Lagrange-Multiplikatoren

Größe: px
Ab Seite anzeigen:

Download "Lagrange-Multiplikatoren"

Transkript

1 Lagrange-Multiplikatoren Ist x eine lokale Extremstelle der skalaren Funktion f unter den Nebenbedingungen g i (x) = 0, dann existieren Lagrange-Multiplikatoren λ i, so dass grad f (x ) = λ i grad g i (x ). i Dabei wird vorausgesetzt, dass f und g in einer Umgebung von x stetig differenzierbar sind und dass die Gradienten grad g i (x ) linear unabhängig sind. Lagrange-Multiplikatoren 1-1

2 Lagrange-Multiplikatoren Ist x eine lokale Extremstelle der skalaren Funktion f unter den Nebenbedingungen g i (x) = 0, dann existieren Lagrange-Multiplikatoren λ i, so dass grad f (x ) = λ i grad g i (x ). i Dabei wird vorausgesetzt, dass f und g in einer Umgebung von x stetig differenzierbar sind und dass die Gradienten grad g i (x ) linear unabhängig sind. Bei nur einer Nebenbedingung hat die Lagrange-Bedingung die einfache Form grad f (x ) grad g(x ), falls grad g(x ) 0, d.h. die Niveauflächen von f und g berühren sich an einer Extremstelle. Lagrange-Multiplikatoren 1-2

3 Die Lagrange-Bedingung ist nicht hinreichend, um zu entscheiden, ob ein lokales Extremum vorliegt und ob es sich um ein Minimum oder ein Maximum handelt. Dies lässt sich nur mit Hilfe weiterer Informationen feststellen. Lagrange-Multiplikatoren 1-3

4 Die Lagrange-Bedingung ist nicht hinreichend, um zu entscheiden, ob ein lokales Extremum vorliegt und ob es sich um ein Minimum oder ein Maximum handelt. Dies lässt sich nur mit Hilfe weiterer Informationen feststellen. Die globalen Extrema erhält man durch den Vergleich der Funktionswerte an den Punkten, welche die Lagrange-Bedingung erfüllen, sowie gegebenenfalls den Randpunkten der zulässigen Menge oder Punkten mit einem Rangverlust von g. Lagrange-Multiplikatoren 1-4

5 Beweis: n: Anzahl der Variablen, m: Anzahl der Nebenbedingungen Lagrange-Multiplikatoren 2-1

6 Beweis: n: Anzahl der Variablen, m: Anzahl der Nebenbedingungen (i) m n: Lagrange-Multiplikatoren 2-2

7 Beweis: n: Anzahl der Variablen, m: Anzahl der Nebenbedingungen (i) m n: Der n-vektor grad f (x ) ist immer als Linearkombination der, nach Voraussetzung linear unabhängigen Gradienten grad g i (x ) darstellbar. Lagrange-Multiplikatoren 2-3

8 Beweis: n: Anzahl der Variablen, m: Anzahl der Nebenbedingungen (i) m n: Der n-vektor grad f (x ) ist immer als Linearkombination der, nach Voraussetzung linear unabhängigen Gradienten grad g i (x ) darstellbar. Grund: Für m n, besteht die zulässige Menge im Allgemeinen bereits aus diskreten Punkten, die durch die Nebenbedingungen festgelegt sind. Lagrange-Multiplikatoren 2-4

9 Beweis: n: Anzahl der Variablen, m: Anzahl der Nebenbedingungen (i) m n: Der n-vektor grad f (x ) ist immer als Linearkombination der, nach Voraussetzung linear unabhängigen Gradienten grad g i (x ) darstellbar. Grund: Für m n, besteht die zulässige Menge im Allgemeinen bereits aus diskreten Punkten, die durch die Nebenbedingungen festgelegt sind. (ii) m < n: Lagrange-Multiplikatoren 2-5

10 Beweis: n: Anzahl der Variablen, m: Anzahl der Nebenbedingungen (i) m n: Der n-vektor grad f (x ) ist immer als Linearkombination der, nach Voraussetzung linear unabhängigen Gradienten grad g i (x ) darstellbar. Grund: Für m n, besteht die zulässige Menge im Allgemeinen bereits aus diskreten Punkten, die durch die Nebenbedingungen festgelegt sind. (ii) m < n: fasse die Nebenbedingungen g i zu einer Funktion g = (g 1,..., g m ) t zusammen Lagrange-Multiplikatoren 2-6

11 Beweis: n: Anzahl der Variablen, m: Anzahl der Nebenbedingungen (i) m n: Der n-vektor grad f (x ) ist immer als Linearkombination der, nach Voraussetzung linear unabhängigen Gradienten grad g i (x ) darstellbar. Grund: Für m n, besteht die zulässige Menge im Allgemeinen bereits aus diskreten Punkten, die durch die Nebenbedingungen festgelegt sind. (ii) m < n: fasse die Nebenbedingungen g i zu einer Funktion g = (g 1,..., g m ) t zusammen partitioniere die Variablen als x = (u, v) R m R n m, wobei nach eventueller Permutation die Invertierbarkeit der Jacobi-Matrix ( g(u, v)/ u) (u,v ) = g u (u, v ) vorausgesetzt wird Lagrange-Multiplikatoren 2-7

12 Beweis: n: Anzahl der Variablen, m: Anzahl der Nebenbedingungen (i) m n: Der n-vektor grad f (x ) ist immer als Linearkombination der, nach Voraussetzung linear unabhängigen Gradienten grad g i (x ) darstellbar. Grund: Für m n, besteht die zulässige Menge im Allgemeinen bereits aus diskreten Punkten, die durch die Nebenbedingungen festgelegt sind. (ii) m < n: fasse die Nebenbedingungen g i zu einer Funktion g = (g 1,..., g m ) t zusammen partitioniere die Variablen als x = (u, v) R m R n m, wobei nach eventueller Permutation die Invertierbarkeit der Jacobi-Matrix ( g(u, v)/ u) (u,v ) = g u (u, v ) vorausgesetzt wird Satz über implizite Funktionen = lokale Auflösbarkeit der Nebenbedingungen g(u, v) = (0,..., 0) t u = ϕ(v), (u, v) (u, v ) Lagrange-Multiplikatoren 2-8

