Daten suchen und durchsuchen. Programmieren und Problemlösen Daten suchen und durchsuchen, weiterführende Komplexitätstheorie

Größe: px
Ab Seite anzeigen:

Download "Daten suchen und durchsuchen. Programmieren und Problemlösen Daten suchen und durchsuchen, weiterführende Komplexitätstheorie"

Transkript

1 Daten suchen und durchsuchen Lineare Suche Dennis Komm Programmieren und Problemlösen Daten suchen und durchsuchen, weiterführende Komplexitätstheorie Frühling April 2019 Lineare Suche Einfachste Möglichkeit der Suche Funktioniert auch in ungeordneten Daten Array von links nach rechts durchlaufen, jedes Element mit dem gesuchten Wert vergleichen Braucht bis zu n Vergleiche auf Array der Länge n, falls gesuchtes Element an letzter Stelle ist (oder nicht vorkommt) Daten suchen und durchsuchen Programmieren und Problemlösen Daten (durch)suchen, Komplexitätstheorie Frühling 2019 Dennis Komm 1 / 26

2 Beispiel Gegeben ein Array der ersten 8 Primzahlen, finde heraus, an welcher Position Primzahl 17 ist Idee Nutze aus, dass Daten sortiert sind Zwei int-variablen left and right Diese geben Suchraum an Betrachte Wert in der Mitte (Index current) Ist dieser der gesuchte, sind wir fertig Ist dieser zu klein, ist auch alles links von ihm zu klein left = current+1 Ist dieser zu gross, ist auch alles rechts von ihm zu gross right = current-1 Programmieren und Problemlösen Daten (durch)suchen, Komplexitätstheorie Frühling 2019 Dennis Komm 2 / 26 Programmieren und Problemlösen Daten (durch)suchen, Komplexitätstheorie Frühling 2019 Dennis Komm 3 / 26 Aufgabe Implementiere binäre Suche Benutze drei Zeiger left, right und current Verkleinere Suchraum in jedem Schritt wie beschrieben int left = 0; int right = data.length-1; while (left <= right) { int current = (left+right)/2; if (data[current] == searched) { System.out.println("Found at position " + current); return; else if (data[current] > searched) { right = current-1; else { left = current+1; System.out.println("Not found"); Programmieren und Problemlösen Daten (durch)suchen, Komplexitätstheorie Frühling 2019 Dennis Komm 4 / 26 Programmieren und Problemlösen Daten (durch)suchen, Komplexitätstheorie Frühling 2019 Dennis Komm 5 / 26

3 Zeitkomplexität binärer Suche Suchen Zeitkomplexität binärer Suche Am Anfang hat Array n Elemente Mit jeder Iteration wird der Suchraum auf die Hälfte reduziert Nach der ersten Iteration n/2 Elemente Nach der zweiten Iteration n/4 Elemente... Nach wie vielen Iterationen x ist nur noch ein Element übrig? n/2 x = 1 n = 2 x x = log 2 n Programmieren und Problemlösen Daten (durch)suchen, Komplexitätstheorie Frühling 2019 Dennis Komm 6 / 26 Zeitkomplexität binärer Suche 100 Vergleiche Lineare Suche Daten suchen und durchsuchen Teilarrays Eingabelänge n Programmieren und Problemlösen Daten (durch)suchen, Komplexitätstheorie Frühling 2019 Dennis Komm 7 / 26

4 Maximales Teilarray fester Länge Aufgabe Maximales Teilarray fester Länge Gegeben n positive ganze Zahlen Finde Teilarray der Länge k maximaler Summe Schreibe Methode, die ein int-array mit positiven Zahlen und einen int k erhält die Indizes zurückgibt, zwischen denen sich der Teilarray der Länge k mit der grössten Summe befindet lineare Laufzeit besitzt Programmieren und Problemlösen Daten (durch)suchen, Komplexitätstheorie Frühling 2019 Dennis Komm 8 / 26 Programmieren und Problemlösen Daten (durch)suchen, Komplexitätstheorie Frühling 2019 Dennis Komm 9 / 26 Maximales Teilarray fester Länge Maximales Teilarray private static int[] maxfixsub(int[] data, int len) { int sum = 0; int start = 0; int end = len-1; int[] result = {0,0,0; for (int i=0; i<len; ++i) { sum = sum + data[i]; int max = sum; for (int i=0; i<data.length-len; i++) { sum = sum - data[i] + data[i+len]; if(sum > max) { max = sum; start = i+1; end = i+len; result[0] = start; result[1] = end; result[2] = max; return result; Programmieren und Problemlösen Daten (durch)suchen, Komplexitätstheorie Frühling 2019 Dennis Komm 10 / 26 Gegeben n ganze Zahlen (positiv oder negativ) Finde Teilarray mit maximaler Summe Programmieren und Problemlösen Daten (durch)suchen, Komplexitätstheorie Frühling 2019 Dennis Komm 11 / 26

