Optimierungstheorie Scheinklausur Sommersemester Juli 2007

Größe: px
Ab Seite anzeigen:

Download "Optimierungstheorie Scheinklausur Sommersemester Juli 2007"

Transkript

1 Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 Prof. Dr. Christian Wieners, Dipl.-Math. techn. Martin Sauter Institut für Angewandte und Numerische Mathematik Optimierungstheorie Scheinklausur Sommersemester Juli 2007 Aufgabe 1 Kreuzen Sie an, welche der folgenden 5 Aussagen wahr und welche nicht wahr sind. ( Punkte) Beantworten Sie nur die Fragen, bei denen Sie sich sicher sind. Für jede falsche Antwort wird eine richtige Antwort nicht gewertet! (a) Sei M R n ein nichtleeres Polyeder. M besitzt genau dann Ecken, wenn M geradenfrei ist. wahr nicht wahr (b) Für jedes Matrix-Nullsummenspiel gibt es optimale Lösungen, die aus reinen Strategien bestehen. (c) Lineare Probleme der Form (A R m n, c R n und b R m ) Minimiere c T x unter Ax b können durch Einführung von Schlupfvariablen immer sofort auf ein Starttableau für Phase II des Simplex-Verfahrens gebracht werden. (d) Für das konvexe Optimierungsproblem (f, g i : R n R konvex, i = 1,..., p) (P ) Minimiere f(x) auf M := {x R n : g i (x) 0, i = 1,..., p} gilt: Ist (x, u ) Sattelpunkt der Lagrange-Funktion L(x, u) = f(x) + p i=1 u ig i (x), dann gilt u i g i(x ) > 0 für i = 1,..., p. (e) Seien f, g i : R n R konvex und differenzierbar (i = 1,..., p), A R m n, b R m und das Problem (P ) sei gegeben durch (P ) Minimiere f(x) auf M := {x R n : g(x) 0, Ax = b}. Dann gilt: Falls es x R n, u R p mit u 0 und v R m gibt, so dass (x, u, v ) ein KKT-Punkt von (P ) ist und x die constraint qualification (CQ1) erfüllt, so ist x globale Lösung von (P ). wahr nicht wahr

2 Aufgabe 2 (2+3 Punkte) (a) Wie viele Seiten hat ein Würfel? (b) Beweisen Sie das Lemma von Farkas: Seien A R m n und b R m gegeben. Dann gilt genau eine der beiden folgenden Aussagen: (i) Ax = b, x 0, ist lösbar durch ein x R n (ii) A T y 0, b T y > 0, ist lösbar durch ein y R m. Hinweis: Je nach Vorgehen können Sie den strikten Trennungssatz benutzen: Sei K R n konvex, nicht leer, abgeschlossen, sowie x K. Dann existiert eine Hyperebene H = {y R n : a T y = γ} (mit a R n, a 0, γ R), die x und K trennt, d.h. a T z γ < a T x für alle z K. Ist K zusätzlich ein Kegel, so kann γ = 0 gewählt werden. (a) Ein Würfel hat: 8 Ecken, 12 Kanten, 6 Flächen, also insgesamt 26 Seiten. (b) Zwei Möglichkeiten: Einmal mit dem Trennungssatz, einmal mit dem starken Dualitätssatz: Trennungssatz: Beides kann nicht gelten, da sonst gelten würde: 0 < y T b = y T Ax = (A T y) T x 0 Widerspruch Wir nehmen an, (i) gelte nicht. Dann gilt b K := {Ax : x R n, x 0}. Nach Satz von Weyl ist K konvexer polyedraler Kegel und damit abgeschlossen. Daher kann man b und K trennen, d.h. es gibt ein y R m, y 0, mit y T Ax 0 < y T b. Setzt man für x nacheinander die Einheitsvektoren e i = (0,..., 0, 1, 0,..., 0) ein so erhält man A T y 0, und damit die Behauptung. Starker Dualitätssatz: Setze M := {x R n : Ax = b, x 0}. Das Lemma von Farkas kann dann äquivalent geschrieben werden als M y R m mit A T y 0 n gilt b T y 0. : Sei M. Dann besitzt das primale Problem (P ) Minimiere c T x mit x M für c = 0 n ein Lösung x M, da < 0 = min(p ). Nach dem starken Dualitätssatz folgt dann, dass das duale Problem (D) Maximiere b T y mit y N := {y R m : A T y c = 0 n } ein Lösung y N hat (N da 0 m N). Weiter gilt min(p ) = max(d) nach dem starken Dualitätssatz und da y optimal für (D), folgt dann für alle y R m mit A T y 0 n : b T y b T y = max(d) = min(p ) = 0 T n x = 0. : Betrachte wieder das duale Problem (D). Da 0 m N, ist (D) zulässig und für alle y N gilt dann b T y 0. Daraus folgt dann sup(d) = 0 < +. Wir nehmen jetzt an, dass M =. Nach dem starken Dualitätssatz folgt dann aber sup(d) = +, also ein Widerspruch und damit kann M nicht leer sein.