13 Gradient der Funktion v h(v) = f (ϕ(v), v) Null an einem Extremum, d.h. grad h(v ) = f u (u, v )ϕ (v ) + f v (u, v ) = 0 aufgrund der Kettenregel und mit ϕ der Jacobi-Matrix von ϕ Lagrange-Multiplikatoren 2-9

14 Gradient der Funktion v h(v) = f (ϕ(v), v) Null an einem Extremum, d.h. grad h(v ) = f u (u, v )ϕ (v ) + f v (u, v ) = 0 aufgrund der Kettenregel und mit ϕ der Jacobi-Matrix von ϕ Differenzieren der Nebenbedingungen g(ϕ(v), v) = (0,..., 0) t = ϕ (v) = g u (u, v) 1 g v (u, v) Lagrange-Multiplikatoren 2-10

15 Gradient der Funktion v h(v) = f (ϕ(v), v) Null an einem Extremum, d.h. grad h(v ) = f u (u, v )ϕ (v ) + f v (u, v ) = 0 aufgrund der Kettenregel und mit ϕ der Jacobi-Matrix von ϕ Differenzieren der Nebenbedingungen g(ϕ(v), v) = (0,..., 0) t = ϕ (v) = g u (u, v) 1 g v (u, v) Setzen von λ = f u (u, v )g u (u, v ) 1 und Einsetzen des Ausdrucks für ϕ in den Gradienten f u = λg u, f v = f u ( gu 1 g v ) = λg v (u- und v-komponenten der Bedingung f = λg im Punkt (u, v )) Lagrange-Multiplikatoren 2-11

16 Beispiel: minimiere f (x, y) = y unter der Nebenbedinung g(x, y) = y 3 x 2 = 0 Minimum bei (0, 0) g = y 3 x 2 = 0 grad f (0, 0) y = 0 Lagrange-Multiplikatoren 3-1

17 Die Lagrange-Bedingung (f x, f y ) = λ(g x, g y ) nicht erfüllt: (0, 1) (0, 0) = λ( 2x, 3y 2 ) Lagrange-Multiplikatoren 3-2

18 Die Lagrange-Bedingung (f x, f y ) = λ(g x, g y ) nicht erfüllt: (0, 1) (0, 0) = λ( 2x, 3y 2 ) Grund: kein maximaler Rang der Jacobi-Matrix g (x, y ) = (0, 0) Lagrange-Multiplikatoren 3-3

19 Die Lagrange-Bedingung (f x, f y ) = λ(g x, g y ) nicht erfüllt: (0, 1) (0, 0) = λ( 2x, 3y 2 ) Grund: kein maximaler Rang der Jacobi-Matrix g (x, y ) = (0, 0) Die Lagrange-Bedingung ist in singulären Punkten nicht anwendbar. Lagrange-Multiplikatoren 3-4

20 Beispiel: Lagrange Bedingung für die Extremstellen (x, y ) einer bivariaten Funktion f (x, y) unter der Nebenbedingung g(x, y) = 0: d.h. grad g ist parallel zu grad f (f x, f y ) = λ(g x, g y ), grad g 0 Lagrange-Multiplikatoren 4-1

21 Beispiel: Lagrange Bedingung für die Extremstellen (x, y ) einer bivariaten Funktion f (x, y) unter der Nebenbedingung g(x, y) = 0: (f x, f y ) = λ(g x, g y ), grad g 0 d.h. grad g ist parallel zu grad f Die Niveaulinien von f im Punkt (x, y ) sind tangential zu der durch g definierten Kurve. Lagrange-Multiplikatoren 4-2

22 2 g = 0 1 (x, y ) 0 1 f =const Lagrange-Multiplikatoren 4-3

23 z.b.: f (x, y) = (x 3)(y 3) min, g(x, y) = x 2 + y 2 2 = 0 Lagrange-Multiplikatoren 4-4

24 z.b.: f (x, y) = (x 3)(y 3) min, g(x, y) = x 2 + y 2 2 = 0 Langrange-Bedingung (f x, f y ) = (y 3, x 3) = λ(2x, 2y) = λ(g x, g y ) Lagrange-Multiplikatoren 4-5

25 z.b.: f (x, y) = (x 3)(y 3) min, g(x, y) = x 2 + y 2 2 = 0 Langrange-Bedingung (f x, f y ) = (y 3, x 3) = λ(2x, 2y) = λ(g x, g y ) Elimination von λ durch Bilden der Differenz yf x xf y y(y 3) x(x 3) = 0 (y x)(y + x 3) = 0 Lagrange-Multiplikatoren 4-6

26 z.b.: f (x, y) = (x 3)(y 3) min, g(x, y) = x 2 + y 2 2 = 0 Langrange-Bedingung (f x, f y ) = (y 3, x 3) = λ(2x, 2y) = λ(g x, g y ) Elimination von λ durch Bilden der Differenz yf x xf y y(y 3) x(x 3) = 0 (y x)(y + x 3) = 0 Berücksichtigung der Nebenbedingung x 2 + y 2 2 = 0 (kein zulässiger Punkt für y + x 3 = 0) x = y und (1, 1) sowie ( 1, 1) als mögliche Extremstellen Lagrange-Multiplikatoren 4-7

27 z.b.: f (x, y) = (x 3)(y 3) min, g(x, y) = x 2 + y 2 2 = 0 Langrange-Bedingung (f x, f y ) = (y 3, x 3) = λ(2x, 2y) = λ(g x, g y ) Elimination von λ durch Bilden der Differenz yf x xf y y(y 3) x(x 3) = 0 (y x)(y + x 3) = 0 Berücksichtigung der Nebenbedingung x 2 + y 2 2 = 0 (kein zulässiger Punkt für y + x 3 = 0) x = y und (1, 1) sowie ( 1, 1) als mögliche Extremstellen Existenz von Minimum und Maximum für eine stetige Funktion auf einer kompakten Menge (Kreis mit Radius 2) = f bei (1, 1) minimal und bei ( 1, 1) maximal Lagrange-Multiplikatoren 4-8

