algebra I. Rolf Farnsteiner Klausur vom 31.03.2010 Algebra I Rolf Farnsteiner Lösungen Daiva Pučinskaitė Aufgabe 1. Sei p R ein Primideal eines Integritätsbereichs R. Beweisen Sie folgende Aussagen: (1 S := R \ p ist eine multiplikativ

Mehr

Körper- und Galoistheorie. Nachklausur mit Lösungen

Körper- und Galoistheorie. Nachklausur mit Lösungen Fachbereich Mathematik/Informatik 14. Januar 2012 Prof. Dr. H. Brenner Körper- und Galoistheorie Nachklausur mit en Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben

Mehr

21 Körperhomomorphismen

21 Körperhomomorphismen 21 Körperhomomorphismen Definition 21.1. Seien K, L, M... Körper. (i) Ein Ringhomomorphismus σ : K L heißt Körperhomomorphismus. Die Menge der Körperhomomorphismen K L bezeichnen wir mit Hom(K, L). Ein

Mehr

Einführung in Algebra und Zahlentheorie

Einführung in Algebra und Zahlentheorie Institut für Algebra und Geometrie 05. September 2013 Klausur zur Vorlesung Einführung in Algebra und Zahlentheorie Name, Vorname: Matrikelnummer: Fachrichtung: Semester: Zur Bearbeitung: Verwenden Sie

Mehr

Galois-Erweiterungen und Hauptsatz der Galois-Theorie

Galois-Erweiterungen und Hauptsatz der Galois-Theorie Galois-Erweiterungen und Hauptsatz der Galois-Theorie Stephanie Zube Andy Schärer 8. April 2009 Inhaltsverzeichnis 1 Erinnerungen 2 2 Galois-Erweiterungen 3 3 Der Hauptsatz der Galois-Theorie 5 A Literaturverzeichnis

Mehr

Konstruierbarkeit des n-ecks

Konstruierbarkeit des n-ecks Proseminar Körpertheorie Vortrag 9 Konstruierbarkeit des n-ecks Dennis Petersen-Endrulat 27.06.2013 Prof. Dr. K. Wingberg, K. Hübner 9.1 2-Gruppen Proposition 9.1.1 Sei konstruierbar. z C konstruierbar

Mehr

Übungen zu Algebra, WS 2015/16

Übungen zu Algebra, WS 2015/16 Übungen zu Algebra, WS 2015/16 Christoph Baxa 1) Es seien G 1,..., G n Gruppen. Beweisen Sie: Ist σ S n, so ist G σ(1) G σ(n) = G1 G n. 2) Beweisen Sie: Sind G 1,..., G n und H 1,..., H n Gruppen mit der

Mehr

für alle a, b, x, y R.

für alle a, b, x, y R. Algebra I 13. April 2008 c Rudolf Scharlau, 2002 2008 33 1.5 Ringe Definition 1.5.1 Ein Ring ist eine Menge R zusammen mit zwei Verknüpfungen + und, genannt Addition und Multiplikation, für die folgendes

Mehr

5. Äquivalenzrelationen

5. Äquivalenzrelationen 36 Andreas Gathmann 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will so kann es sinnvoll sein zunächst kleinere einfachere Mengen (bzw. Gruppen) zu betrachten

Mehr

Algebra I. Gal(K/Q), Gal(K/Q), a σa.