3 Aufgabe 3 Betrachten Sie das folgende Optimierungsproblem: (4+1 Punkte) (P ) Minimiere 18x x 2 + 2x 3 + 6x 4 unter x 0, 3x 1 + x 2 2x 3 + x 4 = 2, x 1 + 3x 2 x 4 = 2. (a) Wenden Sie für (P ) Phase I des Simplex-Verfahrens an, um eine zulässige Basislösung zu finden, und bestimmen Sie gegebenenfalls mit Phase II die Lösung des Problems. (b) Gegen Sie das zu (P ) duale Problem an. (a) n = 6 m = Reihe = 1 Spalte = Reihe = 2 Spalte = Phase I fertig -- Start Phase II n = 4 m = (b) Maximiere 2y 1 + 2y 2 unter den Nebenbedingungen 3y 1 + y 2 18, y 1 + 3y 2 12, 2y 1 2, y 1 y 2 6

4 Aufgabe 4 Sei M R n konvex und nicht leer, sowie f : M R konvex. Betrachten Sie (2+1+2 Punkte) (P ) Minimiere f(x) auf M. (a) Sei x ein lokales Minimum von f auf M, d.h. es gibt ein ε > 0 mit f(x ) f(x) für alle x M mit x x 2 ε. Zeigen Sie: x ist sogar globales Minimum, d.h. es gilt f(x ) f(x) für alle x M. (b) f sei nun zusätzlich strikt konvex und (P ) sei lösbar, d.h. es gibt ein x M mit f(x ) f(x) für alle x M. Zeigen Sie: Die Lösung ist eindeutig, d.h. f(x ) < f(x) für alle x M. (c) Sei nun M = [0, 1] 2 R 2 und f : M R gegeben durch f(x 1, x 2 ) = 2x x 3 2 x Zeigen Sie: f ist konvex auf M, aber nicht strikt konvex. (a) Sei x M beliebig, und wähle λ (0, 1) so klein, dass λ x x ε. Dann ist f(x ) f(x +λ(x x )) f konvex f(x ) + λ(f(x) f(x )), und daraus folgt f(x) f(x ). Da x M beliebig war folgt die Behauptung. (b) Gäbe es zwei optimale Lösungen x 1, x 2 M und x 1 x 2, so wäre f(x 1) = f(x 2) = inf(p ). Daraus folgt inf(p ) = 1 2 f(x 1) f(x 2) f strikt konvex > f( 1 2 x x 2), und x := 1 2 x x 2 M. Dies ist ein Widerspruch zur Optimalität von x 1 und x 2. (c) f ist zweimal stetig differenzierbar und [ ] [ ] 2x1 f(x 1, x 2 ) = 3x 2, und f(x 2 1 1, x 2 ) =. 0 6x 2 Auf M = [0, 1] 2 ist hat 2 f(x 1, x 2 ) die Eigenwerte λ 1 (x) = 2 und λ 2 (x) = 6x 2. Diese sind größer gleich 0 und f ist damit konvex. Es gilt aber λ 2 (x 1, 0) = 0, und somit ist f nicht strikt konvex auf M.

5 Aufgabe 5 Seien f : R n R und g : R n R 2 gegeben durch f(x 1, x 2 ) = x x 2 2 6x 1 4x 2, und g(x 1, x 2 ) = ( ) x2 2. x 1 + x 2 3 (5 Punkte) Lösen Sie das Optimierungsproblem (P ) Minimiere f(x 1, x 2 ) auf M := {x K : g(x 1, x 2 ) 0} mit der Lagrangeschen Multiplikatorenregel. (P ) ist konvexes Optimierungsproblem und die Slater-Bedingung ist erfüllt, z.b. durch ˆx = (0, 0). Lagrange Funktion L(x, u) = x x 2 2 6x 1 4x 2 + u 1 (x 2 2) + u 2 (x 1 + x 2 3) Optimalitätsbed. (KKT) x L(x, u ) =! 0 und (u ) T g(x ) = 0, u 0, g(x ) 0 Also [ ] 2x x L(x, u) = u 2! = 0 2x u 1 + u 2 Daraus folgt x 1 = u 2 und x 2 = u u 2 Einsetzen in zweiten Teil der Optimalitätsbedingungen (Komplementaritätsbed.) liefert u 1 ( 1 2 u u 2) = 0 und u 2 (2 1 2 u 1 u 2 ) = 0. Fallunterscheidungen: u 1 = 0. Daraus folgt u 2 = 0 oder u 2 = 2. u 2 = u 1. Daraus folgt u 1 = u 2 = 0 oder u 1 = 4, u 2 = 4. u 2 = 0. Daraus folgt u 1 = 0. u 1 + 2u 2 = 4. Daraus folgt u 1 = 0, u 2 = 2 oder u 1 = 4, u 2 = 4. Es sind also 3 verschiedene Fälle möglich für Paare (u 1, u 2 ). (u 1, u 2 ) = (0, 0). Daraus folgt (x 1, x 2 ) = (3, 2). Widerspruch da nicht in der Menge. (u 1, u 2 ) = (0, 2). Daraus folgt (x 1, x 2 ) = (2, 1) mit f(2, 1) = 11. (u 1, u 2 ) = ( 4, 4). Daraus folgt (x 1, x 2 ) = (1, 3). Widerspruch da nicht in der Menge. Also haben wir das (x, u ) = (x 1, x 2, u 1, u 2) = (2, 1, 0, 2) die Optimalitätsbedingungen (KKT) erfüllt, und somit ist (x, u ) ein Sattelpunkt der Lagrange-Funktion. Damit erreicht f(x) bei x = (2, 1) sein Minimum über der Menge M.