28 Beispiel: Bestimmung der Extrema von f (x, y, z) = x + 2y z unter den Nebenbedingungen g 1 (x, y, z) = x 2 + y 2 8 = 0, g 2 (x, y, z) = x + z 4 = 0 (Ellipse: Schnitt eines Zylinders mit einer Ebene) Lagrange-Multiplikatoren 5-1

29 Beispiel: Bestimmung der Extrema von unter den Nebenbedingungen f (x, y, z) = x + 2y z g 1 (x, y, z) = x 2 + y 2 8 = 0, g 2 (x, y, z) = x + z 4 = 0 (Ellipse: Schnitt eines Zylinders mit einer Ebene) Jacobi-Matrix der Nebenbedingungen ( ) g 2x 2y 0 (x, y) = voller Rang für (x, y) (0, 0); auf zulässiger Menge erfüllt Lagrange-Multiplikatoren 5-2

30 Beispiel: Bestimmung der Extrema von unter den Nebenbedingungen f (x, y, z) = x + 2y z g 1 (x, y, z) = x 2 + y 2 8 = 0, g 2 (x, y, z) = x + z 4 = 0 (Ellipse: Schnitt eines Zylinders mit einer Ebene) Jacobi-Matrix der Nebenbedingungen ( ) g 2x 2y 0 (x, y) = voller Rang für (x, y) (0, 0); auf zulässiger Menge erfüllt Lagrange-Bedingung für Extremstellen (x, y, z) ( ) 2x 2y 0 (1, 2, 1) = (λ 1, λ 2 ) Lagrange-Multiplikatoren 5-3

31 bzw. 1 = 2λ 1 x + λ 2 2 = 2λ 1 y 1 = λ 2 Lagrange-Multiplikatoren 5-4

32 bzw. 1 = 2λ 1 x + λ 2 2 = 2λ 1 y 1 = λ 2 Einsetzen von λ 1 = 1/y und λ 2 = 1 in die erste Gleichung = x = y Lagrange-Multiplikatoren 5-5

33 bzw. 1 = 2λ 1 x + λ 2 2 = 2λ 1 y 1 = λ 2 Einsetzen von λ 1 = 1/y und λ 2 = 1 in die erste Gleichung = x = y Nebenbedingungen mögliche Extrema (2, 2, 2) und ( 2, 2, 6) Lagrange-Multiplikatoren 5-6

34 bzw. 1 = 2λ 1 x + λ 2 2 = 2λ 1 y 1 = λ 2 Einsetzen von λ 1 = 1/y und λ 2 = 1 in die erste Gleichung = x = y Nebenbedingungen mögliche Extrema (2, 2, 2) und ( 2, 2, 6) Existenz von Minimum und Maximum auf der Ellipse und Vergleich der Funktionswerte, f ( 2, 2, 6) = 12 < 4 = f (2, 2, 2), = f ist minimal bei ( 2, 2, 6) und maximal bei (2, 2, 2). Lagrange-Multiplikatoren 5-7

35 Beispiel: Gleichgewichtslage einer an zwei Punkten aufgehängten Kette mit 2n Kettengliedern der Länge 1 Lagrange-Multiplikatoren 6-1

36 Beispiel: Gleichgewichtslage einer an zwei Punkten aufgehängten Kette mit 2n Kettengliedern der Länge 1 r x 1 x 2 Lagrange-Multiplikatoren 6-2

37 Beispiel: Gleichgewichtslage einer an zwei Punkten aufgehängten Kette mit 2n Kettengliedern der Länge 1 r x 1 x 2 potentielle Energie unter Berücksichtigung der Symmetrie ( x1 ) ( f (x) = 2 2 x 1 + x ) ( 2 2 x x n 1 + x ) n = a 1 x 1 a n x n mit a i = 2(n i) + 1 Lagrange-Multiplikatoren 6-3

38 Beispiel: Gleichgewichtslage einer an zwei Punkten aufgehängten Kette mit 2n Kettengliedern der Länge 1 r x 1 x 2 potentielle Energie unter Berücksichtigung der Symmetrie ( x1 ) ( f (x) = 2 2 x 1 + x ) ( 2 2 x x n 1 + x ) n = a 1 x 1 a n x n mit a i = 2(n i) + 1 Länge der Kette Nebenbedingung n g(x) = r/2 1 xi 2 = 0 i=1 Lagrange-Multiplikatoren 6-4

39 Optimierungsproblem f min, g = 0 Lagrange-Multiplikatoren 6-5

40 Optimierungsproblem f min, g = 0 Lagrange-Bedingungen grad f = λ grad g a i = λ x i 1 x 2 i, i = 1,..., n Lagrange-Multiplikatoren 6-6

41 Optimierungsproblem f min, g = 0 Lagrange-Bedingungen grad f = λ grad g a i = λ x i 1 x 2 i Quadrieren und Auflösen nach x i = x 2 i = a2 i a 2 i + λ 2, i = 1,..., n Lagrange-Multiplikatoren 6-7

42 Optimierungsproblem f min, g = 0 Lagrange-Bedingungen grad f = λ grad g a i = λ x i 1 x 2 i Quadrieren und Auflösen nach x i = x 2 i = a2 i a 2 i + λ 2 Einsetzen in die Nebenbedingung r/2 = i r n 2 = i=1, i = 1,..., n λ 2 a 2 i + λ 2 1 x 2 i Lagrange-Multiplikatoren 6-8

43 ... monotone Funktion von λ Lagrange-Multiplikatoren 6-9

44 ... monotone Funktion von λ einfach zu berechnende numerische Lösung λ Lagrange-Multiplikatoren 6-10

