Serie 11. Analysis D-BAUG Dr. Cornelia Busch FS Überprüfen Sie die Gültigkeit des Satzes von Gauss

Größe: px
Ab Seite anzeigen:

Download "Serie 11. Analysis D-BAUG Dr. Cornelia Busch FS Überprüfen Sie die Gültigkeit des Satzes von Gauss"

Transkript

1 Analysis -BAUG r. Cornelia Busch F 6 erie. Überprüfen ie die Gültigkeit des atzes von Gauss F d div F dv, () anhand des Beispiels F(x, y, z) (3x, xy, xz), [, ] [, ] [, ] (Einheitswürfel im R 3 ). Wir berechnen für F(x, y, z) (3x, xy, xz) und [, ] 3 die linke und rechte eite in () separat. Linke eite von (): Wir müssen die eiten,..., 6 des Würfels separat betrachten. Beachte, dass der Normalenvektor immer gegen aussen orientiert sein muss. Linke eitenfl"ache : x, y, z. ie Rechnung für wollen wir im etail durchführen, die anderen fünf eiten gehen analog. Eine Parametrisierung von ist gegeben durch r : [, ] [, ] R 3, r(y, z) r y (y, z), r z (y, z) r y r z a der Normalenvektor nach aussen zeigen muss, wählen wir n r z r y (,, ). Es folgt F d da. R Rechte eitenfl"ache : x, y, z.. F(x, y, z) (3, y, z), n r y r z (,, ) Vordere eitenfl"ache 3 : y, x, z. F(x, y, z) (3x,, xz), n r x r z (,, ) y z ; F d 3. 3 F d.

2 Hintere eitenfl"ache 4 : y, x, z. F(x, y, z) (3x, x, xz), n r z r x (,, ) F d x da x dx dz 4 R. Untere eitenfl"ache 5 : z, x, y. F(x, y, z) (3x, xy, ), n r y r x (,, ) Obere eitenfl"ache 6 : z, x, y. Zusammen: F(x, y, z) (3x, xy, x), n r x r y (,, ) F d x da x dx dy. 6 R Rechte eite von (): div F dv F d 6 i i F d (3 + 3x) dv (3x + 3 x ) dy dz 5 F d. (3 + 3x) dx dy dz 9 dy dz a) Berechnen ie das Integral C F dr, wobei ist und C den Rand des Quadrates F(x, y, z) ( x y, z x, y z ) {(x, y, z) R 3 x, y, z } mit positiver Orientierung bezeichnet. er atz von tokes besagt rot F d wobei das Quadrat ist. Weiter gilt y z rot F x + y C F dr, y z x + y.

3 Eine Parametrisierung von ist gegeben durch r : [, ] [, ] R 3, r(x, y) r x (x, y), r y (x, y) r x r y und diese Orientierung des Normalenvektors ist konsistent mit der Aufgabenstellung. Wir erhalten also y rot F d da R x + y ( x + y) da 4 R ( x y ( x + y) dx dy x dx + b) Berechnen ie das Integral rot F d, wobei ist und die Fläche F(x, y, z) (y, z, x y z) ; ) y dy. {(x, y, z) R 3 x + y + z 5, 3 x 5} bezeichnet. ie Normale sei dabei nach aussen gerichtet. er atz von tokes besagt rot F d F dr, wobei C {(x, y, z) R 3 x 3, y + z 6} der Kreis parallel zur y z Ebene auf Höhe x 3 mit Radius r 4 ist. Eine Parametrisierung von C, konsistent mit der gegebenen Orientierung aus der Aufgabenstellung, ist r : [, π) R 3, r(t) 3 C 3 4 cos t 4 sin t ;

4 r (t) 4 sin t 4 cos t. amit ergibt sich C F dr π π π π F (r(t)) r (t) dt 8 cos t 4 sin t 3 4 cos t 4 sin t 4 sin t 4 cos t dt (6 sin t + cos t 6 cos t 6 cos t sin t) dt (6 sin t 6 cos t) dt } {{ } ( sin t 8 sin t ) π dt. π + ( cos t 6 cos t sin t) dt c) Berechnen ie das Oberflächenintegral F d, wobei ist und die Oberfläche von F(x, y, z) (3xy, xe z, z 3 ) {(x, y, z) R 3 y + z, x } bezeichnet. ie Normale sei dabei nach aussen gerichtet. 4

5 er atz von Gauss besagt F d wobei gilt mit div F dv, {(x, y, z) R 3 y + z, x }. ie Menge ist der Vollzylinder von x bis x mit der x Achse als rehachse und Radius und ist die gesamte Oberfläche von, d.h. die Mantelfläche und die beiden eckel. amit dürfen wir den atz von Gauss auch tatsächlich ohne Weiteres anwenden. Mit div F(x, y, z) 3y + + 3z 3(y + z ) folgt F d div F dv 3 (y + z ) dv 3 6π π r 4 4 r r r dφ dr dx 6π dx 6π 4 r 3 dr dx dx 6π π. Bemerkung: Zur Berechnung des Integrals wurden Zylinderkoordinaten benutzt (x Achse Zylinderachse). Aus y + z (Abstandsquadrat von der Achse) wurde dabei r. 3. as Gesetz von Fourier der Wärmeübertragung besagt, dass der Wärmefluss F proportional zum negativen Gradienten der Temperatur T ist, d.h. F k T. as bedeutet, dass der Wärmeübergang in Richtung kälterer Bereiche erfolgt. ie Proportionalitätskonstante k ist die Wärmeleitfähigkeit mit der Einheit Gegeben sei k und die Temperatur T (x, y, z) + e z auf {(x, y, z) R 3 x, y, z }. 5 J m s K bzw. W m K.