zul. Kurve g 1 C zul dθ (0) y = dϕ dθ (0) =

zul. Kurve g 1 C zul dθ (0) y = dϕ dθ (0) = 2. Grundlagen der nicht-linearen konvexen Optimierung 2.1. Die Karush-Kuhn-Tucker Bedingungen. Unser Basisproblem (NLO) sei geben durch min f(x) NLO g i (x) 0, i I = {1,..., m} x R n f, g i stetig differenzierbar.

Mehr

Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 8. Übungsblatt. ). 12x 3 Die Hessematrix von f ist gegeben durch H f (x, y) =

Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 8. Übungsblatt. ). 12x 3 Die Hessematrix von f ist gegeben durch H f (x, y) = Karlsruher Institut für Technologie (KIT Institut für Analysis Priv-Doz Dr P C Kunstmann Dipl-Math D Roth SS 0 7060 Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 8 Übungsblatt

Mehr

Kuhn-Tucker Bedingung

Kuhn-Tucker Bedingung Kapitel 13 Kuhn-Tucker Bedingung Josef Leydold Mathematik für VW WS 017/18 13 Kuhn-Tucker Bedingung 1 / Optimierung unter Nebenbedingungen Aufgabe: Berechne das Maximum der Funktion f (x, y) g(x, y) c,

Mehr

Konvexe Optimierungsprobleme

Konvexe Optimierungsprobleme von: Veronika Kühl 1 Konvexe Optimierungsprobleme Betrachtet werden Probleme der Form (P) min x C f(x) wobei f : C R eine auf C konvexe, aber nicht notwendigerweise differenzierbare Funktion ist. Ziel

Mehr

3.1. Existenzsatz und Struktur der Lösungsmenge

3.1. Existenzsatz und Struktur der Lösungsmenge 3. EXISTENZ UND DUALITÄT 3.1. Existenzsatz und Struktur der Lösungsmenge Nach dem Satz von Weierstraß besitzt eine lineare Funktion auf einem Polytop stets ein Minimum und ein Maximum. Im allgemeinen Fall

Mehr

1. Lineare Optimierungsaufgaben (LOA) als Teilklasse konvexer Optimierungsprobleme. f(x) min, x G (1.1) (Legende)

1. Lineare Optimierungsaufgaben (LOA) als Teilklasse konvexer Optimierungsprobleme. f(x) min, x G (1.1) (Legende) . Lineare Optimierungsaufgaben (LOA) als Teilklasse konvexer Optimierungsprobleme X Banachraum, wobei X = R n G zulässige Menge des Optimierungsproblems f: G R Zielfunktion f(x) min, x G (.) (Legende)

Mehr

Inhaltsverzeichnis. Innere-Punkte-Verfahren 3. Inhaltsverzeichnis 1

Inhaltsverzeichnis. Innere-Punkte-Verfahren 3. Inhaltsverzeichnis 1 Inhaltsverzeichnis 1 Inhaltsverzeichnis Innere-Punkte-Verfahren 3 1 Theoretische Grundlagen 3 1.1 Die KKT-Bedingungen........................... 3 1.2 Der zentrale Pfad.............................. 4

Mehr

Effiziente Algorithmen Lineares Programmieren 216. Schwache Dualität

Effiziente Algorithmen Lineares Programmieren 216. Schwache Dualität Effiziente Algorithmen Lineares Programmieren 216 Schwache Dualität Sei wieder z = max{ c T x Ax b, x 0 } (P ) und w = min{ b T u A T u c, u 0 }. (D) x ist primal zulässig, wenn x { x Ax b, x 0 }. u ist

Mehr

KAPITEL 3. Konvexe Funktionen

KAPITEL 3. Konvexe Funktionen KAPITEL 3 Konvexe Funktionen Sei F R n ein Definitionsbereich und f : F R eine Funktion. Unter dem Epigraphen von f versteht man die Menge epif = {(x, z) R n+1 x F, z R, z f(x)}. Man nennt f konvex, wenn

Mehr

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 03 6.06.03 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

Geometrische Interpretation

Geometrische Interpretation Geometrische Interpretation Stefanie Riedel 10. Mai 2010 1 Starke und schwache Dualität über Wertemengen Wir betrachten eine einfache geometrische Interpretation dualer Funktionen aus der Menge G: G =

Mehr

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung Operations Research Rainer Schrader Konvexe Funktionen Zentrum für Angewandte Informatik Köln 4. Juni 2007 1 / 84 2 / 84 wir haben uns bereits mit linearen Optimierungsproblemen beschäftigt wir werden

Mehr

Universität Karlsruhe (TH) Mathematisches Institut II. Prof. Dr. A. Kirsch. Optimierungstheorie. Skript zur Vorlesung im Sommersemester 2002