45 ... monotone Funktion von λ einfach zu berechnende numerische Lösung λ Bestimmung von x i aus den Lagrange-Bedingungen Lagrange-Multiplikatoren 6-11

Kuhn-Tucker-Bedingung

Kuhn-Tucker-Bedingung Kuhn-Tucker-Bedingung Ist x ein lokales Minimum einer skalaren Funktion f unter den Nebenbedingungen g i (x) 0 und sind die Gradienten der aktiven Gleichungen g i (x ) = 0, i I, linear unabhängig, dann

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung 1. Anwendungen des Satzes über implizite Funktionen 2. Stationäre Punkte implizit definierter Funktionen 3. Reguläre Punkte 4. Singuläre Punkte Ausblick auf die heutige

Mehr

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem Implizite Funktionen Ist für eine stetig differenzierbare Funktion f : R n R m R n f (x, y ) = (0,..., 0) t, det f x (x, y ) 0, so lässt sich das Gleichungssystem f k (x 1,..., x n, y 1,..., y m ) = 0,

Mehr

Musterlösung zu Blatt 1

Musterlösung zu Blatt 1 Musterlösung zu Blatt Analysis III für Lehramt Gymnasium Wintersemester 0/4 Überprüfe zunächst die notwendige Bedingung Dfx y z = 0 für die Existenz lokaler Extrema Mit x fx y z = 8x und y fx y z = + z

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 03 6.06.03 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

Folgerungen aus dem Auflösungsatz

Folgerungen aus dem Auflösungsatz Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und

Mehr

2 Extrema unter Nebenbedingungen

2 Extrema unter Nebenbedingungen $Id: lagrangetex,v 18 01/11/09 14:07:08 hk Exp $ $Id: untermfgtex,v 14 01/11/1 10:00:34 hk Exp hk $ Extrema unter Nebenbedingungen Lagrange-Multiplikatoren In der letzten Sitzung hatten wir begonnen die

Mehr

1.6 Implizite Funktionen

1.6 Implizite Funktionen 1 1.6 Implizite Funktionen Wir werden uns jetzt mit nichtlinearen Gleichungen beschäftigen, f(x) = 0, wobei f = (f 1,..., f m ) stetig differenzierbar auf einem Gebiet G R n und m < n ist. Dann hat man

Mehr

10 Extremwerte mit Nebenbedingungen

10 Extremwerte mit Nebenbedingungen 10 Extremwerte mit Nebenbedingungen 49 10 Extremwerte mit Nebenbedingungen Wir betrachten nun Extremwertaufgaben, bei denen nach dem Extremwert einer fx 1,, x n gesucht wird, aber die Menge der zulässigen

Mehr

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.

Mehr

55 Lokale Extrema unter Nebenbedingungen

55 Lokale Extrema unter Nebenbedingungen 55 Lokale Extrema unter Nebenbedingungen Sei f : O R mit O R n differenzierbar. Notwendige Bescheinigung für ein lokales Extremum in p 0 ist dann die Bedingung f = 0 (siehe 52.4 und 49.14). Ist nun F :

Mehr

Extrema mit Nebenbedingungen

Extrema mit Nebenbedingungen Extrema mit Nebenbedingungen Gesucht ist das Extremum der Funktion f(x,y) = 5 x y unter der Nebenbedingung g(x,y) = x+y =. 5 y x In diesem einfachen Fall kann die Nebenbedingung nach einer Variablen aufgelöst

Mehr

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum.

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum. Fabian Kohler Karolina Stoiber Ferienkurs Analsis für Phsiker SS 4 A Extrema In diesem Abschnitt sollen Extremwerte von Funktionen f : D R n R diskutiert werden. Auch hier gibt es viele Ähnlichkeiten mit

Mehr

3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z

3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z R Es sei f : R n D R eine einmal stetig differenzierbare Funktion, für die in einer Umgebung eines Punkte a = a 1, a,, a n D gilt: fa 1, a,, a n = 0, f xn a 1, a,, a n 0 Dann gibt es eines Umgebung U des

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr

7.11. Extrema unter Nebenbedingungen

7.11. Extrema unter Nebenbedingungen 7.11. Extrema unter Nebenbedingungen Randextrema Wir haben schon bemerkt, daß die üblichen Tests mit Hilfe von (eventuell höheren) Ableitungen nur Kriterien für (lokale) Extrema im Inneren des Definitionsgebietes

Mehr

3. Mai Zusammenfassung. g x. x i (x).

3. Mai Zusammenfassung. g x. x i (x). 3. Mai 2013 Zusammenfassung 1 Hauptsatz Satz 1.1 Sei F C 1 (D) für eine offene Teilmenge D von R q+1 = R q R. Für (x 0, u 0 ) D gelte F (x 0, u 0 ) = 0, (x 0, u 0 ) 0. Dann gibt es eine Umgebung V von

Mehr

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 }

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 } A Analsis, Woche Implizite Funktionen A Implizite Funktionen in D A3 Wenn man den Kreis mit Radius um, beschreiben möchte, dann ist { x, ; x + = } eine Möglichkeit Oft ist es bequemer, so eine Figur oder

Mehr

Extrema von Funktionen mit Nebenbedingung

Extrema von Funktionen mit Nebenbedingung Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen mit Nebenbedingung Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode

6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode 6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode In diesem Kapitel orientieren wir uns stark an den Büchern: 1. Knut Sydsæter, Peter Hammond, Mathematik für Wirtschaftswissenschaftler,

Mehr

Extremwertrechnung in mehreren Veränderlichen

Extremwertrechnung in mehreren Veränderlichen KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 2014 14.05.2014 Höhere Mathematik II für die Fachrichtung Informatik 3. Saalübung (14.05.2014) Extremwertrechnung

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr M Keyl M Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker (Analysis ) MA90 http://www-m5matumde/allgemeines/ma90 06S Sommersem 06 Lösungsblatt (606) Zentralübung Z

Mehr

3 Optimierung mehrdimensionaler Funktionen f : R n R

3 Optimierung mehrdimensionaler Funktionen f : R n R 3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)

Mehr

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0. Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales

Mehr

Analysis II 14. Übungsblatt

Analysis II 14. Übungsblatt Jun.-Prof. PD Dr. D. Mugnolo Wintersemester 01/13 F. Stoffers 04. Februar 013 Analysis II 14. Übungsblatt 1. Aufgabe (8 Punkte Man beweise: Die Gleichung z 3 + z + xy = 1 besitzt für jedes (x, y R genau

Mehr

Musterlösungen Aufgabenblatt 2

Musterlösungen Aufgabenblatt 2 Jonas Kindervater Ferienkurs - Höhere Mathematik III für Physiker Musterlösungen Aufgabenblatt Dienstag 17. Februar 009 Aufgabe 1 (Implizite Funktionen) f(x, y) = x 1 xy 1 y4 = 0 Man bestimme die lokale

Mehr

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 91 Optimierung ohne Nebenbedingungen Ein Optimum zu suchen heißt, den größten oder den kleinsten Wert zu suchen Wir suchen also ein x R n, sodass

Mehr

Outline. 1 Funktionen von mehreren Veränderlichen. 2 Grenzwert und Stetigkeit. 3 Partielle Ableitungen. 4 Die verallgemeinerte Kettenregel

Outline. 1 Funktionen von mehreren Veränderlichen. 2 Grenzwert und Stetigkeit. 3 Partielle Ableitungen. 4 Die verallgemeinerte Kettenregel Outline 1 Funktionen von mehreren Veränderlichen 2 Grenzwert und Stetigkeit 3 Partielle Ableitungen 4 Die verallgemeinerte Kettenregel 5 Das totale Differential 6 Extremstellen Roman Wienands (Universität

Mehr

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015 Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum

Mehr

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg Hinreichende Bedingung für lokale Extrema Voraussetzungen Satz D R n konvex und offen Funktion f : D R zweimal stetig partiell differenzierbar

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Ferienkurs der TU München- - Analysis 2 Funktionen in mehreren Variablen Vorlesung

Ferienkurs der TU München- - Analysis 2 Funktionen in mehreren Variablen Vorlesung Ferienkurs der TU München- - Analysis 2 Funktionen in mehreren Variablen Vorlesung Jonas J. Funke 30.08.2010-03.09.2010 Inhaltsverzeichnis 1 Funktionen in mehreren Variablen 3 2 Partielle Differentiation

Mehr

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte Universität München 22. Juli 29 Topologie und Differentialrechnung mehrerer Veränderlicher, SS 29 Modulprüfung/Abschlussklausur Name: Aufgabe 2 3 4 Punkte Gesamtpunktzahl: Gesamturteil: Schreiben Sie unbedingt

Mehr

TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik 1. Dr. M. Herrich SS 2017

TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik 1. Dr. M. Herrich SS 2017 TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik Prof. Dr. K. Eppler Institut für Numerische Mathematik Dr. M. Herrich SS 207 Aufgabe Gegeben sei die Funktion f : R 2 R mit Übungen

Mehr

18.2 Implizit definierte Funktionen

18.2 Implizit definierte Funktionen 18.2 Implizit definierte Funktionen Ziel: Untersuche Lösungsmengen von nichtlinearen Gleichungssystemen g(x) = 0 mit g : D R m, D R n, d.h. betrachte m Gleichungen für n Unbekannte mit m < n, d.h. wir

Mehr

C. Eicher Analysis Study Center ETH Zürich HS Extremwerte

C. Eicher Analysis Study Center ETH Zürich HS Extremwerte C. Eicher Analysis Study Center ETH Zürich HS 05 Extremwerte Gelöste Aufgabenbeispiele:. Bestimme die lokalen und globalen Extrema der Funktion f(x) = x x + x auf dem Intervall [ 4, ]. a. Bestimmung der

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen Mathematik für Physiker III WS 2012/2013 Freitag 211 $Id: implizittexv 18 2012/11/01 20:18:36 hk Exp $ $Id: lagrangetexv 13 2012/11/01 1:24:3 hk Exp hk $ 1 Umkehrfunktionen und implizite Funktionen 13

Mehr

FK WMS: Wirtschaftsmathematik 2, Einheit 7/8

FK WMS: Wirtschaftsmathematik 2, Einheit 7/8 FK WMS: Wirtschaftsmathematik 2, Einheit 7/8 Markus Sinnl 1 markus.sinnl@univie.ac.at http://homepage.univie.ac.at/markus.sinnl basierend auf Folien von Dr. Ivana Ljubic, Mag. Christian Spreitzer und Mag.

Mehr

Kritischer Punkt. Kritischer Punkt 1-1

Kritischer Punkt. Kritischer Punkt 1-1 Kritischer Punkt Für eine skalare Funktion f bezeichnet man x als kritischen Punkt, wenn grad f (x) = (0,..., 0)textt. Ist f zweimal stetig differenzierbar, so wird der Typ des kritischen Punktes, d.h.

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 7. Juni 201 *Aufgabe 1. Gegeben seien fx, y = xy 2 8e x+y und P = 1, 2. Der Gradient von f ist genau an der Stelle P Null. a Untersuchen Sie mit Hilfe der Hesse-Matrix,

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 3 Anwendungen der Differentialrechnung 3.1 Lokale Maxima und Minima Definition 16: Sei f : D R eine Funktion von n Veränderlichen. Ein Punkt x heißt lokale oder relative Maximalstelle bzw. Minimalstelle

Mehr

Extrema von Funktionen mit zwei Variablen

Extrema von Funktionen mit zwei Variablen Extrema von Funktionen mit zwei Variablen Es gilt der Satz: Ist an einer Stelle x,y ) f x x,y ) = und f y x,y ) = und besteht außerdem die Ungleichung f xx x,y )f yy x,y ) f xy x,y ) >, so liegt an dieser

Mehr

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2 Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die

Mehr

Klausur zu Analysis II - Lösungen

Klausur zu Analysis II - Lösungen Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Dr. Axel Grünrock WS 1/11 11..11 Klausur zu Analysis II - Lösungen 1. Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind.