Algebra I. Gal(K/Q), Gal(K/Q), a σa. WS 05/06 Priv.-Doz. Dr. S. Wewers Andreas Martin Algebra I 12. Übungsblatt Aufgabe 1: (6 1 P) Sei ζ = ζ 7 = exp(2πi/7) und K := Q[ζ]. Wir nehmen an, dass K/Q eine Galois-Erweiterung ist und dass es einen

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 2 (WS 2010/2011) Abgabetermin: Donnerstag, 28. Oktober.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 2 (WS 2010/2011) Abgabetermin: Donnerstag, 28. Oktober. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 2 (WS 2010/2011) Abgabetermin: Donnerstag, 28. Oktober http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Im Folgenden

Mehr

Seminar über Darstellungstheorie endlicher Gruppen: Lemma von Schur, Darstellungen abelscher Gruppen, Räume von Darstellungshomomorphismen

Seminar über Darstellungstheorie endlicher Gruppen: Lemma von Schur, Darstellungen abelscher Gruppen, Räume von Darstellungshomomorphismen Seminar über Darstellungstheorie endlicher Gruppen: Lemma von Schur, Darstellungen abelscher Gruppen, Räume von Darstellungshomomorphismen Aline Kaszuba, Lukas Böke 15. März 2016 Die folgende Diskussion

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 1 (SS 2011) Abgabetermin: Donnerstag, 21. April.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 1 (SS 2011) Abgabetermin: Donnerstag, 21. April. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 1 (SS 2011) Abgabetermin: Donnerstag, 21. April http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Symmetrische

Mehr

Anhang B: Quadratische Irrationalzahlen 1 Reel-quadratische Zahlkörper

Anhang B: Quadratische Irrationalzahlen 1 Reel-quadratische Zahlkörper Anhang B: Quadratische Irrationalzahlen 1 Reel-quadratische Zahlkörper Eine reelle Zahl x Q heißt quadratische Irrationalzahl, wenn sie Lösung einer quadratischen Gleichung (1) ax bx c 0, a 0 mit rationalen

Mehr

2.3 Basis und Dimension

2.3 Basis und Dimension 23 Basis und Dimension Erinnerung Gegeben ein K-Vektorraum V, ein Vektorensystem x,, x n in V Eine Linearkombination in den x i ist ein Vektor der Form λ x + + λ n x n mit λ i K Die λ i heißen Koeffizienten

Mehr

15 Auflösbarkeit durch Radikale

15 Auflösbarkeit durch Radikale Chr.Nelius: Algebra (SS 2006) 1 15 Auflösbarkeit durch Radikale f [T] sei ein normiertes Polynom vom Grade 1. Wir wollen die Frage untersuchen, ob sich die Nullstellen von f formelmäßig berechnen lassen.

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 8 Erzeugte Algebra und erzeugter Körper Satz 8.1. Sei K L eine Körpererweiterung und sei f L ein algebraisches Element. Dann ist

Mehr

Universität Zürich HS , Vorlesung #3

Universität Zürich HS , Vorlesung #3 Algebraic Number Theory P. Habegger Universität Zürich HS 2010 6.10.2010, Vorlesung #3 1.4 Diskriminante Die primitivste Invariante eines Zahlkörpers ist sein Grad. Die Diskriminante eines Zahlkörpers

Mehr

1 Der Satz von Poincaré-Birkhoff-Witt. 2 Die freie Algebra. 3 Die universell einhüllende Algebra

1 Der Satz von Poincaré-Birkhoff-Witt. 2 Die freie Algebra. 3 Die universell einhüllende Algebra 1 Der Satz von Poincaré-Birkhoff-Witt Darstellungen von assoziativen Algebren sind oft einfacher zu handhaben als Darstellungen von Lie- Algebren. Die universell einhüllende Algebra einer Lie-Algebra hat

Mehr

Seminarvortrag aus Reiner Mathematik Zweierpotenzen als Moduln und Satz von Wilson

Seminarvortrag aus Reiner Mathematik Zweierpotenzen als Moduln und Satz von Wilson Seminarvortrag aus Reiner Mathematik Zweierpotenzen als Moduln und Satz von Wilson Stefan Rosenberger November 16, 2009 1 Notationen und Vorbemerkungen 1.1 Erinnerung an bekannte Definitionen a) Für alle

Mehr

Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1. (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K }

Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1. (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K } Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1 14 Körper (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K } (14.2) BEM: a) Ist K ein Körper, so ist (K

Mehr

(a) Welche der folgenden Gruppen hat 24 Elemente? D 6 GL 2 (F 2 ) X Die Tetraedergruppe. (b) Welche der folgenden Aussagen ist wahr?