6 Berechnen ie, direkt und mit Hilfe des atzes von Gauss, den Gesamtfluss F d durch die Oberfläche des Würfels von innen nach aussen. Nach der Formel gilt F T (,, e z ). irekt: Es seien,..., 6 die eitenflächen des Würfels. ann gilt 6 F d F d i i da + e z + da + 3 e z 4 + da + 5 e 6 5 ( e ) da + Mit dem atz von Gauss: 6 e da (e ) dx dy e. F d div F dv e z dz e z e. e z e z e e z dx dy dz da da da Bemerkung: In diesem Fall ist die Berechnung mit dem atz von Gauss um einiges kürzer. 4. Es schneit mit einer konstanten Menge chnee pro Minute und Quadratmeter. Ein chneepflug beginnt die Räumungsarbeiten um Uhr. In der ersten tunde fährt er 6

7 km weit, in der zweiten tunde km. Wir setzen voraus, dass die Geschwindigkeit des chneepflugs umgekehrt proportional zur Höhe der chneedecke ist. tellen ie eine ifferentialgleichung für die Höhe h(t) der gesamten chneedecke auf. Wann hat es zu schneien begonnen? a die chneedecke gleichmässig wächst, muss die (ungepflügte) chneehöhe h(t) linear mit der Zeit wachsen, damit muss h(t) also eine Geradengleichung h(t) αt + β erfüllen. Hier messen wir die Zeit t in tunden und t entspricht Uhr. ies erhält man auch, wenn man die Bedingung ḣ(t) α > (konstante chneezunahme) integriert. α und β sind dabei Konstanten, welche wir bestimmen müssen. Zur Zeit t liegt somit bereits eine chneehöhe von h() β : h. iese Konstante ist somit bereits eine Anfangsbedingung und wir müssen diese nicht noch näher bestimmen. ie Geschwindigkeit des chneepflugs ist umgekehrt proportional zur chneehöhe. Wenn wir mit x(t) die vom chneepflug zurückgelegte istanz bezeichnen, bedeutet das also ẋ(t) C h(t) C αt + h, C ist dabei eine weitere Konstante. iese ifferentialgleichung können wir lösen, indem wir auf beiden eiten integrieren und erhalten x(t) C α ln(αt + h ) + γ mit einer weiteren Integrationskonstante γ. Nun sind folgende aten (Anfangsbedingungen) gegeben: er chneepflug startet zur Zeit t, zur Zeit t hat er km zurückgelegt, zur Zeit t hat er + 3 km zurückgelegt. ies liefert die drei Gleichungen Aus x() folgt durch Einsetzen, dass x(), x(), x() 3. x() C α ln(h ) + γ, also γ C α ln(h ) und x(t) C α ln(αt + h ) C α ln(h ) C ( ) αt + α ln h Cα ( h ln + αt ). h Aus x() folgt x() C α ln ( + α h ) C α ), ln ( + α h 7

8 was wir in die Bedingung x() 3 einsetzen. as ergibt 3 x() C ( α ln + α ) h ) ( 3 ln ( + αh ln + α ). h ( ln + α ) ln ( + α h Wenden wir auf beide eiten die Exponentialfunktion an, so ergibt sich ( + α ) 3 ( + α ). h h Mit der ubstitution u α h folgt ( + u) 3 ( + u) u 3 + 3u + 3u + 4u + 4u + u 3 u u u(u u ). h ) Mit der sformel für quadratische Gleichungen finden wir damit also Fallunterscheidung: u, u 5 α, α 5, u 3 + 5, h, α h. ie α macht keinen inn und entspricht der ituation, dass kein chnee fällt (h(t) h ). Beachte, dass wir oben bereits verwendet haben, dass α > und zwar als wir ẋ(t) integriert haben. Hier würden wir also eine konstante Geschwindigkeit des chneepflugs erhalten (ẋ(t) C/h ). ies widerspricht jedoch den Anfangsbedingungen, dass er chneepflug langsamer wird. ie α 5 h < macht ebenfalls keinen inn, da die chneehöhe abnehmen würde. amit bleibt noch die korrekte α h > übrig. ie chneehöhe erfüllt also die Gleichung h(t) + 5 h t + h. Wir suchen nun den Zeitpunkt T, als der chneefall eingesetzt hat, dies entspricht der Bedingung h(t ), was auf h(t ) + 5 h T + h T führt. ieses Resultat hängt nicht von h ab! Weiter entsprechen.68 tunden ungefähr 37 Minuten, womit es um ca. :3 Uhr zu schneien begonnen hat. 8