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient Vorlesung: Analysis II für Ingenieure Wintersemester 07/08 Michael Karow Themen: Niveaumengen und Gradient Wir betrachten differenzierbare reellwertige Funktionen f : R n G R, G offen Zur Vereinfachung

Mehr

Optimierung unter Nebenbedingungen

Optimierung unter Nebenbedingungen Optimierung unter Nebenbedingungen Kapitel 7: Optimierung unter Nebenbedingungen Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 1. Juli 2009 1 / 18 7.1 Bemerkung

Mehr

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen 11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen Ziel: Wir wollen lokale Extrema von Funktionen f : M R untersuchen, wobei M R n eine k-dimensionale Untermannigfaltigkeit des

Mehr

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS Aufgabe 1. a) Gegeben sei die Gleichung 2x 2 4xy +y 2 3x+4y = 0. Verifizieren Sie, dass diese Gleichung

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II... ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Prof. Dr. H. Brenner Osnabrück SS Analysis II. Vorlesung 50. Hinreichende Kriterien für lokale Extrema

Prof. Dr. H. Brenner Osnabrück SS Analysis II. Vorlesung 50. Hinreichende Kriterien für lokale Extrema Prof. Dr. H. Brenner Osnabrück SS 205 Analysis II Vorlesung 50 Hinreichende Kriterien für lokale Extrema Wir kommen jetzt zu hinreichenden Kriterien für die Existenz von lokalen Extrema einer Funktion

Mehr

Totale Ableitung und Jacobi-Matrix

Totale Ableitung und Jacobi-Matrix Totale Ableitung und Jacobi-Matrix Eine reelle Funktion f : R n R m ist in einem Punkt x differenzierbar, wenn f (x + h) = f (x) + f (x)h + o( h ) für h 0. Totale Ableitung 1-1 Totale Ableitung und Jacobi-Matrix

Mehr

Umkehrfunktion. g (y) = f (x) 1, x = g(y), Umkehrfunktion 1-1

Umkehrfunktion. g (y) = f (x) 1, x = g(y), Umkehrfunktion 1-1 Umkehrfunktion Ist für eine stetig differenzierbare n-variate Funktion f : D R n die Jacobi-Matrix f (x ) für einen Punkt x im Innern des Definitionsbereiches D R n nicht singulär, so ist f lokal invertierbar,

Mehr

Mathematik I ITB. Funktionen mit mehreren reellen Variablen. Prof. Dr. Karin Melzer

Mathematik I ITB. Funktionen mit mehreren reellen Variablen. Prof. Dr. Karin Melzer Funktionen mit mehreren reellen Variablen 11.05.09 Beispiel: Funktionsgebirge Das Beispiel zeigt die Funktion z = y sin(x 2 ) Schnittkurven: Beispiel Kegelschnitte Schnittkurve: Kurve, die aus dem Schnitt

Mehr

Partielle Ableitungen, Gradient, Lineare Näherung, Extrema, Fehlerfortpflanzung

Partielle Ableitungen, Gradient, Lineare Näherung, Extrema, Fehlerfortpflanzung Partielle Ableitungen, Gradient, Lineare Näherung, Extrema, Fehlerfortpflanzung Jörn Loviscach Versionsstand: 29. Juni 2009, 18:41 1 Partielle Ableitungen, Gradient Die Ableitung einer Funktion f an einer

Mehr

42 Lokale Extrema mit Nebenbedingungen

42 Lokale Extrema mit Nebenbedingungen 4 Lokale Extrema mit Nebenbedingungen 09 4 Lokale Extrema mit Nebenbedingungen Lernziele: Resultate: Kriterien für lokale Extrema mit Nebenbedingungen Methoden: Lagrange-Multiplikatoren Kompetenzen: Bestimmung

Mehr

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I. f(x) := e x + x.

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I. f(x) := e x + x. Technische Universität München WS 009/0 Fakultät für Mathematik Prof. Dr. J. Edenhofer Dipl.-Ing. W. Schultz Übung Lösungsvorschlag Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I Aufgabe

Mehr

Tangentialebene. Sei f eine stetig differenzierbare Funktion und p = (p 1,..., p n ) die Koordinaten eines Punktes P auf der durch

Tangentialebene. Sei f eine stetig differenzierbare Funktion und p = (p 1,..., p n ) die Koordinaten eines Punktes P auf der durch Tangentialebene Sei f eine stetig differenzierbare Funktion und p = (p 1,..., p n ) die Koordinaten eines Punktes P auf der durch implizit definierten Fläche. f (x 1,..., x n ) = c Tangentialebene 1-1

Mehr

16. FUNKTIONEN VON MEHREREN VARIABLEN

16. FUNKTIONEN VON MEHREREN VARIABLEN 16. FUNKTIONEN VON MEHREREN VARIABLEN 1 Reelle Funktionen auf dem R 2 Wir betrachten Funktionen f(x 1, x 2 ) von zwei reellen Variablen x 1, x 2, z.b. f(x 1, x 2 ) = x 2 1 + x2 2, g(x 1, x 2 ) = x 2 1

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.4 Anwendungen (Teil 2): Extremwerte

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.4 Anwendungen (Teil 2): Extremwerte Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.4 Anwendungen (Teil 2): Extremwerte www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr.