Universität Karlsruhe (TH) Mathematisches Institut II. Prof. Dr. A. Kirsch. Optimierungstheorie. Skript zur Vorlesung im Sommersemester 2002 Universität Karlsruhe (TH) Mathematisches Institut II Prof. Dr. A. Kirsch Optimierungstheorie Skript zur Vorlesung im Sommersemester 2002 Version vom 8. September 2004 Inhaltsverzeichnis 1 Einführung 1

Mehr

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Übungsblatt 6. f(x, y, z) = xyz + 3e x y

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Übungsblatt 6. f(x, y, z) = xyz + 3e x y D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler Übungsblatt 6 1. Es seien f : R 2 R 3 und g : R 3 R 3 die Funktionen definiert durch x cos(y) 2 y 2 f(x, y) = x sin(y) und g(x, y, z)

Mehr

Konvexe Mengen und Funktionen

Konvexe Mengen und Funktionen Konvexe Mengen und Funktionen von Corinna Alber Seminararbeit Leiter: Prof. Jarre im Rahmen des Seminars Optimierung III am Lehrstuhl für Mathematische Optimierung an der Heinrich-Heine-Universität Düsseldorf

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

Wir gewichten die Kanten von G wie folgt: Kante e 1 e 2 e 3 e 4 e 5 e 6 e 7 e 8 d(e i )

Wir gewichten die Kanten von G wie folgt: Kante e 1 e 2 e 3 e 4 e 5 e 6 e 7 e 8 d(e i ) Prof. Dr. U. Faigle J. Voss SS 2011 12. Übung zur Einführung in die Mathematik des Operations Research Dieses Übungsblatt wird nicht mehr gewertet. Aufgabe 1: Sei G = (V, E) ein gerichteter Graph und x

Mehr

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg Hinreichende Bedingung für lokale Extrema Voraussetzungen Satz D R n konvex und offen Funktion f : D R zweimal stetig partiell differenzierbar

Mehr

1 Der Simplex Algorithmus I

1 Der Simplex Algorithmus I 1 Nicoletta Andri 1 Der Simplex Algorithmus I 1.1 Einführungsbeispiel In einer Papiermühle wird aus Altpapier und anderen Vorstoffen feines und grobes Papier hergestellt. Der Erlös pro Tonne feines Papier

Mehr

Dualitätssätze der linearen Optimierung

Dualitätssätze der linearen Optimierung Kapitel 9 Dualitätssätze der linearen Optimierung Sei z = c T x min! Ax = b 9.1 x 0 mit c, x R n, b R m, A R m n ein lineares Programm. Definition 9.1 Duales lineares Programm. Das lineare Programm z =

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

Das Lagrange-duale Problem

Das Lagrange-duale Problem Das Lagrange-duale Problem Tobias Kulke 29. April 2010 1 Einführung Für jedes Paar (λ, ν) mit λ 0 liefert die Langrange-duale Funktion ( ) p g(λ, ν) = inf L(x, λ, ν) = inf f 0 (x) + λ i f i (x) + ν i h

Mehr

Musterlösung der 1. Klausur zur Vorlesung

Musterlösung der 1. Klausur zur Vorlesung Prof. Dr. M. Röger Dipl.-Math. C. Zwilling Fakultät für Mathematik TU Dortmund Musterlösung der. Klausur zur Vorlesung Analysis II 6.7.6) Sommersemester 6 Aufgabe. i) Die Folge f n ) n N konvergiert genau

Mehr

Analysis II 14. Übungsblatt

Analysis II 14. Übungsblatt Jun.-Prof. PD Dr. D. Mugnolo Wintersemester 01/13 F. Stoffers 04. Februar 013 Analysis II 14. Übungsblatt 1. Aufgabe (8 Punkte Man beweise: Die Gleichung z 3 + z + xy = 1 besitzt für jedes (x, y R genau

Mehr

Teil I. Lineare Optimierung

Teil I. Lineare Optimierung Teil I Lineare Optimierung 5 Kapitel 1 Grundlagen Definition 1.1 Lineares Optimierungsproblem, lineares Programm. Eine Aufgabenstellung wird lineares Optimierungsproblem oder lineares Programm genannt,

Mehr

FK WMS: Wirtschaftsmathematik 2, Einheit 7/8

FK WMS: Wirtschaftsmathematik 2, Einheit 7/8 FK WMS: Wirtschaftsmathematik 2, Einheit 7/8 Markus Sinnl 1 markus.sinnl@univie.ac.at http://homepage.univie.ac.at/markus.sinnl basierend auf Folien von Dr. Ivana Ljubic, Mag. Christian Spreitzer und Mag.