9 5. Finden ie eine ifferentialgleichung, in der sowohl y(x) als auch eine der ersten beiden Ableitungen y (x) bzw. y (x) vorkommen, so dass die jeweils gegebene Funktion y eine L"osung dieser ifferentialgleichung ist: a) y(x) x α + 5x β, α, β > Bemerkung: Zu dieser Aufgabe gibt es nat"urlich beliebig viele richtige L"osungen. Hier folgen also einfach einige Beispiele. y(x) x α + 5x β, y (x) α x α + 5 β x β α x ( xα + 5 x β ) 5 α x β + 5 β x β x ( xα + 5 x β ) + 5 (β α) x β. Eine ifferentialgleichung mit L"osung y w"are also gegeben durch y (x) α x y(x) + 5 (β α) xβ. b) y(x) λx y(x) λx e ln () λx y (x) e ln () λx ln () λ x. Eine ifferentialgleichung mit L"osung y w"are also (weil ln () ln ( ) ln (4)) y (x) λ ln (4) x y(x). c) y(x) tanh(x) y(x) tanh(x) y (x) Ebenfalls gilt cosh (x) cosh (x) sinh (x) cosh tanh (x) (x) y (x) cosh (x) sinh(x) cosh (x) sinh(x) sinh(x) cosh(x) tanh(x) sinh(x) sinh (x) cosh(x) tanh(x) sinh (x) tanh (x). M"ogliche Antworten sind daher y (x) sinh(x) cosh(x) y(x), y (x) sinh (x) y (x), y (x) y (x). 9

10 d) y(x) a sin(7x) + b cos(7x), x ( π, π y(x) a sin(7x) + b cos(7x) y (x) 7(a cos(7x) b sin(7x)) y (x) 49(a sin(7x) + b cos(7x)). Eine ifferentialgleichung mit L"osung y w"are also ) y (x) 49y(x).

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang ETH Zürich Musterlösungen asisprüfung Sommer 14 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang 1. a I. I n 1 1 e r dr e r 1 e 1. 1 r n e r dr r n e r 1 n r n 1 e r dr e ni n 1, für n 1. b Wegen der

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld D-BAUG Analysis I/II Winter 5 Dr. Meike Akveld Lösung. [ Punkte] Es sei das Gebiet B {z C } z + Im(z) gegeben. a) Skizzieren Sie das Gebiet B in der komplexen Ebene. Für z x + iy gilt z + Im(z) x + y +

Mehr

Serie 4: Gradient und Linearisierung

Serie 4: Gradient und Linearisierung D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 4: Gradient und Linearisierung Bemerkungen: Die Aufgaben der Serie 4 bilden den Fokus der Übungsgruppen vom 7./9. März.. Wir betrachten die

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016 Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der

Mehr

Repetitorium Analysis II für Physiker

Repetitorium Analysis II für Physiker Technische Universität München Larissa Hammerstein Vektoranalysis und Fourier-Transformation Lösungen Repetitorium Analysis II für Physiker Analysis II Aufgabe Skalarfelder Welche der folgenden Aussagen

Mehr

ETH Zürich Repetitionsprüfung D-MAVT, D-MATL Analysis I/II Prof. Dr. Urs Lang

ETH Zürich Repetitionsprüfung D-MAVT, D-MATL Analysis I/II Prof. Dr. Urs Lang EH Zürich Repetitionsprüfung..7 D-MA, D-MAL Analysis I/II Prof. Dr. Urs Lang. [6 Punkte] Gegeben sei die attelfläche = {(x, y, z) R : z = x y } sowie der Punkt Q = (,, 5). Bestimmen ie die kleinste Zahl

Mehr

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie19. sind weder parallel noch stehen sie senkrecht aufeinander.

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie19. sind weder parallel noch stehen sie senkrecht aufeinander. -MAVT/-MATL FS 8 r. Andreas Steiger Analysis IILösung - Serie9. ie Fläche S sei einerseits durch die Parameterdarstellung (u, v) r(u, v) und andererseits durch die Gleichung f(x, y, z) = gegeben. Wir betrachten

Mehr

Musterlösung Prüfung

Musterlösung Prüfung D-BAUG Analysis I/II Winter 24 Meike Akveld Theo Bühler Musterlösung Prüfung. (a) Bestimmen Sie die reellen Koeffizienten p und q, so dass z = 2 3i eine Lösung der Gleichung z 3 3z 2 + pz + q = ist. Bestimmen

Mehr

Serie 12 - Integrationstechniken

Serie 12 - Integrationstechniken Analysis D-BAUG Dr. Meike Akveld HS 5 Serie - Integrationstechniken. Berechnen Sie folgende Integrale: a e x cos(x dx Wir integrieren zwei Mal partiell, bis wir auf der rechten Seite wieder das Integral

Mehr

Musterlösungen zu Serie 6

Musterlösungen zu Serie 6 D-ERDW, D-HEST, D-USYS Mathematik II FS 3 Dr. Ana Cannas da Silva Musterlösungen zu Serie 6. Die Bogenlänge des Graphen einer differenzierbaren Funktion b f : [a, b] R ist durch + (f (x)) dx gegeben. Insbesondere

Mehr

Übungen zu Integralsätzen Lösungen zu Übung 19

Übungen zu Integralsätzen Lösungen zu Übung 19 9. Sei IR 3 der Einheitswürfel Übungen zu Integralsätzen Lösungen zu Übung 9 erifizieren Sie für : {(x, y, z) IR 3 : x, y, z.} den Gaußschen Divergenzsatz. Lösung: v(x, y, z) : (4xz, y, yz) erifizieren

Mehr

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015 Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 3

Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Serie 6. x 2 + y 2, 0 z 4.