(a) Welche der folgenden Gruppen hat 24 Elemente? D 6 GL 2 (F 2 ) X Die Tetraedergruppe. (b) Welche der folgenden Aussagen ist wahr? Aufgabe 1. (10 Punkte) Bei den folgenden Teilaufgaben ist jeweils genau eine Antwort richtig; diese ist anzukreuzen. Beweise oder Begründungen sind nicht erforderlich. Für jede richtige Antwort erhalten

Mehr

Kapitel 1. Erste algebraische Strukturen. 1.2 Ringe und Körper

Kapitel 1. Erste algebraische Strukturen. 1.2 Ringe und Körper Kapitel 1 Lineare Algebra individuell M. Roczen und H. Wolter, W. Pohl, D.Popescu, R. Laza Erste algebraische Strukturen Hier werden die grundlegenden Begriffe eingeführt; sie abstrahieren vom historisch

Mehr

MUSTERLÖSUNG KLAUSUR ZUR ALGEBRA I. Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/ Februar Nachname: Vorname:

MUSTERLÖSUNG KLAUSUR ZUR ALGEBRA I. Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/ Februar Nachname: Vorname: Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/2017 KLAUSUR ZUR ALGEBRA I 15. Februar 2017 MUSTERLÖSUNG Nachname: Vorname: Studiengang: Aufgabe 1 2 3 4 5 6 7 8 9 Summe Punktzahl /60

Mehr

Algebraische Zahlentheorie. Teil II. Die Diskriminante.

Algebraische Zahlentheorie. Teil II. Die Diskriminante. II-1 Algebraische Zahlentheorie Teil II Die Diskriminante Sei K ein Zahlkörper vom Grad n (also [K : Q] = n) Es gibt genau n Körper- Homomorphismen σ i : K C (siehe Merkzettel Separabilität) Stellen wir

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 22 Algebraische Körpererweiterung Satz 1. Sei K L eine Körpererweiterung und sei f L ein Element. Dann sind folgende Aussagen

Mehr

Elemente der Algebra

Elemente der Algebra Prof. Dr. H. Brenner Osnabrück SS 2015 Elemente der Algebra Vorlesung 1 Der Gruppenbegriff Definition 1.1. Eine Verknüpfung auf einer Menge M ist eine Abbildung : M M M, (x,y) (x,y) = x y. Statt (x,y)

Mehr

Kapitel 2: Multiplikative Funktionen. 3 Multiplikative Funktionen. Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion)

Kapitel 2: Multiplikative Funktionen. 3 Multiplikative Funktionen. Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion) Kapitel 2: Multiplikative Funktionen 3 Multiplikative Funktionen Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion) (a) Eine Funktion α : Z >0 C heißt arithmetisch (oder zahlentheoretisch).

Mehr

KLAUSUR ZUR ALGEBRA (B3) 18. Februar 2009 MUSTERLÖSUNG

KLAUSUR ZUR ALGEBRA (B3) 18. Februar 2009 MUSTERLÖSUNG KLAUSUR ZUR ALGEBRA (B3) 18. Februar 2009 MUSTERLÖSUNG Name: Studiengang: Aufgabe 1 2 3 4 5 6 7 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter die Aufgabenstellung

Mehr

Quadratische Erweiterung

Quadratische Erweiterung Quadratische Erweiterung Ziel: F 2 p besitzt Ordnung F 2 p = p 2 1 = (p+1)(p 1). Wir konstruieren eine Untergruppe von F 2 p mit Ordnung p+1. Unsere Hoffnung ist, dass p + 1 in kleine Primfaktoren zerfällt.