5 Maximales Teilarray Aufgabe Maximales Teilarray Kadanes Algorithmus Jedes Teilarray (auch ein maximales) hat eine Endposition x Betrachte alle Möglichkeiten Für jedes x 1 Betrachte das maximale Teilarray A x 1 mit Endposition x 1 Entweder ist dieses Teil des maximalen Teilarrays A x mit Endposition x Oder nicht (dann ist A x Teilarray der Länge 1) Summe(A x ) = max{summe(a x 1 ) + Wert von x, Wert von x Implementiere Kadanes Algorithmus Speichere aktuelles Maximum Entscheide, ob das maximale Teilarray, das eine Position früher endet, Teil davon sein sollte Das Maximum von zwei Zahlen kann mit Math.max berechnet werden Programmieren und Problemlösen Daten (durch)suchen, Komplexitätstheorie Frühling 2019 Dennis Komm 12 / 26 Programmieren und Problemlösen Daten (durch)suchen, Komplexitätstheorie Frühling 2019 Dennis Komm 13 / 26 Aufgabe Maximales Teilarray static int maxsub(int data[]) { int maxendhere = data[0]; int max = maxendhere; for (int i = 1; i < data.length; ++i) { maxendhere = Math.max(data[i], maxendhere+data[i]); max = Math.max(max,maxEndHere); return max; Weiterführende Komplexitätstheorie Programmieren und Problemlösen Daten (durch)suchen, Komplexitätstheorie Frühling 2019 Dennis Komm 14 / 26

6 Klassifizierung von Problemen Alan Cobham (*1927), Jack Edmonds (*1934) Probleme erlauben unterschiedliche Laufzeiten Naiver Primzahltest (Lösung des Problems PRIMES) hat Komplexität in O(2 n ) Es existiert Algorithmus mit Komplexität in O(n 7 ) Mergesort besitzt Komplexität in O(n log n) Kadanes Algorithmus besitzt Komplexität in O(n) Diese Probleme sind in Polynomzeit lösbar These von C. und E. Effiziente Algorithmen sind solche, die in polynomieller Zeit laufen Laufzeit ist in O(n k ) für k N O(n 3 ) O(n 10 ) aber nicht O(1.41 n ) Programmieren und Problemlösen Daten (durch)suchen, Komplexitätstheorie Frühling 2019 Dennis Komm 15 / 26 Programmieren und Problemlösen Daten (durch)suchen, Komplexitätstheorie Frühling 2019 Dennis Komm 16 / 26 Effiziente Algorithmen Effiziente Algorithmen Der Begriff ist unabhängig vom jeweiligen Berechnungsmodell Wenn ein Algorithmus in Java etwas in Polynomzeit berechnen kann, kann ein Algorithmus in Python es auch und umgekehrt Wir nennen die Klasse der Polynome deswegen robust Probleme, die effizient gelöst werden können Die Klasse P enthält Probleme, die effizient gelöst werden können PRIMES P Was ist mit Problemen, die nicht in P liegen? Andersrum: Für welche Probleme lohnt es sich überhaupt, effiziente Algorithmen zu suchen? Sicher ist es für das Halteproblem aussichtslos (denn das können wir gar nicht lösen) Aber was sind gute Kandidaten? Programmieren und Problemlösen Daten (durch)suchen, Komplexitätstheorie Frühling 2019 Dennis Komm 17 / 26 Programmieren und Problemlösen Daten (durch)suchen, Komplexitätstheorie Frühling 2019 Dennis Komm 18 / 26