Serie 6. x 2 + y 2, 0 z 4. Analysis D-BAUG Dr. Cornelia Busch FS 6 Serie 6. Wir betrachten drei verschiedene Flaschen in der Form eines Paraboloids P, eines Hyperboloids H und eines Kegels K. Diese sind wie folgt gegeben: P = {

Mehr

Mathematik II für ET/IT und ITS im SS 2012

Mathematik II für ET/IT und ITS im SS 2012 Matrikelnummer: 8 Name: Vorname: 2 3 4 5 6 7 8 9 Bonus Gesamtpunktzahl Klausur Mathematik II für ET/IT und ITS im SS 22 Hinweise: Schreiben Sie auf das eckblatt der Klausur Ihren vollständigen Namen und

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 8. Übungsblatt

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 8. Übungsblatt Institut für Analsis SS7 P r. Peer Christian Kunstmann 6.6.7 ipl.-math. Leonid Chaichenets, Johanna Richter, M.Sc. Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung Phsik

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Mathematik C (ET) UE WS 2014/ Übungsblatt. 7+t Berechnen Sie das Kurvenintegral (die physikalische Arbeit)

Mathematik C (ET) UE WS 2014/ Übungsblatt. 7+t Berechnen Sie das Kurvenintegral (die physikalische Arbeit) Mathematik (ET) UE WS 2014/2015 1. Übungsblatt 1. Berechnen Sie (a) die Bogenlänge der Kurve : x(t) = (b) den Gradient von f(x,y,z) = 4x y 2 +5z. ( t 7+t 2 ) mit 1 t 3, 2. Berechnen Sie das Kurvenintegral

Mehr

Ferienkurs Analysis 3 für Physiker. Übung: Integration im R n

Ferienkurs Analysis 3 für Physiker. Übung: Integration im R n Ferienkurs Analysis für Physiker Übung: Integration im R n Autor: Benjamin Rüth Stand: 6. Mär 4 Aufgabe (Zylinder) Gegeben sei der Zylinder Z der Höhe h > über dem in der x-y-ebene gelegenen reis mit Radius

Mehr

15. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13

15. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13 Prof. Dr. L. Schwachhöfer Dr. J. Horst Fakultät Mathematik TU Dortmund 15. Übungsblatt zur Höheren Mathematik III P/ET/AI/IT/IKT/MP WS 1/13 Aufgabe 1 Bestimmen Sie eine auf der Menge M := {x, y R x + y

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt N dl. y 3

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt N dl. y 3 Übungen zur Ingenieur-Mathematik III WS / Blatt 9.. Aufgabe 5: Berechnen Sie das Integral K ( x y N dl über den Rand des Kreises K {(x, y x + y } einmal direkt mit Hilfe einer geeigneten Parametrisierung

Mehr

Klausur HM II/III F 2003 HM II/III : 1

Klausur HM II/III F 2003 HM II/III : 1 Klausur HM II/III F 3 HM II/III : Aufgabe : (7 Punkte) Untersuchen Sie die Funktion f : R R gegeben durch x 3 y 3 f(x, y) x + y sin, (x, y) (, ) x + y, (x, y) (, ) auf Stetigkeit und Differenzierbarkeit.

Mehr

1. Integrieren Sie die Funktion f(x, y, z) := xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) Hinweis: Verwenden Sie Symmetrien.

1. Integrieren Sie die Funktion f(x, y, z) := xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) Hinweis: Verwenden Sie Symmetrien. 1. Integrieren Sie die Funktion f(x, y, z) : xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) inweis: Verwenden Sie Symmetrien. Lösung: Betrachte den Diffeomorphismus j : B 1 () B 1

Mehr

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 25 1. Wie lautet die charakteristische Gleichung der Differentialgleichung y + 2y + y = 0? (a) λ 3 + 2λ + 1 = 0 (b) λ 3 + 2λ = 0 (c)

Mehr

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx Seite Aufgabe : a Berechnen Sie das Integral b Berechnen Sie das Integral +x x+x dx. π sin x dx. c Differenzieren Sie die Funktion ft = t e t s ds. Nur Leibniz-Formel a + x x + x dx = d dx lnx + x dx =

Mehr

Analysis I & II Lösung zur Basisprüfung

Analysis I & II Lösung zur Basisprüfung FS 6 Aufgabe. [8 Punkte] (a) Bestimmen Sie den Grenzwert ( lim x x ). [ Punkte] log x (b) Beweisen Sie, dass folgende Reihe divergiert. n= + n + n + sin(n) n 3 + [ Punkte] (c) Finden Sie heraus, ob die