Mehr

Sattelpunkte und Optimalitätsbedingungen bei restringierten Optimierungsproblemen

Sattelpunkte und Optimalitätsbedingungen bei restringierten Optimierungsproblemen Sattelpunkte und Optimalitätsbedingungen bei restringierten Optimierungsproblemen Sandro Grunert WS 08/09 Seminar Optimierung Technische Universität Chemnitz 1 Inhaltsverzeichnis 0 Grundlegende Situation

Mehr

Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik

Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik 1142KWL09 Aufgabe 1. Zeigen Sie, dass für alle n 2 gilt: n paarweise verschiedene Geraden im R 2 schneiden sich untereinander

Mehr

Dualität bei konvexer Optimierung

Dualität bei konvexer Optimierung Dualität bei konvexer Optimierung Seminar zur Numerik I im SS 2016 Laslo Hunhold 10. Mai 2016 Ausarbeitung zum Seminarvortrag vom 2. Mai 2016 Mathematisches Institut Mathematisch-Naturwissenschaftliche

Mehr

10 Extremwerte mit Nebenbedingungen

10 Extremwerte mit Nebenbedingungen 10 Extremwerte mit Nebenbedingungen 49 10 Extremwerte mit Nebenbedingungen Wir betrachten nun Extremwertaufgaben, bei denen nach dem Extremwert einer fx 1,, x n gesucht wird, aber die Menge der zulässigen

Mehr

Nichtlineare Optimierung

Nichtlineare Optimierung Nichtlineare Optimierung Roland Griesse Numerische Mathematik Chemnitzer Skiseminar Gerlosberg, 07. 14. März 2009 Gliederung Konvexe Optimierung 1 Konvexe Optimierung Bedeutung Beispiele Charakterisierung

Mehr

Sattelpunkte und Optimalitätsbedingungen bei restringierten Optimierungsproblemen

Sattelpunkte und Optimalitätsbedingungen bei restringierten Optimierungsproblemen Sattelpunkte und Optimalitätsbedingungen bei restringierten Optimierungsproblemen Sandro Grunert WS 08/09 Seminar Optimierung Technische Universität Chemnitz Inhaltsverzeichnis 2 Inhaltsverzeichnis 0 Grundlegende

Mehr

KAPITEL 10 DIE INNERE-PUNKTE-METHODE

KAPITEL 10 DIE INNERE-PUNKTE-METHODE KAPITEL DIE INNERE-PUNKTE-METHODE F. VALLENTIN, A. GUNDERT Vorteile: + Löst effizient lineare Programme (in Theorie und Praxis) + erweiterbar (zu einer größeren Klasse von Optimierungsproblemen) + einfach

Mehr

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Dr. Nico Düvelmeyer Freitag, 24. Juni 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Dualität Motivation Duales LP Dualitätssätze

Mehr

Optimierung. Optimierung. Vorlesung 5 Optimierung mit Nebenbedingungen Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 5 Optimierung mit Nebenbedingungen Thomas Brox, Fabian Kuhn Optimierung Vorlesung 5 Optimierung mit Nebenbedingungen 1 Minimierung mit Gleichheitsrestriktionen Gegeben: Funktion,,,, : Ziel:,,, Unrestringierter Fall: Notwendige Bedingung für lokales Minimum keine

Mehr

Operations Research. Ganzzahlige lineare Programme. ganzzahlige lineare Programme. Ganzzahlige lineare Programme. Rainer Schrader. 25.

Operations Research. Ganzzahlige lineare Programme. ganzzahlige lineare Programme. Ganzzahlige lineare Programme. Rainer Schrader. 25. Operations Research Rainer Schrader Ganzzahlige lineare Programme Zentrum für Angewandte Informatik Köln 25. Juni 2007 1 / 49 2 / 49 Ganzzahlige lineare Programme Gliederung ganzzahlige lineare Programme

Mehr

Innere-Punkt-Methoden

Innere-Punkt-Methoden Innere-Punkt-Methoden Johannes Stemick 26.01.2010 Johannes Stemick () Innere-Punkt-Methoden 26.01.2010 1 / 28 Übersicht 1 Lineare Optimierung 2 Innere-Punkt-Methoden Path-following methods Potential reduction

Mehr

Seminar Optimierung und optimale Steuerung

Seminar Optimierung und optimale Steuerung Seminar Optimierung und optimale Steuerung am 28.06.2008 Thema: Nicht-kooperative n-personen-spiele Martin Schymalla 27. Juni 2008 Gliederung 1 1 Cournot-Duopol 2 2 n-personen-spiele 3 3 Mengenwertige

Mehr

Lagrange-Multiplikatoren

Lagrange-Multiplikatoren Lagrange-Multiplikatoren Ist x eine lokale Extremstelle der skalaren Funktion f unter den Nebenbedingungen g i (x) = 0, dann existieren Lagrange-Multiplikatoren λ i, so dass grad f (x ) = λ i grad g i

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr M Keyl M Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 3 (Analysis 2) MA923 http://wwwm5matumde/allgemeines/ma923_26s Sommersem 26 Probeklausur (4726) Krümmung

Mehr

2 Funktionen in mehreren Variablen: Differentiation

2 Funktionen in mehreren Variablen: Differentiation Satz 2. (Richtungsableitung) Für jede auf der offenen Menge D R n total differenzierbaren Funktion f (insbesondere für f C 1 (D, R) und für jeden Vektor v R n, v 0, gilt: n v f(x) = f(x) v = f xi (x)v

Mehr

Optimierungstheorie. Skript zur Vorlesung im Sommersemester 2005

Optimierungstheorie. Skript zur Vorlesung im Sommersemester 2005 Universität Karlsruhe (TH) Mathematisches Institut II Prof Dr Andreas Kirsch Optimierungstheorie Skript zur Vorlesung im Sommersemester 2005 Dozent: Übungen: Prof Dr Andreas Kirsch Tel 608 2050, Zimmer