7 Betrachte alternatives Modell Polynomzeit-Verifizierer Ein Polynomzeit-Verifizierer (PV) muss die Lösung eines Problems nicht selber berechnen Er erhält mit der Eingabe einen (potentiellen) Zeugen Der Zeuge ist ein String Beispielsweise ein potentieller Teiler, wenn berechnet werden soll, ob die Eingabe keine Primzahl ist Zeuge ist enorme Hilfe bei der Berechnung der Ausgabe Hamiltonkreisproblem HK Besitzt Graph G einen Hamiltonkreis? (Traveling-Salesman-Problem) Algorithmus erhält Eingabe v 6 v 5 v 5 v 4 v 1 v 2 v 3 und muss Ausgabe JA oder NEIN berechnen nicht effizient PV erhält Eingabe v 6 v 4 v 1 v 2 v 3 und Zeugen v 1, v 3, v 5, v 4, v 6, v 2, v 1 und muss diesen mit JA oder NEIN verifizieren effizient Programmieren und Problemlösen Daten (durch)suchen, Komplexitätstheorie Frühling 2019 Dennis Komm 19 / 26 Programmieren und Problemlösen Daten (durch)suchen, Komplexitätstheorie Frühling 2019 Dennis Komm 20 / 26 P versus N P P versus N P Probleme, die effizient verifiziert werden können Die Klasse N P enthält alle Probleme, die effizient von PV gelöst werden können N steht für nichtdeterministisch PV haben gegenüber Algorithmen einen offensichtlichen Vorteil Wenn es für ein Problem keinen PV gibt, dann sicher auch keinen effizienten Algorithmus Suche nach effizienten Algorithmen für Probleme in N P Wenn wir etwas mit einem Algorithmus effizient berechnen können, dann auch mit einem PV P N P Aber was ist mit der anderen Richtung? Wir wissen bis heute nicht, ob P = N P oder P N P Es wird vermutet, dass P N P Es gibt vermutlich Probleme in N P, für die keine effizienten Algorithmen existieren Seit Jahrzehnten ist es offen, ein solches zu finden Programmieren und Problemlösen Daten (durch)suchen, Komplexitätstheorie Frühling 2019 Dennis Komm 21 / 26 Programmieren und Problemlösen Daten (durch)suchen, Komplexitätstheorie Frühling 2019 Dennis Komm 22 / 26

8 P versus N P Stephen A. Cook (*1939) Was können wir tun? Identifiziere schwerste Probleme in N P N P-Vollständigkeit Ein Problem A in N P wird als N P-vollständig bezeichnet, wenn die effiziente Lösbarkeit von A die effiziente Lösbarkeit aller Probleme in N P erlaubt Satz von Cook Es existiert ein N P-vollständiges Problem Wird effizienter Algorithmus für ein N P-vollständiges Problem gefunden, dann gibt es effiziente Algorithmen für alle Probleme in N P P = N P Wikimedia, Creative Commons Programmieren und Problemlösen Daten (durch)suchen, Komplexitätstheorie Frühling 2019 Dennis Komm 23 / 26 Programmieren und Problemlösen Daten (durch)suchen, Komplexitätstheorie Frühling 2019 Dennis Komm 24 / 26 Richard M. Karp (*1935) P versus N P Karps 21 Probleme Es existieren 21 weitere N P-vollständige Probleme Es konnten Tausende N P-vollständige Probleme identifiziert werden Wird jemals für eines von ihnen ein effizienter Algorithmus gefunden, existieren effiziente Algorithmen für sie alle P = N P Derzeit gehen wir von folgender Beziehung aus Wikimedia, Creative Commons Heute kennen wir Tausende, und doch können wir für keines zeigen, dass es keinen effiziente Algorithmus gibt P N P N P-vollständig Programmieren und Problemlösen Daten (durch)suchen, Komplexitätstheorie Frühling 2019 Dennis Komm 25 / 26 Programmieren und Problemlösen Daten (durch)suchen, Komplexitätstheorie Frühling 2019 Dennis Komm 26 / 26

Teil III. Komplexitätstheorie

Teil III. Komplexitätstheorie Teil III Komplexitätstheorie 125 / 160 Übersicht Die Klassen P und NP Die Klasse P Die Klassen NP NP-Vollständigkeit NP-Vollständige Probleme Weitere NP-vollständige Probleme 127 / 160 Die Klasse P Ein