Mehr

Teil I. Lineare Optimierung

Teil I. Lineare Optimierung Teil I Lineare Optimierung 5 Kapitel 1 Grundlagen Definition 1.1 Lineares Optimierungsproblem, lineares Programm. Eine Aufgabenstellung wird lineares Optimierungsproblem oder lineares Programm genannt,

Mehr

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R,

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R, B en Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R Berechnen Sie zur Abbildung f : R R, f(x, y) : x sin(xy) das totale Differenzial f df, die Jacobi-Matrix J f (x, y) und den Gradienten ( f)(x,

Mehr

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J}

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J} 9 Der Satz über implizite Funktionen 41 9 Der Satz über implizite Funktionen Wir haben bisher Funktionen g( von einer reellen Variablen immer durch Formelausdrücke g( dargestellt Der Zusammenhang zwischen

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

Monotonie, Konkavität und Extrema

Monotonie, Konkavität und Extrema Kapitel 8 Monotonie, Konkavität und Extrema Josef Leydold Auffrischungskurs Mathematik WS 2017/18 8 Monotonie, Konkavität und Extrema 1 / 55 Monotonie Eine Funktion f heißt monoton steigend, falls x 1

Mehr

6 Weiterer Ausbau der Differentialrechnung

6 Weiterer Ausbau der Differentialrechnung 6 Weiterer Ausbau der Differentialrechnung 6.1 Mittelwertsätze, Extremwerte, Satz von Taylor Motivation: Wie wählt man Höhe und Durchmesser einer Konservendose, so dass bei festem Volumen V möglichst wenig

Mehr

3.2 Implizite Funktionen

3.2 Implizite Funktionen 3.2 Implizite Funktionen Funktionen können explizit als y = f(x 1, x 2,..., x n ) oder implizit als F(x 1, x 2,..., x n ;y) = 0 gegeben sein. Offensichtlich kann man die explizite Form immer in die implizite

Mehr

Übungen zur Analysis II Blatt 27 - Lösungen

Übungen zur Analysis II Blatt 27 - Lösungen Prof. Dr. Torsten Wedhorn SoSe 22 Daniel Wortmann Übungen zur Analysis II Blatt 27 - Lösungen Aufgabe 5: 6+6+6* Punkte Bestimme alle lokalen Extrema der folgenden Funktionen: a b c* f : R 3 R g : R 2 R

Mehr

Mikroökonomik Prof. Dr. Stefan Klonner SoSe Übungsblatt 1

Mikroökonomik Prof. Dr. Stefan Klonner SoSe Übungsblatt 1 1 Funktionen Definition 1 (Funktion). Übungsblatt 1 Eine Funktion f(x) einer reellen Variable x mit Definitionsbereich D ist eine Regel, die jeder Zahl x in D eine reelle Zahl f(x) eindeutig zuordnet.

Mehr

Schein-Klausur. Analysis 2

Schein-Klausur. Analysis 2 Universität Konstanz FB Mathematik & Statistik Prof. Dr. M. Junk Dipl.-Phys. Martin Rheinländer Schein-Klausur Analysis 2 28. Juli 26 2. Iteration Name: Vorname: Matr. Nr.: Hauptfach: Nebenfach: Übungsgruppen-Nr.:

Mehr

Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h.

Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h. Konvexe Menge Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, dh Kapitel Extrema konvex: h x + h y D für alle h [0, ], und x,

Mehr

Die Tangentialebene. {(x, y, z) z = f(x 0, y 0 )+ f x (x 0, y 0 )(x x 0 )+ f. y (x 0, y 0 )(y y 0 )}

Die Tangentialebene. {(x, y, z) z = f(x 0, y 0 )+ f x (x 0, y 0 )(x x 0 )+ f. y (x 0, y 0 )(y y 0 )} Die Tangentialebene Der Graph der linearen Approximation ist Tangentialebene an den Graph der Funktion. In Symbolen: Es sei D R 2. Es sei f : D R, (x, y) f(x, y) differenzierbar. Dann ist {(x, y, z) z

Mehr

Multivariate Kettenregel

Multivariate Kettenregel Multivariate Kettenregel Für die Hintereinanderschaltung h = g f : x y = f (x) z = g(y), stetig differenzierbarer Funktionen f : R m R l und g : R l R n gilt h (x) = g (y)f (x), d.h. die Jacobi-Matrix

Mehr

Anleitung zu Blatt 5 Analysis III für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 5 Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / r. Hanna Peywand Kiani 4.. Anleitung zu Blatt 5 Analysis III für Studierende der Ingenieurwissenschaften Extrema unter Nebenbedingungen, Lagrange Multiplikatoren

Mehr

5.10. Mehrdimensionale Extrema und Sattelpunkte

5.10. Mehrdimensionale Extrema und Sattelpunkte 5.1. Mehrdimensionale Extrema und Sattelpunkte Zur Erinnerung: Eine Funktion f von einer Teilmenge A des R n nach R hat im Punkt a ein (strenges) globales Maximum, falls f( x ) f( a ) (bzw. f( x ) < f(

Mehr

Lösungsvorschlag Klausur MA9802

Lösungsvorschlag Klausur MA9802 Lehrstuhl für Numerische Mathematik Garching, den 3.8.22 Prof. Dr. Herbert Egger Dr. Matthias Schlottbom Lösungsvorschlag Klausur MA982 Aufgabe [3 + 3 Punkte] Berechnen Sie, falls existent, die folgenden

Mehr

Kurvendiskussion von Funktionsscharen

Kurvendiskussion von Funktionsscharen Kurvendiskussion von Funktionsscharen Die Untersuchung von Funktionsscharen unterscheidet sich nicht von der Untersuchung von normalen Funktionen. Einzig die Bestimmung der Ortskurven von Extremstellen

Mehr

Serie 3. z = f(x, y) = 9 (x 2) 2 (y 3) 2 z 2 = 9 (x 2) 2 (y 3) 2, z 0 9 = (x 2) 2 + (y 3) 2 + z 2, z 0.