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra

Mehr

Musterlösung Klausur zu Analysis II. Verständnisteil

Musterlösung Klausur zu Analysis II. Verständnisteil Technische Universität Berlin SS 2009 Institut für Mathematik 20.07.2009 Prof. Dr. R. Schneider Fritz Krüger Sebastian Holtz Musterlösung Klausur zu Analysis II Verständnisteil 1. (a) Sei D R n konvex

Mehr

Lineare Optimierung: Simplexverfahren Phase Ⅰ

Lineare Optimierung: Simplexverfahren Phase Ⅰ Lineare Optimierung: Simplexverfahren Phase Ⅰ Zur Erinnerung: Die Lineare Optimierungsaufgabe in Standardform lautet z = c T x + c 0 min (.) bei Ax = b, x 0. Revidiertes Simplexverfahren Mit dem Simplexverfahren

Mehr

5 Konvexe Mengen, Trennungssätze

5 Konvexe Mengen, Trennungssätze VORLÄUFIGE, TEILWEISE ÜBERARBEITETE VERSION (DIE NUMMERIERUNG IST ERST TEILWEISE VON TEX AUF LATEX UMGESTELLT UND ENTSPRECHEND NICHT GANZ KONSISTENT) 5 Konvexe Mengen, Trennungssätze In diesem Kapitel

Mehr

BERGISCHE UNIVERSITÄT WUPPERTAL Fachbereich C Mathematik und Naturwissenschaften

BERGISCHE UNIVERSITÄT WUPPERTAL Fachbereich C Mathematik und Naturwissenschaften Musterl osung BERGISCHE UNIVERSITÄT WUPPERTAL Fachbereich C Mathematik und Naturwissenschaften Analysis II Klausur WS 211/212 Prof. Dr. Hartmut Pecher 3.2.212, 9:15 Uhr Name Matr.Nr. Studienfach Fachsemester

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Lineare Optimierung Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Outline Lineares Programm (LP) in Standardform

Mehr

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte Universität München 22. Juli 29 Topologie und Differentialrechnung mehrerer Veränderlicher, SS 29 Modulprüfung/Abschlussklausur Name: Aufgabe 2 3 4 Punkte Gesamtpunktzahl: Gesamturteil: Schreiben Sie unbedingt

Mehr

Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel:

Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel: Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel: Eine Firma produziert die Produkte P 1, P 2,..., P q aus den Rohstoffen R 1, R 2,..., R m. Dabei stehen b j Einheiten

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Stützvektormethode Katharina Morik LS 8 Informatik 8.11.2011 1 von 38 Gliederung 1 2 Lagrange-Optimierung 2 von 38 Übersicht über die Stützvektormethode (SVM) Eigenschaften

Mehr

Regularitätsbedingungen

Regularitätsbedingungen Kapitel 5 Regularitätsbedingungen 5.1 Eine notwendige und hinreichende Regularitätsbedingung Beim Studium Lagrangescher Multiplikatorenregeln in ihrer Grundform, bestehend aus Stationaritäts und Komplementaritätsbedingung,

Mehr

Grundlagen der Optimierung. Übung 6

Grundlagen der Optimierung. Übung 6 Technische Universität Chemnitz Chemnitz, 2. November 24 Prof. Dr. R. Herzog, J. Blechschmidt, A. Schäfer Abgabe am 28. November 24 Grundlagen der Optimierung Übung 6 Aufgabe 2: Verschiedene Verfahren

Mehr

3 Optimierung mehrdimensionaler Funktionen f : R n R

3 Optimierung mehrdimensionaler Funktionen f : R n R 3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)

Mehr

12. Trennungssätze für konvexe Mengen 83

12. Trennungssätze für konvexe Mengen 83 12. Trennungssätze für konvexe Mengen 83 C_1 C_2 a Abbildung 12.4. Trennung konvexer Mengen durch eine Hyperebene mit Normalenvektor a Dann ist int(c) nicht leer (warum?) und [als Minkowski-Summe von C

Mehr

Kontinuierliche Optimierung

Kontinuierliche Optimierung Kontinuierliche Optimierung Markus Herrich Wintersemester 2018/19 ii Inhaltsverzeichnis 2 Optimalitäts- und Regularitätsbedingungen 1 2.1 Einleitung und Wiederholung.................... 1 2.2 Optimalitätsbedingungen

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 7 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 200 Prof. Dr. Klaus Höllig (IMNG)

Mehr

2 Extrema unter Nebenbedingungen

2 Extrema unter Nebenbedingungen $Id: lagrange.tex,v 1.6 2012/11/06 14:26:21 hk Exp hk $ 2 Extrema unter Nebenbedingungen 2.1 Restringierte Optimierungsaufgaben Nachdem wir jetzt die bereits bekannten Techniken zur Bestimmung der lokalen

Mehr

Mikroökonomik Prof. Dr. Stefan Klonner SoSe Übungsblatt 1

Mikroökonomik Prof. Dr. Stefan Klonner SoSe Übungsblatt 1 1 Funktionen Definition 1 (Funktion). Übungsblatt 1 Eine Funktion f(x) einer reellen Variable x mit Definitionsbereich D ist eine Regel, die jeder Zahl x in D eine reelle Zahl f(x) eindeutig zuordnet.