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt

Mehr

Lösung zur Übung 8 vom

Lösung zur Übung 8 vom Lösung zur Übung 8 vom 02.2.204 Aufgabe 29 Leiten Sie die nachfolgenden Funktionen ab: a) y(x) = cos(x) c) y(x) = cos 3 (x) e) y(x) = x3 b) y(x) = cos 2 (x)e x d) y(x) = tanh(x) f) y(x) = cos(x) + tan(x)

Mehr

Klausur Mathematik III für Bauingenieure

Klausur Mathematik III für Bauingenieure TU Dresden 9. Juli 5 Institut für Analysis Doz. Dr. N. Koksch Klausur Mathematik III für Bauingenieure Name: Vorname: Jahrgang: Matrikel-Nr.: Studiengang: Übungsgruppe: Aufgabe 4 5 6 Ges. Punkte max. 6

Mehr

Schein-Klausur HM II F 2003 HM II : S-1

Schein-Klausur HM II F 2003 HM II : S-1 Schein-Klausur HM II F 3 HM II : S- Aufgabe : Berechnen Sie die folgenden Grenzwerte: a) lim x ln ( + x) x b) lim (coshx) sin x Lösung: Wir verwenden in beiden Fällen die Regel von de l Hospital. a) Es

Mehr

D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18

D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18 D-MAVT/D-MATL FS 7 Dr. Andreas Steiger Analysis IILösung - Serie8. Klicken Sie die falsche Aussage an. a) Der Operator div ) ordnet einem Vektorfeld v ein Skalarfeld div v zu. v b) div v = x, v y, v )

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 5. MC-Aufgaben Online-Abgabe. Durch zweifache Anwendung der Regel von Bernoulli-de l Hôpital folgt Stimmt diese Überlegung? lim x x 3 +

Mehr

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte)

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte) Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 2 Dr. P. P. Orth Abgabe und Besprechung 8.11.213 1. Wegintegrale 1 +

Mehr

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010 Aufgaben für die 4. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 4. Bestimmen Sie den Flächeninhalt der dreiblättrigen Kleeblattkurve γ für ein Kleeblatt. Die Polarkoordinaten-

Mehr

Lösungen der Aufgaben zu Kapitel 10

Lösungen der Aufgaben zu Kapitel 10 Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist

Mehr

Serie 5. Figure 1: 1.a)

Serie 5. Figure 1: 1.a) Analsis D-BAUG Dr. Cornelia Busch FS 16 Serie 5 1. Bei den folgenden Integralen ist die Reihenfolge der Integrationen umzukehren: Die innere Variable soll zur äusseren werden und umgekehrt. Wie lautet

Mehr

Lösung - Serie 7. D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 7. D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe) D-MAVT/D-MATL Analysis I HS 016 Dr. Andreas Steiger Lösung - Serie 7 1. MC-Aufgaben Online-Abgabe 1. Gegeben sind die Kurven K 1 links und K rechts, die beide für wachsenden Parameter t von aussen nach

Mehr

D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi. Musterlösung 10. y(x) = Ae ( 3+2i)x + Be ( 3 2i)x. λ 2 2λ + 1 = (λ 1) 2. y(x) = Ae x + Bxe x.

D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi. Musterlösung 10. y(x) = Ae ( 3+2i)x + Be ( 3 2i)x. λ 2 2λ + 1 = (λ 1) 2. y(x) = Ae x + Bxe x. D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi Musterlösung 10 1. a) Das charakteristische Polynom ist λ 2 + λ 2 = (λ + 2)(λ 1) mit den beiden verschiedenen Nullstellen λ = 2 λ = 1. Die allgemeine Lösung

Mehr

Prof. Schneider Höhere Mathematik I/II Musterlösung A = x 1 = 6x 1 + x 3 x 2 = 2x 2 x 3 = x 1 + 6x 3

Prof. Schneider Höhere Mathematik I/II Musterlösung A = x 1 = 6x 1 + x 3 x 2 = 2x 2 x 3 = x 1 + 6x 3 Aufgabe ( Punkte) a) Bestimmen Sie die Eigenwerte und Eigenvektoren der Matrix 6 A = 6 b) Bestimmen Sie die allgemeine Lösung des Differentialgleichungssystems x = 6x + x 3 x = x x 3 = x + 6x 3 c) Bestimmen

Mehr

Musterlösung Basisprüfung, Gruppe A Analysis I/II ) = 28π 6

Musterlösung Basisprüfung, Gruppe A Analysis I/II ) = 28π 6 Winter 8. Single Choice: 6J (a) Der Flächeninhalt einer Kreisscheibe mit Radius R ist gegeben durch πr. Aus Symmetriegründen ist der Flächeninhalt eines Kreisssektors mit 6 gegeben durch πr 6. Folglich

Mehr

Übungen zur Ingenieur-Mathematik I WS 2017/2018 Blatt Aufgabe 33: Zeigen Sie, dass für die Funktionen

Übungen zur Ingenieur-Mathematik I WS 2017/2018 Blatt Aufgabe 33: Zeigen Sie, dass für die Funktionen Übungen zur Ingenieur-Mathematik I WS 7/8 Blatt 8..7 Aufgabe : Zeigen Sie, dass für die Funktionen a b gilt: cosh x = (ex + e x und sinh x = (ex e x a (cosh x = sinh x, b (sinh x = cosh x, c cosh x sinh