Mehr

Kapitel 10. Komplexität von Algorithmen und Sortieralgorithmen

Kapitel 10. Komplexität von Algorithmen und Sortieralgorithmen Kapitel 10 Komplexität von Algorithmen und Sortieralgorithmen Arrays 1 Ziele Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:

Mehr

Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen

Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen 1 Kapitel 9 Komplexität von Algorithmen und Sortieralgorithmen Ziele 2 Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:

Mehr

Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen

Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen Kapitel 9 Komplexität von Algorithmen und Sortieralgorithmen Arrays 1 Ziele Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:

Mehr

Effiziente Algorithmen mit Python. D. Komm, T. Kohn

Effiziente Algorithmen mit Python. D. Komm, T. Kohn Effiziente Algorithmen mit Python D. Komm, T. Kohn Copyright c 2017, ABZ, ETH Zürich http://www.abz.inf.ethz.ch/ Version vom 7. September 2017. Effiziente Algorithmen mit Python 3 1 Effizienz Effizient

Mehr

Theorie der Informatik. Theorie der Informatik P und NP Polynomielle Reduktionen NP-Härte und NP-Vollständigkeit

Theorie der Informatik. Theorie der Informatik P und NP Polynomielle Reduktionen NP-Härte und NP-Vollständigkeit Theorie der Informatik 13. Mai 2015 20. P, NP und polynomielle Reduktionen Theorie der Informatik 20. P, NP und polynomielle Reduktionen 20.1 P und NP Malte Helmert Gabriele Röger 20.2 Polynomielle Reduktionen

Mehr

Informatik II, SS 2018

Informatik II, SS 2018 Informatik II - SS 2018 (Algorithmen & Datenstrukturen) Vorlesung 20 (9.7.2018) String Matching (Textsuche) Algorithmen und Komplexität Textsuche / String Matching Gegeben: Zwei Zeichenketten (Strings)

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2016 (Algorithmen & Datenstrukturen) Vorlesung 20 (13.7.2016) String Matching (Textsuche) Algorithmen und Komplexität Textsuche / String Matching Gegeben: Zwei Zeichenketten (Strings)

Mehr

Ein sortiertes Feld kann in O(log n) durchsucht werden, z.b. mit Binärsuche. Der Algorithmus 1 gibt den Pseudocode der binären Suche an.

Ein sortiertes Feld kann in O(log n) durchsucht werden, z.b. mit Binärsuche. Der Algorithmus 1 gibt den Pseudocode der binären Suche an. 2.5 Suchen Eine Menge S will nach einem Element durchsucht werden. Die Menge S ist statisch und S = n. S ist Teilmenge eines Universums auf dem eine lineare Ordnung definiert ist und soll so gespeichert

Mehr

Komplexität von Algorithmen

Komplexität von Algorithmen Ziele 2 Komplexität von Algorithmen Zeit- und Speicherplatzbedarf einer Anweisung berechnen können Zeit- und Speicherplatzbedarf einer Methode berechnen können Martin Wirsing Unterschiede der Komplexität

Mehr

Die Komplexitätsklassen P und NP

Die Komplexitätsklassen P und NP Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

Laufzeit einer DTM, Klasse DTIME

Laufzeit einer DTM, Klasse DTIME Laufzeit einer DTM, Klasse DTIME Definition Laufzeit einer DTM Sei M eine DTM mit Eingabealphabet Σ, die bei jeder Eingabe hält. Sei T M (w) die Anzahl der Rechenschritte d.h. Bewegungen des Lesekopfes

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 10 (3.6.2014) Binäre Suchbäume I Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:

Mehr

Clevere Algorithmen programmieren

Clevere Algorithmen programmieren ClevAlg 2017 Theoretische Informatik Clevere Algorithmen programmieren Dennis Komm, Jakub Závodný, Tobias Kohn 06. Dezember 2017 Die zentralen Fragen sind... Was kann man mit einem Computer nicht machen?