Mehr

Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik

Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik Lösungsskizzen zu den Klausuraufgaben zum Kurs Algorithmische Mathematik KSL09 Aufgabe. Zeigen oder widerlegen Sie: Es existiert ein Graph mit Valenzsequenz (8,,,,,,,,,). Geben Sie im Falle der Existenz

Mehr

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 91 Optimierung ohne Nebenbedingungen Ein Optimum zu suchen heißt, den größten oder den kleinsten Wert zu suchen Wir suchen also ein x R n, sodass

Mehr

Inhaltsübersicht für heute:

Inhaltsübersicht für heute: Inhaltsübersicht für heute: Branch-and-Bound Konvexe Mengen, konvexe Hülle, konvexe Funktionen Relaxation Inhaltsübersicht für heute: Branch-and-Bound Konvexe Mengen, konvexe Hülle, konvexe Funktionen

Mehr

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen 11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen Ziel: Wir wollen lokale Extrema von Funktionen f : M R untersuchen, wobei M R n eine k-dimensionale Untermannigfaltigkeit des

Mehr

Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme

Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme Kapitel 11 Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme Wir betrachten folgendes Optimierungsproblem z = c T x min! Ax = b (11.1) (11.2) x j ganz für j = 1,..., n 1 n, (11.3)

Mehr

Skript zur Vorlesung im SS 2013+SS Konvexe Optimierung. Thorsten Raasch. 14. August 2014

Skript zur Vorlesung im SS 2013+SS Konvexe Optimierung. Thorsten Raasch. 14. August 2014 Skript zur Vorlesung im SS 2013+SS 2014 Konvexe Optimierung Thorsten Raasch 14. August 2014 Inhaltsverzeichnis I. Konvexe Optimierung I 5 1. Einführung 7 2. Konvexe Mengen 11 3. Konvexe Funktionen 13

Mehr

8. Konvexe Polytope. Tobias Boelter. Mittwoch, 5. März TopMath Frühlingsschule

8. Konvexe Polytope. Tobias Boelter. Mittwoch, 5. März TopMath Frühlingsschule 1 / 31 8. Konvexe Tobias Boelter TopMath Frühlingsschule Mittwoch, 5. März 2014 2 / 31 Es können auch nicht konvexe untersucht werden, wir beschränken uns hier aber auf konvexe. Mit einem Polytop ist hier

Mehr

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 96 H. Meyerhenke: Kombinatorische Optimierung Dualität bei linearen Programmen Def.: Es sei (L): c T x max

Mehr

Übungen zu Einführung in die Analysis

Übungen zu Einführung in die Analysis Übungen zu Einführung in die Analysis (Nach einer Zusammengestellung von Günther Hörmann) Sommersemester 2011 Vor den folgenden Aufgaben werden in den ersten Wochen der Übungen noch jene zur Einführung

Mehr

1. Grundlagen der konvexen Analysis Version

1. Grundlagen der konvexen Analysis Version 1. Grundlagen der konvexen Analysis Version 18.02.10 1.1 Konvexe Mengen Definitionen. Eine Menge M R n heisst konvex, wenn aus x, y M folgt, dass auch alle Punkte z = λx + (1 λ)y mit 0 < λ < 1 (Strecke

Mehr

55 Lokale Extrema unter Nebenbedingungen

55 Lokale Extrema unter Nebenbedingungen 55 Lokale Extrema unter Nebenbedingungen Sei f : O R mit O R n differenzierbar. Notwendige Bescheinigung für ein lokales Extremum in p 0 ist dann die Bedingung f = 0 (siehe 52.4 und 49.14). Ist nun F :

Mehr

8 Extremwerte reellwertiger Funktionen

8 Extremwerte reellwertiger Funktionen 8 Extremwerte reellwertiger Funktionen 34 8 Extremwerte reellwertiger Funktionen Wir wollen nun auch Extremwerte reellwertiger Funktionen untersuchen. Definition Es sei U R n eine offene Menge, f : U R

Mehr

Klausur Mathematik 1 für Wirtschaftswissenschaftler

Klausur Mathematik 1 für Wirtschaftswissenschaftler Klausur Mathematik 1 für Wirtschaftswissenschaftler WS 2003/04 Prof. Dr. Matthias Blonski Man beachte folgende Hinweise: 1. Die Klausur umfaßt 5 Aufgaben (jeweils auf einem Blatt) zuzüglich einer Lösungsliste,

Mehr

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I. f(x) := e x + x.