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 19 Algebraisch abgeschlossene Körper Wir haben zuletzt erwähnt, dass ein lineares Polynom X a über einem Körper stets irreduzibel

Mehr

Darstellungstheorie. Manfred Hörz

Darstellungstheorie. Manfred Hörz Darstellungstheorie Manfred Hörz Die (lineare) Darstellungstheorie versucht schwer zu durchschauende Eigenschaften von gewissen Gruppen (oder Algebren) durch strukturerhaltende Abbildungen auf Matrizen,

Mehr

Lösungen - Serie 2 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie

Lösungen - Serie 2 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie Lösungen - Serie zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie Aufgabe : Berechnen Sie für die folgenden Elemente x in einer Körpererweiterung L K die Norm Nm L K (x) und die Spur T r

Mehr

Übung 10 Körpererweiterungen

Übung 10 Körpererweiterungen Übung 10 Körpererweiterungen Mögliche Literatur: S. Bosch, Algebra, Seiten 84-95, 110-112 und 114-121 (Quelle für sämtliche Aufgaben - und fast alle Tipps - dieses Übungsblattes). Algebraische Erweiterungen

Mehr

Probeklausur. Algebra SS Bearbeitungszeit: 120 Minuten

Probeklausur. Algebra SS Bearbeitungszeit: 120 Minuten Prof. Dr. Bernd Siebert Probeklausur Algebra SS 2014 Bearbeitungszeit: 120 Minuten Nachname: Vorname: Matrikelnr: Es dürfen alle Vorlesungsunterlagen inklusive Übungsaufgaben und Lösungen verwendet werden.

Mehr

11. Übung zur Vorlesung. Zahlentheorie. im Wintersemester 2015/16

11. Übung zur Vorlesung. Zahlentheorie. im Wintersemester 2015/16 11. Übung zur Vorlesung Aufgabe 41. Zeige, dass das Polynom (X 2 13)(X 2 17)(X 2 13 17) Z[X] modulo jeder natürlichen Zahl n N eine Nullstelle hat, aber keine Nullstelle in Z besitzt. Aufgabe 42. Sei p

Mehr

15 Grundlagen der Idealtheorie

15 Grundlagen der Idealtheorie 15 Grundlagen der Idealtheorie Definition und Lemma 15.1. Sei R ein Ring, S R. x R nennt man eine R-Linearkombination von Elementen in) S falls n N 0, s 1,..., s n S, λ 1,..., λ n R mit x = n i=1 λ is

Mehr

Algebra I. keine Abgabe

Algebra I. keine Abgabe WS 05/06 Priv.-Doz. Dr. S. Wewers Andreas Martin Algebra I 13. Übungsblatt keine Abgabe Aufgabe 1: Sei G eine endliche abelsche Gruppe der Ordnung n. (a) Zeigen Sie: für jeden Teiler d von n existiert

Mehr

Einführung in die Zahlentheorie

Einführung in die Zahlentheorie Einführung in die Zahlentheorie Jörn Steuding Uni Wü, SoSe 2015 I Zahlen II Modulare Arithmetik III Quadratische Reste IV Diophantische Gleichungen V Quadratische Formen Wir behandeln die wesentliche Zahlentheorie

Mehr

C: Algebraische Strukturen

C: Algebraische Strukturen C: Algebraische Strukturen Algebra: Rechnen. Menge mit Verknüpfungen: (N 0, +), (R, +, ), (P(X),, ), (R n n, +, ) Informatik: Boolsche Algebren Relationenalgebra (Datenbanken) Computeralgebra 29 Gruppen

Mehr

Lineare Algebra I. - 9.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Korrektur: 2. Klausurtermin:

Lineare Algebra I. - 9.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Korrektur: 2. Klausurtermin: Lineare Algebra I - 9.Vorlesung - rof. Dr. Daniel Roggenkamp & Falko Gauß Korrektur: 2. Klausurtermin: 09.02.2017 Linearkombination von Vektoren lineare Hülle Erzeugendensystem S lineare Unabhängigkeit