Mehr

Nachklausur zur Analysis 2, SoSe 2017

Nachklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 18.9.17 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis 2, SoSe 217 Aufgabe

Mehr

Übungen zum Ferienkurs Analysis II 2014

Übungen zum Ferienkurs Analysis II 2014 Übungen zum Ferienkurs Analysis II 4 Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar zu begründen. Schreiben

Mehr

Höhere Mathematik 3 Herbst 2014

Höhere Mathematik 3 Herbst 2014 IMNG, Fachbereich Mathematik Universität Stuttgart Prof. Dr. K. Höllig Höhere Mathematik 3 Herbst 214 Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind. (i) rot(2

Mehr

Übung (13) dx 3, 2x 1 dx arctan(x3 1).

Übung (13) dx 3, 2x 1 dx arctan(x3 1). Übung (3) () Bilden Sie folgende Ableitungen: d xe x dx x ln x, d dx +cos (x), d d dx 3, x dx arctan(x3 ). () Geben Sie die Näherung. Ordnung für den Ausdruck / p v /c für v

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 3.9.5, min Aufgabe (8 Punkte) Gegeben ist der Körper K : {(x, y, z) R 3 x + 4y, z 3}. Berechnen Sie der Ausfluss von g : R 3 R 3 durch den Rand K mit g(x, y, z) (x

Mehr

Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf

Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf Karolina Stoiber Aileen Wolf Ferienkurs Analysis 2 für Physiker SS 26 A Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar

Mehr

Übungen zu Kurvenintegralen Lösungen zu Übung 12

Übungen zu Kurvenintegralen Lösungen zu Übung 12 Übungen zu Kurvenintegralen Lösungen zu Übung. Sei der obere Halbreis mit dem Radius r um (, ), und sei f(x, y) : y. Berechnen Sie f(x, y) ds. Das ist jetzt eine leine Aufgabe zum Aufwärmen. Guter Tric:

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas Serie 9: Satz von Stokes und Divergenzsatz Bemerkungen: Die Aufgaben der Serie 9 bilden den Fokus der Übungsgruppen vom 28./30. April. 1. Berechnen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Simone Warzel Max Lein TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik 4 für Physik (Analysis 3) Wintersemester 29/2 Lösungsblatt 2 (27..29) Zentralübung 4. Parametrisierung einer

Mehr

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1 Aufgabe a Hier kann man die Regel von de l Hospital zweimal anwenden (jeweils und die Ableitung des Nenners ist für hinreichend große x ungleich. Dies führt auf e x e x e x + e x e x + e x e x e x e x

Mehr

1. Klausur. für Studierende der Fachrichtungen phys. 2u du u(1 + u 2 ) = 2. = 1, c = 1. x= 1

1. Klausur. für Studierende der Fachrichtungen phys. 2u du u(1 + u 2 ) = 2. = 1, c = 1. x= 1 Fachbereich Mathematik Universität Stuttgart Prof. Dr. C. Rohde Höhere Mathematik I III Diplomvorprüfung 3. 3. 8. Klausur für Studierende der Fachrichtungen phys Bitte unbedingt beachten: In dieser Klausur

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 009 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Themen des Tutoriums am 03.06.2015: Wiederholung: Ein glattes Flächenstück ist eine Menge M R 3, die eine reguläre Parametrisierung

Mehr

Höhere Mathematik III für die Fachrichtung Physik

Höhere Mathematik III für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Ioannis Anapolitanos Dipl.-Math. Sebastian Schwarz WS 5/6 6..5 Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge zum. Übungsblatt

Mehr

Im Folgenden werde ich als anschauliche Beispiele eine strömende Flüssigkeit im dreidimensionalen Raum sowie eine Landschaftskarte (2D) verwenden.

Im Folgenden werde ich als anschauliche Beispiele eine strömende Flüssigkeit im dreidimensionalen Raum sowie eine Landschaftskarte (2D) verwenden. Vektoranalysis Begriffe Im Folgenden werde ich als anschauliche Beispiele eine strömende Flüssigkeit im dreidimensionalen Raum sowie eine Landschaftskarte 2D) verwenden. Ein Skalarfeld f = fx, y, z) ist

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 4.3.25, 2min Aufgabe ( Punkte) Es sei S := {(x, y, z) R 3 z = x 2 + y 2, z 2}. (a) (6 Punkte) Berechnen Sie den Flächeninhalt von S. (b) (4 Punkte) Berechnen Sie die

Mehr

1 Lösungsskizzen zu den Übungsaufgaben

1 Lösungsskizzen zu den Übungsaufgaben Lösungsskizzen zu den Übungsaufgaben. Lösungen zu den Aufgaben zum Kapitel.. Tutoraufgaben. Man stellt fest: fx, y x, y G. omit ist f beschränkt auf G a Da f auf G beschränkt, ist f auf G Riemann-Integrabel

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik WS 12/13 Prof. Dr. G. Bärwolff, Prof. Dr. F. Tröltzsch