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I. f(x) := e x + x. Technische Universität München WS 009/0 Fakultät für Mathematik Prof. Dr. J. Edenhofer Dipl.-Ing. W. Schultz Übung Lösungsvorschlag Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I Aufgabe

Mehr

Kuhn-Tucker-Bedingung

Kuhn-Tucker-Bedingung Kuhn-Tucker-Bedingung Ist x ein lokales Minimum einer skalaren Funktion f unter den Nebenbedingungen g i (x) 0 und sind die Gradienten der aktiven Gleichungen g i (x ) = 0, i I, linear unabhängig, dann

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt

Mehr

Klausurrepetitorium ABWL

Klausurrepetitorium ABWL Klausurrepetitorium ABWL Planungs- und Südwestfälische Industrie- und Handelskammer 9. August 5 Dr. Friedhelm Kulmann, Sandra Rudolph 9.8.5 Gliederung. Nichtlineare Optimierungsprobleme.. Quadratisches

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Stützvektormethode Katharina Morik LS 8 Informatik Technische Universität Dortmund 12.11.2013 1 von 39 Gliederung 1 Hinführungen zur SVM 2 Maximum Margin Methode Lagrange-Optimierung

Mehr

Die duale Simplexmethode

Die duale Simplexmethode Kapitel 0 Die duale Simplexmethode Bei der dualen Simplexmethode ist eine Startlösung oftmals leichter angebbar als bei der Simplexmethode für das ursprüngliche lineare Programm, da man keine Nichtnegativitätsanforderungen

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Kuhn-Tucker-Bedingung

Kuhn-Tucker-Bedingung Kuhn-Tucker-Bedingung Ist x ein lokales Minimum einer skalaren Funktion f unter den Nebenbedingungen g i (x) 0 und sind die Gradienten der aktiven Gleichungen g i (x ) = 0, i I, linear unabhängig, dann

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 014 BIOL-B HST PHARM Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr

Optimierung II. Sommersemester Literatur: C. Geiger, C. Kanzow: Theorie und Numerik restringierter Optimierungsaufgaben, Springer, 2002

Optimierung II. Sommersemester Literatur: C. Geiger, C. Kanzow: Theorie und Numerik restringierter Optimierungsaufgaben, Springer, 2002 Optimierung II Sommersemester 2008 Page 1 of 92 Literatur: C. Geiger, C. Kanzow: Theorie und Numerik restringierter Optimierungsaufgaben, Springer, 2002 Inhalt Einleitung (Begriffsbildung, Beispiele) ungen

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

Folgerungen aus dem Auflösungsatz

Folgerungen aus dem Auflösungsatz Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und

Mehr

Die Lösungsmenge besteht aus allen n-tupeln reeller Zahlen x 1

Die Lösungsmenge besteht aus allen n-tupeln reeller Zahlen x 1 III. Lineare Gleichungssysteme ================================================================= 3. Einführung ---------------------------------------------------------------------------------------------------------------

Mehr

Nichtlineare Optimierung

Nichtlineare Optimierung Nichtlineare Optimierung Roland Pulch Vorlesung im Wintersemester 2015/16 Institut für Mathematik und Informatik Mathematisch-Naturwissenschaftliche Fakultät Ernst-Moritz-Arndt-Universität Greifswald Inhalt:

Mehr

Das Subgradientenverfahren

Das Subgradientenverfahren Das Subgradientenverfahren Seminar Optimierung WS 05/06 Betreuer: Prof. F. Jarre von Jalo Liljo Das Subgradientenverfahren Das Ziel dieses Vortrags ist die Berechnung einer Lösung des unrestringierten

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 12

Technische Universität München Zentrum Mathematik. Übungsblatt 12 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 1 Hausaufgaben Aufgabe 1.1 Sei f : R R gegeben durch f(x 1, x ) = x 3

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG 15. Dezember 2007

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG 15. Dezember 2007 KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG 5. Dezember 007 Name: Studiengang: Aufgabe 3 4 5 Summe Punktzahl /40 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter die Aufgabenstellung

Mehr

18.2 Implizit definierte Funktionen

18.2 Implizit definierte Funktionen 18.2 Implizit definierte Funktionen Ziel: Untersuche Lösungsmengen von nichtlinearen Gleichungssystemen g(x) = 0 mit g : D R m, D R n, d.h. betrachte m Gleichungen für n Unbekannte mit m < n, d.h. wir

Mehr

Optimalitätsbedingungen

Optimalitätsbedingungen Optimalitätsbedingungen Nadja Irmscher 28. Mai 2010 1 Nachweis von Suboptimalität und Abbruchkriterien Über das gegebene Programm minimiere f 0 (x) über x D sodass f i (x) 0, i = 1,..., m h i (x) = 0,

Mehr

Klausur HM I H 2005 HM I : 1

Klausur HM I H 2005 HM I : 1 Klausur HM I H 5 HM I : 1 Aufgabe 1 4 Punkte): Zeigen Sie mit Hilfe der vollständigen Induktion: n 1 1 + 1 ) k nn k n! für n. Lösung: Beweis mittels Induktion nach n: Induktionsanfang: n : 1 ) 1 + 1 k

Mehr

Analysis II - 2. Klausur

Analysis II - 2. Klausur Analysis II - 2. Klausur Sommersemester 25 Vorname: Name: Aufgabe Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Aufgabe 7 Summe Analysis II - 2. Klausur 6.7.25 Aufgabe 6 Punkte Betrachten Sie die C

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Matrizen und Vektoren, LGS, Gruppen, Vektorräume 1.1 Multiplikation von Matrizen Gegeben seien die Matrizen A := 1 1 2 0 5 1 8 7 Berechnen Sie alle möglichen

Mehr