Mehr

2 Normale und separable Körpererweiterungen

2 Normale und separable Körpererweiterungen 2 Normale und separable Körpererweiterungen Definition und Satz 2.1. Seien K ein Körper und f K[X], Grad(f) 1. Ein Zerfällungskörper L von f über K ist eine Körpererweiterung L/K mit folgenden beiden Eigenschaften:

Mehr

Klausur zur Algebra (B3)-Lösungen

Klausur zur Algebra (B3)-Lösungen Prof. Dr. Salma Kuhlmann Gabriel Lehéricy 13. März 2017 Simon Müller Wintersemester 2016/2017 Klausurnummer: 1 Klausur zur Algebra (B3)-Lösungen Matrikelnummer: Pseudonym: Aufgabe 1 2 3 4 5 6 7 erreichte

Mehr

7-1 Elementare Zahlentheorie

7-1 Elementare Zahlentheorie 7-1 Elementare Zahlentheorie 7 Die ganzen Gauß schen Zahlen Wir betrachten den Körper C der komplexen Zahlen Es ist C = R 2 mit komponentenweiser Addition und mit Multiplikation [a 1, a 2 ][b 1, b 2 ]

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 18 Kreisteilungskörper Definition 18.1. Der n-te Kreisteilungskörper ist der Zerfällungskörper des Polynoms X n 1 über Q. Offenbar

Mehr

Testklausur II mit Lösungen

Testklausur II mit Lösungen Fachbereich Mathematik/Informatik 2. Juli 2011 Prof. Dr. H. Brenner Körper- und Galoistheorie Testklausur II mit en Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben

Mehr

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 23. Mai 2016 Stefan Ruzika 7: Bild, Faser, Kern 23. Mai 2016 1 / 11 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume 4 Basis

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 21 Algebren Definition 21.1. Seien R und A kommutative Ringe und sei R A ein fixierter Ringhomomorphismus. Dann nennt man A eine

Mehr

Die Konstruktion des regelmäÿigen n-ecks mit Zirkel und Lineal

Die Konstruktion des regelmäÿigen n-ecks mit Zirkel und Lineal Die Konstruktion des regelmäÿigen n-ecks mit Zirkel und Lineal Für welche natürliche Zahlen n 3 kann man das regelmäÿige n-eck mit Zirkel und Lineal konstruieren? Wir haben in der Vorlesung gesehen, dass

Mehr

Del Pezzo Flächen ohne rationale Punkte auf Körpern der kohomologischen Dimension 1

Del Pezzo Flächen ohne rationale Punkte auf Körpern der kohomologischen Dimension 1 Del Pezzo Flächen ohne rationale Punkte auf Körpern der kohomologischen Dimension 1 J.-L. Colliot-Thélène et D. Madore C.N.R.S. et Université Paris-Sud (Orsay) 1 C 1 -Körper (Lang) Man sagt, k ist ein

Mehr

4 Rein transzendente Körpererweiterungen

4 Rein transzendente Körpererweiterungen $Id: transzendent.tex,v 1.5 2009/05/04 14:59:47 hk Exp $ 4 Rein transzendente Körpererweiterungen Wie bereits angekündigt wollen wir nun einsehen, dass wir den rationalen Funktionenkörper K(t 1,..., t

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 26 Einheitswurzeln Definition 26.1. Es sei K ein Körper und n N +. Dann heißen die Nullstellen des Polynoms X n 1 in K die n-ten

Mehr

Serie 2: Relationen, Abbildungen, Mächtigkeit, Gruppen

Serie 2: Relationen, Abbildungen, Mächtigkeit, Gruppen D-MATH Lineare Algebra I HS 2016 Dr. Meike Akveld Serie 2: Relationen, Abbildungen, Mächtigkeit, Gruppen 1. Auf Z definieren wir eine Relation durch x, y Z : (x y : x y ist gerade) a) Zeigen Sie, dass