Technische Universität Berlin Fakultät II Institut für Mathematik WS 12/13 Prof. Dr. G. Bärwolff, Prof. Dr. F. Tröltzsch Technische Universität Berlin Fakultät II Institut für Mathematik WS /3 Prof. Dr. G. Bärwolff, Prof. Dr. F. Tröltzsch 6.4.3 Rechenteil April Klausur Analysis II für Ingenieure. Aufgabe Punkte a Es gilt:

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 23 (5.8.23). Gegeben seien die Matrizen A = 2 3 3 und B = 5 2 5 (a) Bestimmen Sie die Eigenwerte von A und B sowie die

Mehr

Prüfungsklausur Mathematik II für Bauingenieure am

Prüfungsklausur Mathematik II für Bauingenieure am HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik II für Bauingenieure am 9.7.8 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 4 5 6 7 8 9 gesamt erreichbare P. 6 6 7 (5) (+5)

Mehr

Höhere Mathematik III. Variante A

Höhere Mathematik III. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik III SoSe 215 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx.

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx. HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik II Mathematik II für Bauingenieure Wiederholungsaufgaben zur Prüfungsklausur im Juli 2007 1 Integralrechnung Aufgabe 1 : Berechnen Sie die folgenden

Mehr

Lösung Repetitionsübung

Lösung Repetitionsübung Lösung Repetitionsübung A1: Differential- un Integralrechnung a) x e x2 /4 = x 2 e x2 /4 x ln sinh(x ex +1) = cosh(x ex +1) sinh(x e x +1) (ex +x e x ) = e x (1 + x) coth(x e x +1) x y e xy = x x = ( 1

Mehr

Übungen zum Ferienkurs Analysis II

Übungen zum Ferienkurs Analysis II Übungen zum Ferienkurs Analysis II Implizite Funktionen und Differentialgleichungen 4.1 Umkehrbarkeit Man betrachte die durch g(s, t) = (e s cos(t), e s sin(t)) gegebene Funktion g : R 2 R 2. Zeigen Sie,

Mehr

Analysis PVK - Lösungen. Nicolas Lanzetti

Analysis PVK - Lösungen. Nicolas Lanzetti Analysis PVK - Lösungen Nicolas Lanzetti lnicolas@student.ethz.ch Nicolas Lanzetti Analysis PVK HS 4/FS 5 3 Differentialrechnung. (a) lim x + x x = lim x + e (x ln(x)) = e lim x + (x ln(x)) (da e x stetig

Mehr

Prüfung Modul A, Teil 2 (Mathematik 2) (Fernstudium Bauingenieurwesen)

Prüfung Modul A, Teil 2 (Mathematik 2) (Fernstudium Bauingenieurwesen) Name: Vorname: Matrikelnummer: TU Dresden, Fachrichtung Mathematik, Dr. N. Koksch 6. Februar 8 Prüfung Modul A, Teil (Mathematik ) (Fernstudium auingenieurwesen) ewertet werden nur solche Lösungsschritte,

Mehr

1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor Thema: Vektoranalysis Studiengang: PT/LOT Analysis III Serie 3 Semester: WS 1/11 1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

Mehr

Ferienkurs Analysis 3 für Physiker. Übung: Integralsätze

Ferienkurs Analysis 3 für Physiker. Übung: Integralsätze Ferienkurs Analysis 3 für Physiker Übung: Integralsätze Autor: enjamin Rüth Stand: 7. März 4 Aufgabe (Torus) Zu festem R > werden mittels ϱ T : [, R] [, π] [, π] R 3, ϕ ϑ Toruskoordinaten eingeführt. estimmen

Mehr

3. Berechnen Sie auch die Beschleunigung a als Funktion der Zeit t. 4. Erstellen Sie ein SIMULINK Modell, das x(t) numerisch berechnet.

3. Berechnen Sie auch die Beschleunigung a als Funktion der Zeit t. 4. Erstellen Sie ein SIMULINK Modell, das x(t) numerisch berechnet. unit 1 / Seite 1 Einführung Differenzialgleichungen In physikalischen Anwendungen spielt oft eine Messgrösse in Abhängigkeit von der Zeit die Hauptrolle. Beispiele dafür sind Druck p, Temperatur T, Geschwindigkeit

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

A1: Diplomvorprüfung HM II/III SS

A1: Diplomvorprüfung HM II/III SS A: Diplomvorprüfung HM II/III SS 8 378 Aufgabe 5 + 7 + 6 8 Punkte a Führen Sie für den Bruch x+x x+3 b Berechnen Sie den Wert der Reihe k3 eine Partialbruchzerlegung durch k+k k+3 c Untersuchen Sie die

Mehr

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie16. y(u, v) = 2u

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie16. y(u, v) = 2u -MAVT/-MATL FS 28 r. Andreas Steiger Analysis IILösung - Serie6. ie Koordinatentransformation xu, v = 2v, yu, v = 2u bildet Kreise auf Kreise ab. a Wahr. b Falsch. ie Transformation entspricht einer Stauchung

Mehr

Partielle Integration

Partielle Integration Partielle Integration 1 Motivation Eine der wichtigsten Methoden der Integralrechnung ist die partielle Integration. Mit ihr lassen sich Funktionen integrieren, die ein Produkt zweier Funktionen sind.