Mehr

Hamiltonsche Graphen

Hamiltonsche Graphen Hamiltonsche Graphen Definition 3.2. Es sei G = (V, E) ein Graph. Ein Weg, der jeden Knoten von G genau einmal enthält, heißt hamiltonscher Weg. Ein Kreis, der jeden Knoten von G genau einmal enthält,

Mehr

> Parallele Systeme Übung: 4. Übungsblatt Philipp Kegel Wintersemester 2012/2013. Parallele und Verteilte Systeme, Institut für Informatik

> Parallele Systeme Übung: 4. Übungsblatt Philipp Kegel Wintersemester 2012/2013. Parallele und Verteilte Systeme, Institut für Informatik > Parallele Systeme Übung: 4. Übungsblatt Philipp Kegel Wintersemester 2012/2013 Parallele und Verteilte Systeme, Institut für Informatik Inhaltsverzeichnis 2 1 Besprechung des 4. Übungsblattes Aufgabe

Mehr

Zeitkomplexität (1) Proseminar Theoretische Informatik. Proseminar Theoretische Informatik: Lisa Dohrmann 1

Zeitkomplexität (1) Proseminar Theoretische Informatik. Proseminar Theoretische Informatik: Lisa Dohrmann 1 Zeitkomplexität (1) Proseminar Theoretische Informatik Proseminar Theoretische Informatik: Lisa Dohrmann 1 Warum Komplexitätsbetrachtung? Ein im Prinzip entscheidbares und berechenbares Problem kann in

Mehr

Lösungen zur Vorlesung Berechenbarkeit und Komplexität

Lösungen zur Vorlesung Berechenbarkeit und Komplexität Lehrstuhl für Informatik 1 WS 009/10 Prof. Dr. Berthold Vöcking 0.0.010 Alexander Skopalik Thomas Kesselheim Lösungen zur Vorlesung Berechenbarkeit und Komplexität. Zulassungsklausur Aufgabe 1: (a) Worin

Mehr

Ideen der Informatik Ein Rundgang durch die Komplexität [Was geht? Was geht schwer? Was geht gar nicht?]

Ideen der Informatik Ein Rundgang durch die Komplexität [Was geht? Was geht schwer? Was geht gar nicht?] Ideen der Informatik Ein Rundgang durch die Komplexität [Was geht? Was geht schwer? Was geht gar nicht?] Kurt Mehlhorn Adrian Neumann Folien von Kosta Panagiotou Plan für Heute Komplexitätsklassen P =

Mehr

9. Rekursion. 1 falls n 1 n (n 1)!, andernfalls. Experiment: Die Türme von Hanoi. Links Mitte Rechts. Mathematische Rekursion

9. Rekursion. 1 falls n 1 n (n 1)!, andernfalls. Experiment: Die Türme von Hanoi. Links Mitte Rechts. Mathematische Rekursion Experiment: Die Türme von Hanoi. Rekursion Mathematische Rekursion, Terminierung, der Aufrufstapel, Beispiele, Rekursion vs. Iteration Links Mitte Rechts Mathematische Rekursion Viele mathematische Funktionen

Mehr

P, NP und NP -Vollständigkeit

P, NP und NP -Vollständigkeit P, NP und NP -Vollständigkeit Mit der Turing-Maschine haben wir einen Formalismus kennengelernt, um über das Berechenbare nachdenken und argumentieren zu können. Wie unsere bisherigen Automatenmodelle

Mehr

Kontrollfluss. man Verzweigungen und Sprünge. o bisher linear (von oben nach unten) o Für interessante Programme braucht

Kontrollfluss. man Verzweigungen und Sprünge. o bisher linear (von oben nach unten) o Für interessante Programme braucht Kontrollanweisungen Kontrollfluss o bisher linear (von oben nach unten) o Für interessante Programme braucht man Verzweigungen und Sprünge Kontrollfluss o bisher linear (von oben nach unten) o Für interessante

Mehr

Das P versus N P - Problem

Das P versus N P - Problem Das P versus N P - Problem Dr. Michael Huber Habilitationsvortrag eines der sieben Milleniumsprobleme des Clay Mathematics Institute A gift to Mathematics from Computer Science (Steve Smale) Überblick