Mehr

6. Vortrag - Das Kernstück der Galoistheorie

6. Vortrag - Das Kernstück der Galoistheorie Proseminar Körpertheorie 6. Vortrag - Das Kernstück der Galoistheorie Von: Nguyen Hoai Viet Dang 06.06.2013 Prof. K. Wingberg, K. Hübner 1. Hauptsatz Galois-Korrespondenz Satz 1.1: Sei (i) (ii) K L eine

Mehr

2.6 Ergänzungen und Beispiele: Semidirekte Produkte

2.6 Ergänzungen und Beispiele: Semidirekte Produkte Algebra I 15. Oktober 2007 c Rudolf Scharlau, 2002 2007 66 2.6 Ergänzungen und Beispiele: Semidirekte Produkte Wir befassen uns mit der Zerlegung von Gruppen in kleinere Gruppen, bzw. der Konstruktion

Mehr

Kapitel 2. Endliche Körper und Anwendungen. 2.1 Körpererweiterungen

Kapitel 2. Endliche Körper und Anwendungen. 2.1 Körpererweiterungen Kapitel 2 Endliche Körper und Anwendungen 2.1 Körpererweiterungen Deinition Sei L ein Körper und K ein Unterkörper von L. Dann sagen wir, dass L ein Erweiterungskörper von K ist. Wir sagen dann auch: K

Mehr

Wiederholungsblatt zur Gruppentheorie

Wiederholungsblatt zur Gruppentheorie Wiederholungsblatt zur Gruppentheorie von Christian Elsholtz, TU Clausthal, WS 1999/2000 Um Ihnen zu helfen, die Gruppentheorie zu wiederholen, stelle ich hier einige wichtige Beispiele und einige Lösungen

Mehr

5 Noethersche Ringe und Moduln, Algebren und Ganzheit

5 Noethersche Ringe und Moduln, Algebren und Ganzheit 5 Noethersche Ringe und Moduln, Algebren und Ganzheit Sofern nichts anderes gesagt wird, sind im Folgenden alle Ringe kommutativ mit 1 0. Satz und Definition 5.1. Sei A ein Ring. Die folgenden Aussagen

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 014/015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 7 Abgabetermin: Freitag, 05.1.014, 11 Uhr Aufgabe 7.1 (Vektorräume

Mehr

Konstruktion mit Zirkel und Lineal

Konstruktion mit Zirkel und Lineal Konstruktion mit Zirkel und Lineal 03. Dezember 2018 1 / 16 Konstruktionen mit Zirkel und Lineal Gegeben: E C = R 2 Menge an Punkten in der Ebene. Identifiziere R 2 = C. Elementare euklidische Figuren:

Mehr

1 Angeordnete Körper. 1.1 Anordnungen und Positivbereiche

1 Angeordnete Körper. 1.1 Anordnungen und Positivbereiche 1 1 Angeordnete Körper 1.1 Anordnungen und Positivbereiche Definition 1.1. Eine zweistellige Relation auf einer Menge heißt partielle Ordnung, falls für alle Elemente a, b, c der Menge gilt: (i) a a (ii)

Mehr

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung)

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung) Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS2017 Kapitel I. Gruppen 1 Grundlegende Definitionen (Wiederholung) 1.1 Definition. Eine Gruppe ist ein Paar

Mehr

Algebra II, SS 2009 Montag $Id: endlich.tex,v /04/27 13:49:37 hk Exp $ GF(q) := {x A p x q = x}

Algebra II, SS 2009 Montag $Id: endlich.tex,v /04/27 13:49:37 hk Exp $ GF(q) := {x A p x q = x} $Id: endlich.tex,v 1.4 2009/04/27 13:49:37 hk Exp $ 3 Endliche Körper Wir waren gerade mit dem Beweis von Satz 1 beschäftigt, und hatten die Existenzteile des Satzes bereits eingesehen. Satz 3.1 (Klassifikation