Serie 3. z = f(x, y) = 9 (x 2) 2 (y 3) 2 z 2 = 9 (x 2) 2 (y 3) 2, z 0 9 = (x 2) 2 + (y 3) 2 + z 2, z 0. Analysis D-BAUG Dr Cornelia Busch FS 2016 Serie 3 1 a) Zeigen Sie, dass der Graph von f(x, y) = 9 (x 2) 2 (y 3) 2 eine Halbkugel beschreibt und bestimmen Sie ihren Radius und ihr Zentrum z = f(x, y) =

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

8 Extremwerte reellwertiger Funktionen

8 Extremwerte reellwertiger Funktionen 8 Extremwerte reellwertiger Funktionen 34 8 Extremwerte reellwertiger Funktionen Wir wollen nun auch Extremwerte reellwertiger Funktionen untersuchen. Definition Es sei U R n eine offene Menge, f : U R

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen

Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen 1. Bestimmen Sie für die folgenden Funktionen zunächst die kritischen Stellen und entscheiden

Mehr

Heinrich-Hertz-Oberschule, Berlin

Heinrich-Hertz-Oberschule, Berlin Reellwertige Funktionen mehrerer Variabler Teilnehmer: Maximilian Ringleb Jakob Napiontek Kay Makowsky Mallku Schlagowski Trung Duc Nguyen Alexander Reinecke Herder-Oberschule, Berlin Heinrich-Hertz-Oberschule,

Mehr

*** 2.2. Variation mit Nebenbedingung (Ergänzung: wird nicht geprüft)

*** 2.2. Variation mit Nebenbedingung (Ergänzung: wird nicht geprüft) *** 2.2. Variation mit Nebenbedingung (Ergänzung: wird nicht geprüft) In manchen Problemen sind nicht alle möglichen Funktionen als Lösung erlaubt, sondern nur Funktionen, die zusätzliche Bedingungen erfüllen.

Mehr

Übungen zum Ferienkurs Analysis II 2014

Übungen zum Ferienkurs Analysis II 2014 Übungen zum Ferienkurs Analysis II 4 Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar zu begründen. Schreiben

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Vektoranalysis Funktionen mehrerer Variabler Wir untersuchen allgemein vektorwertige Funktionen von vektoriellen Argumenten, wobei zunächst nur reelle Vektoren zugelassen seien. Speziell betrachten wir:

Mehr

10.6. Implizite ebene Kurven und Tangenten

10.6. Implizite ebene Kurven und Tangenten 0.6. Implizite ebene Kurven und Tangenten Im Gegensatz zu expliziten Darstellungen sind weder implizite noch Parameterdarstellungen einer Kurve eindeutig. Der Übergang von impliziten zu expliziten Darstellungen

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

Implizite Funktionen

Implizite Funktionen Implizite Funktionen Durch die Bedingung F (x, y) = C, C R wird eine bestimmte Teilmenge des R 2 festgelegt, zb durch die Bedingung x y = 4 Dabei können wir obda C = 0 annehmen, da wir stets zur Betrachtung

Mehr

2.10 Lokale Funktionsanalyse

2.10 Lokale Funktionsanalyse 2.1 Lokale Funktionsanalyse Aufgabe Gegeben sei die Abbildung g : R 2 R 2 mit g(x, y) : (x 3 yx, y). Man bestimme alle Mengen M k : {(ξ, η) R 2 g 1 (ξ, η) hat genau k Elemente}. Wie verhält g sich in der

Mehr

2.7 Implizite Funktionen, Umkehrabbildungen

2.7 Implizite Funktionen, Umkehrabbildungen 27 Implizite Funktionen, Umkehrabbildungen Motivation Häufig sind ebene Kurven in impliziter Form f(x, y) = und nicht in expliziter Form y = g(x) gegeben Einfaches Beispiel Für Kreise um ist implizite

Mehr

Wirtschaftsmathematik-Klausur vom und Finanzmathematik-Klausur vom

Wirtschaftsmathematik-Klausur vom und Finanzmathematik-Klausur vom Wirtschaftsmathematik-Klausur vom 07.02.2014 und Finanzmathematik-Klausur vom 27.01.2014 Bearbeitungszeit: W-Mathe 60 Minuten, F-Mathe 45 Minuten Aufgabe 1 GegebensindinAbhängigkeit der produzierten und

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

Kapitel 6 Vektoranalysis. 6.1 Glatte Kurven und Flächen in R 3

Kapitel 6 Vektoranalysis. 6.1 Glatte Kurven und Flächen in R 3 Kapitel 6 Vektoranalysis 6. Glatte Kurven und Flächen in R 3 Bisher haben wir unter einem glatten Weg im R n stets eine differenzierbare Abbildung γ:i R n, definiert auf einem Intervall I R, verstanden.

Mehr

Modulprüfung Numerische Mathematik 1

Modulprüfung Numerische Mathematik 1 Prof. Dr. Klaus Höllig 18. März 2011 Modulprüfung Numerische Mathematik 1 Lösungen Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. 1. Die Trapezregel

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13

Mathematischer Vorkurs für Physiker WS 2012/13 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Übungsblatt 2 Wichtige Formeln aus der Vorlesung: Basisaufgaben Beispiel 1: 1 () grad () = 2 (). () () = ( 0 ) + grad ( 0 ) ( 0 )+

Mehr

Übungen zu Grundlagen der Mathematik 2 Lösungen Blatt 12 SS 14. Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion.

Übungen zu Grundlagen der Mathematik 2 Lösungen Blatt 12 SS 14. Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion. Übungen zu Grundlagen der Mathematik Lösungen Blatt 1 SS 14 Prof. Dr. W. Decker Dr. M. Pleger Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion f : U R, (x, y) x y x + y, im Punkt (1, 1) bis einschließlich.

Mehr

Prüfungsklausur Höhere Mathematik II (20. Juli 2005) - Lösungen zum Theorieteil - für MB, EC, TeM, FWK, KGB, BGi, WiW, GtB, Ma, WWT, ESM

Prüfungsklausur Höhere Mathematik II (20. Juli 2005) - Lösungen zum Theorieteil - für MB, EC, TeM, FWK, KGB, BGi, WiW, GtB, Ma, WWT, ESM Prüfungsklausur Höhere Mathematik II (2. Juli 25) für MB, EC, TeM, FWK, KGB, BGi, WiW, GtB, Ma, WWT, ESM - Lösungen zum Theorieteil - Aufgabe : Sei f(x, y) eine in einem Gebiet zweimal stetig differenzierbare

Mehr