Mehr

Informatik II Vorlesung am D-BAUG der ETH Zürich

Informatik II Vorlesung am D-BAUG der ETH Zürich Informatik II Vorlesung am D-BAUG der ETH Zürich Vorlesung 9, 2.5.2016 [Nachtrag zu Vorlesung : Numerische Integration, Zusammenfassung Objektorientierte Programmierung] Dynamische Datenstrukturen II:

Mehr

Tutoraufgabe 1 (Sortieren): Lösung: Datenstrukturen und Algorithmen SS14 Lösung - Übung 4

Tutoraufgabe 1 (Sortieren): Lösung: Datenstrukturen und Algorithmen SS14 Lösung - Übung 4 Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS Lösung - Übung F. Corzilius, S. Schupp, T. Ströder Tutoraufgabe (Sortieren): a) Sortieren Sie das folgende Array durch Anwendung des Selectionsort-Algorithmus.

Mehr

Übersicht. Datenstrukturen und Algorithmen. Divide-and-Conquer. Übersicht. Vorlesung 9: Quicksort (K7)

Übersicht. Datenstrukturen und Algorithmen. Divide-and-Conquer. Übersicht. Vorlesung 9: Quicksort (K7) Datenstrukturen und Algorithmen Vorlesung 9: (K7) Joost-Pieter Katoen Algorithmus Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://moves.rwth-aachen.de/teaching/ss-5/dsal/ 2 7.

Mehr

Übung zu Algorithmen und Datenstrukturen (für ET/IT)

Übung zu Algorithmen und Datenstrukturen (für ET/IT) Übung zu Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2017 Rüdiger Göbl, Mai Bui Computer Aided Medical Procedures Technische Universität München Fibonacci Zahlen Fibonacci Folge Die Fibonacci

Mehr

Algorithmentheorie Randomisierung

Algorithmentheorie Randomisierung Algorithmentheorie 03 - Randomisierung Prof. Dr. S. Albers Randomisierung Klassen von randomisierten Algorithmen Randomisierter Quicksort Randomisierter Primzahltest Kryptographie 2 1. Klassen von randomisierten

Mehr

2. Hausübung Algorithmen und Datenstrukturen

2. Hausübung Algorithmen und Datenstrukturen Prof. Dr. Gerd Stumme, Folke Eisterlehner, Dominik Benz Fachgebiet Wissensverarbeitung 7.4.009. Hausübung Algorithmen und Datenstrukturen Sommersemester 009 Abgabetermin: Montag, 04.05.009, 10:00 Uhr 1

Mehr

Lösungsvorschlag Serie 2 Rekursion

Lösungsvorschlag Serie 2 Rekursion (/) Lösungsvorschlag Serie Rekursion. Algorithmen-Paradigmen Es gibt verschiedene Algorithmen-Paradigmen, also grundsätzliche Arten, wie man einen Algorithmus formulieren kann. Im funktionalen Paradigma

Mehr

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, NP 254/ 333 Polynomielle Verifizierer und NP Ḋefinition Polynomieller

Mehr

THEORETISCHE INFORMATIK UND LOGIK

THEORETISCHE INFORMATIK UND LOGIK THEORETISCHE INFORMATIK UND LOGIK 9. Vorlesung: NP und NP-Vollständigkeit Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 10. Mai 2017 Rückblick PTime und LogSpace als mathematische Modelle

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 017 Marc Bux, Humboldt-Universität zu Berlin Agenda 1. Vorrechnen von Aufgabenblatt 1. Wohlgeformte Klammerausdrücke 3. Teile und Herrsche Agenda 1.

Mehr

Polynomielle Verifizierer und NP

Polynomielle Verifizierer und NP Polynomielle Verifizierer und NP Definition Polynomieller Verifizierer Sei L Σ eine Sprache. Eine DTM V heißt Verifizierer für L, falls V für alle Eingaben w Σ hält und folgendes gilt: w L c Σ : V akzeptiert

Mehr

Weiterführendes Programmieren Lineare Widerstandsnetzwerke II Aufgabenblatt 6. 1 Zusammenfassung der elektrotechnischen Begriffe

Weiterführendes Programmieren Lineare Widerstandsnetzwerke II Aufgabenblatt 6. 1 Zusammenfassung der elektrotechnischen Begriffe Institut für Wissenschaftliches Rechnen Technische Universität Braunschweig Prof. Hermann G. Matthies, Ph. D. Dr. Elmar Zander Wintersemester 2013/14 14. November 2014 Weiterführendes Programmieren Lineare