Mehr

Sylow Sätze und Anwendungen

Sylow Sätze und Anwendungen KAPITEL 11 Sylow Sätze und Anwendungen 11A. Einführung und Überblick In diesem Kapitel widmen wir uns ausschließlich endlichen Gruppen. Der Satz von Lagrange besagt, das für jede Untergruppe H < G die

Mehr

3 Moduln. Analogon zu K-Vektorräumen, aber statt über einem Körper, über einem Ring definiert.

3 Moduln. Analogon zu K-Vektorräumen, aber statt über einem Körper, über einem Ring definiert. 3 Moduln Analogon zu K-Vektorräumen, aber statt über einem Körper, über einem Ring definiert. Beispiele: (1) (Z n, +, (Z, )), wobei (Z, ) Skalarmultiplikation. k (a 1,...,a n )=(ka 1,...,ka n )inz. (2)

Mehr

1.4 Homomorphismen und Isomorphismen

1.4 Homomorphismen und Isomorphismen Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 28 1.4 Homomorphismen und Isomorphismen Definition 1.4.1 Es seien (G, ) und (H, ) zwei Gruppen. Eine Abbildung ϕ : G H heißt (Gruppen-)Homomorphismus,

Mehr

Zusatzkapitel Algebra Anton Deitmar

Zusatzkapitel Algebra Anton Deitmar Zusatzkapitel Algebra 1 Zusatzkapitel Algebra Anton Deitmar 1 Gruppen 1.9 Kommutatoren Definition 1.9.1. Sind a, b Elemente einer Gruppe G, so sei [a, b] = aba 1 b 1 der Kommutator von a und b. Sei [G,

Mehr

Quadrate und Wurzelziehen modulo p

Quadrate und Wurzelziehen modulo p Quadrate und Wurzelziehen modulo p Sei im Folgenden p eine Primzahl größer als. Wir möchten im Körper Z p Quadratwurzeln ziehen. Die Quadrierabbildung Q :Z p Z p ist aber nicht surjektiv, daher gibt es

Mehr

Die Homologiegruppen eines Simplizialkomplexes

Die Homologiegruppen eines Simplizialkomplexes Abschnitt 12 Die Homologiegruppen eines Simplizialkomplexes Wir werden nun die Homologiegruppen H i (S), i 0 eines Simplizialkomplexes S definieren. Es lohnt sich, einen Moment einen Vergleich mit der

Mehr

Serie 4. Abgabetermin. Bis zum in meinem Briefkasten (Raum A 514). Bitte die Lösungen mit Namen, Matrikelnummer und Übungsgruppe versehen.

Serie 4. Abgabetermin. Bis zum in meinem Briefkasten (Raum A 514). Bitte die Lösungen mit Namen, Matrikelnummer und Übungsgruppe versehen. Wintersemester 17/18 ALGEBRA I Serie 1 Prof. Dr. J.S. Wilson Aufgabe 1.1. (a) Seien H 1, H 2 Untergruppen einer Gruppe G und sei G = H 1 H 2. Zeigen Sie, daß entweder H 1 = G oder H 2 = G. (b) Geben Sie

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n)

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n) Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 4 Die Restklassenringe Z/(n) Satz 4.1. (Einheiten modulo n) Genau dann ist a Z eine Einheit modulo n (d.h. a repräsentiert eine Einheit in

Mehr

5. Galoisgruppen. 5. Galoisgruppen 45

5. Galoisgruppen. 5. Galoisgruppen 45 5. Galoisgruppen 45 5. Galoisgruppen Nach dem Studium von Zerfällungskörpern im letzten Kapitel wollen wir nun wieder zu unseren Problemen aus der Einleitung zurückkehren. Dazu erinnern wir uns zunächst

Mehr