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten Mathematik Rechenfertigkeiten Lösungen zu den Übungen Freitag Dominik Tasnady, Mathematik Institut, Universität Zürich Winterthurerstrasse 9, 857 Zürich Erstellt von Dr. Irmgard Bühler 9.August Integration,

Mehr

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 15

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 15 D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 15 1. Der Wert einer Funktion f : R R fällt am schnellsten in die Richtung (a) (b) (c) der minimalen partiellen Ableitung. entgegengesetzt

Mehr

Modulprüfung HM III (kyb, mech, phys)

Modulprüfung HM III (kyb, mech, phys) Seite von 5 Modulprüfung HM III (kyb, mech, phys) Hinweise: Lösen Sie bitte jede Aufgabe auf einem separaten Blatt. Alle nicht in der Vorlesung behandelten Sachverhalte sind zu beweisen, Lösungsschritte

Mehr

Serie 9. Analysis D-BAUG Dr. Cornelia Busch FS Berechnen Sie auf zwei Arten (direkt und mit Hilfe des Satzes von Green) das Linienintegral

Serie 9. Analysis D-BAUG Dr. Cornelia Busch FS Berechnen Sie auf zwei Arten (direkt und mit Hilfe des Satzes von Green) das Linienintegral Analysis D-BAUG Dr. ornelia Busch FS 6 Serie 9. Berechnen Sie auf zwei Arten (direkt und mit Hilfe des Satzes von Green das Linienintegral xy dx + x y 3 dy, D wobei D das Dreieck mit den Eckpunkten (,,

Mehr

Musterlösungen zu Serie 10

Musterlösungen zu Serie 10 D-ERDW, D-HEST, D-USYS athematik II FS 3 Dr. Ana Cannas da Silva usterlösungen zu Serie. a) Die Ellipse E wird z.b. durch y 4 γ(t) 3 sin t, t 2 π, t (4, 3 sin t) parametrisiert. E Daher ist F d s E 48

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller SS 2014

Institut für Analysis und Scientific Computing E. Weinmüller SS 2014 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller SS 14 P R A K T I S C H E M A T H E M A T I K I I F Ü R T P H, 13.58) Test 1 Gruppe C Mo, 8.4.14) mit Lösung ) Unterlagen: eigenes VO-Skriptum.

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie KIT SS 3 Institut für Analysis.6.3 Prof. Dr. Tobias Lamm Dr. Patrick reuning Aufgabe Höhere Mathematik II für die Fachrichtung Physik 9. Übungsblatt Ein Heißluftballon

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben. ( Punkte) a) Wir berechnen lim sin(x ) x 3 + 4x L Hôpital = lim x cos(x ) 3x + 8x = 4. b) Wir benutzen L Hôpital lim

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 3 8.6.3 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

Klausur zur Mathematik III

Klausur zur Mathematik III Fachbereich Mathematik SoSe 17 Prof. r. M. Hinze lausur zur Mathematik III (Modul: Analysis III) 1. September 17 Sie haben 6 Minuten Zeit zum Bearbeiten der lausur. Bitte kennzeichnen Sie jedes Blatt mit

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 03 6.06.03 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

1. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13

1. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13 Prof. Dr. L. Schwachhöfer Dr. J. Horst Fakultät Mathematik TU Dortmund. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS /3 Keine Abgabe. Aufgabe Es seien die folgenden Vektorfelder in R 3

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: D. Garmatter C. Apprich, B. Krinn J. Hörner, M. Werth 9. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 4 M. Künzer M. Stroppel Lösungshinweise zu den Hausaufgaben: Aufgabe H 6. Gegeben ist

Mehr

Höhere Mathematik III. Musterlösung

Höhere Mathematik III. Musterlösung Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik III SoSe 3 Musterlösung Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche Aufzeichnungen von maximal DinA4-Blättern.

Mehr

Lösung - Serie 24. D-MAVT/D-MATL Analysis II FS 2018 Dr. Andreas Steiger. 1. Welche der folgenden Differenzialgleichungen ist linear? (y 2) 2 = y.

Lösung - Serie 24. D-MAVT/D-MATL Analysis II FS 2018 Dr. Andreas Steiger. 1. Welche der folgenden Differenzialgleichungen ist linear? (y 2) 2 = y. D-MAVT/D-MATL Analysis II FS 018 Dr. Andreas Steiger Lösung - Serie 4 1. Welche der folgenden Differenzialgleichungen ist linear? (a) (y ) = y (b) y + y 1 x + y 1 + x = 1 x (c) y = xy x y (d) y + y + y

Mehr

Lösungsvorschlag zum 12. Übungsblatt zur Vorlesung Analysis III im Wintersemester 2018/ Januar 2019

Lösungsvorschlag zum 12. Übungsblatt zur Vorlesung Analysis III im Wintersemester 2018/ Januar 2019 Lösungsvorschlag zum 2. Übungsblatt zur Vorlesung nalysis III im Wintersemester 28/9 28. Januar 29 Institut für nalysis Prof. Dr. Michael Plum M.Sc. Jonathan Wunderlich ufgabe 45: (i Der Weg umlaufe den

Mehr