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

Die Klasse NP und die polynomielle Reduktion. Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen

Die Klasse NP und die polynomielle Reduktion. Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Die Klasse NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 26 Optimierungsprobleme und ihre Entscheidungsvariante Beim Rucksackproblem

Mehr

Welche Probleme können Rechner (effizient) lösen? Die P = NP Frage. Ideen der Informatik Kurt Mehlhorn

Welche Probleme können Rechner (effizient) lösen? Die P = NP Frage. Ideen der Informatik Kurt Mehlhorn Welche Probleme können Rechner (effizient) lösen? Die P = NP Frage Ideen der Informatik Kurt Mehlhorn Gliederung Ziele von Theorie Gibt es Probleme, die man prinzipiell nicht mit einem Rechner lösen kann?

Mehr

Nichtdeterministische Platzklassen

Nichtdeterministische Platzklassen Sommerakademie 2010 Rot an der Rot AG 1: Wieviel Platz brauchen Algorithmen wirklich? Nichtdeterministische Platzklassen Ulf Kulau August 23, 2010 1 Contents 1 Einführung 3 2 Nichtdeterminismus allgemein

Mehr

Die Klasse NP und die polynomielle Reduktion

Die Klasse NP und die polynomielle Reduktion Die Klasse NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Dezember 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Kryptographische Protokolle

Kryptographische Protokolle Kryptographische Protokolle Lerneinheit 2: Generierung von Primzahlen Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Wintersemester 2018/2019 15.11.2018 Einleitung Einleitung Diese Lerneinheit

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Nichtdeterminismus David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Nichtdeterminismus NTM Nichtdeterministische Turingmaschine Die

Mehr

Ziele. Kapitel 10: Komplexität von Algorithmen und Sortierverfahren. Beispiel: Lineare Suche eines Elements in einem Array (1)

Ziele. Kapitel 10: Komplexität von Algorithmen und Sortierverfahren. Beispiel: Lineare Suche eines Elements in einem Array (1) Einführung in die Informatik: Programmierung und Softwareentwicklung Wintersemester 2018/19 Ziele Kapitel 10: Komplexität von Algorithmen und Sortierverfahren Prof. Dr. David Sabel Lehr- und Forschungseinheit

Mehr

Fallstudie: Online-Statistik

Fallstudie: Online-Statistik Fallstudie: Online-Statistik Ziel: Klasse / Objekt, welches Daten konsumiert und zu jeder Zeit Statistiken, z.b. Mittelwert, Varianz, Median (etc.) ausgeben kann Statistics s = new Statistics(maxSize);...

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Technische Universität München SoSe 2017 Fakultät für Informatik, I-16 Lösungsblatt 4 Dr. Stefanie Demirci 31. Mai 2017 Rüdiger Göbl, Mai Bui Algorithmen und Datenstrukturen Aufgabe 1 Komplexität Berechnung

Mehr

Algorithmen und Datenstrukturen SS Übungsblatt 1: Grundlagen

Algorithmen und Datenstrukturen SS Übungsblatt 1: Grundlagen Ludwig-Maximilians-Universität München München, 16.04.2018 Institut für Informatik Prof. Dr. Thomas Seidl Anna Beer, Florian Richter Algorithmen und Datenstrukturen SS 2018 Übungsblatt 1: Grundlagen Tutorien:

Mehr

Sortieren und Suchen. Jens Wächtler Hallo Welt! -Seminar LS 2

Sortieren und Suchen. Jens Wächtler Hallo Welt! -Seminar LS 2 Sortieren und Suchen Jens Wächtler 17.05.2017 Hallo Welt! -Seminar LS 2 Überblick Sortieren kurze Wiederholung Binäre & Ternäre Suche Binäre Suche in einer Liste Bisektionsverfahren (Nullstellensuche)

Mehr

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können.

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. 8. A & D - Heapsort Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. Genauer werden wir immer wieder benötigte Operationen durch Datenstrukturen unterstützen.

Mehr

Algorithmentheorie Randomisierung. Robert Elsässer

Algorithmentheorie Randomisierung. Robert Elsässer Algorithmentheorie 03 - Randomisierung Robert Elsässer Randomisierung Klassen von randomisierten Algorithmen Randomisierter Quicksort Randomisierter Primzahltest Kryptographie 2 1. Klassen von randomisierten

Mehr

Theoretische Informatik Mitschrift

Theoretische Informatik Mitschrift 10. Komplexitätstheorie Theoretische Informatik Mitschrift Klassifikation algorithmischer Probleme (formalisiert als Sprachen) nach ihrem Bedarf an Berechnungsressourcen (= Rechenzeit, Speicherplatz als

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 NP-Vollständigkeit Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr, o.n.v.

Mehr

Probleme aus NP und die polynomielle Reduktion

Probleme aus NP und die polynomielle Reduktion Probleme aus NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 15. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

7. Transitive Hülle. Kante des Graphen. Zusatz-Kante der transitiven Hülle

7. Transitive Hülle. Kante des Graphen. Zusatz-Kante der transitiven Hülle In Anwendungen ist es oft interessant zu wissen, ob man überhaupt von einem Knoten v zu einem Knoten w gelangen kann, ganz gleich wie lang der Weg auch ist. Gegeben sei dabei ein gerichteter Graph G =

Mehr

Algorithmische Spieltheorie

Algorithmische Spieltheorie Algorithmische Spieltheorie Grundlagen der Komplexitätstheorie Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00

Mehr

Muster. Informatik 3 (Februar 2004) Name: Matrikelnummer: Betrachten Sie den folgenden Suchbaum. A G H J K M N

Muster. Informatik 3 (Februar 2004) Name: Matrikelnummer: Betrachten Sie den folgenden Suchbaum. A G H J K M N 2 von 15 Aufgabe 1: Suchbäume (14 ) Betrachten Sie den folgenden Suchbaum. A B C D E F G H I J K L M N O P R (a) (1 Punkt ) Geben Sie die Höhe des Knotens F an. (b) (1 Punkt ) Geben Sie die Tiefe des Knotens

Mehr

Programmierung für Mathematik (HS13)

Programmierung für Mathematik (HS13) software evolution & architecture lab Programmierung für Mathematik (HS13) Übung 11 1 Aufgabe: Codeverständnis 1.1 Aufgabenstellung Notieren Sie, was der folgende Code ausgeben würde, wenn er so in einer

Mehr

Relationen und DAGs, starker Zusammenhang

Relationen und DAGs, starker Zusammenhang Relationen und DAGs, starker Zusammenhang Anmerkung: Sei D = (V, E). Dann ist A V V eine Relation auf V. Sei andererseits R S S eine Relation auf S. Dann definiert D = (S, R) einen DAG. D.h. DAGs sind

Mehr

Zufall oder Absicht?

Zufall oder Absicht? Zufall oder Absicht? Randomisierung und Derandomisierung Prof. Markus Bläser Universität des Saarlandes 4. Januar 2010 1 / 21 Zufall oder Absicht? 1 Randomisierte Algorithmen 2 Polynom-Identitätstests

Mehr

Einführung Erfüllbarkeitsproblem NP-Vollständigkeit Definition von NP Was wäre, wenn Was tun? Ideen und Konzepte der Informatik.

Einführung Erfüllbarkeitsproblem NP-Vollständigkeit Definition von NP Was wäre, wenn Was tun? Ideen und Konzepte der Informatik. Ideen und Konzepte der Informatik P versus NP Die Grenzen der (effizienter) Berechnung? Antonios Antoniadis Basiert auf Folien von Kurt Mehlhorn 8. Jan. 2018 8. Jan. 2018 1/24 Gliederung Ziele von Theorie/Grundlagenforschung

Mehr

QuickSort ist ein Sortieralgorithmus, der auf der Idee des Teile & Beherrsche beruht, und das gegebene Array an Ort und Stelle (in place) sortiert

QuickSort ist ein Sortieralgorithmus, der auf der Idee des Teile & Beherrsche beruht, und das gegebene Array an Ort und Stelle (in place) sortiert 4.3.6 QuickSort QuickSort ist ein Sortieralgorithmus, der auf der Idee des Teile & Beherrsche beruht, und das gegebene Array an Ort und Stelle (in place) sortiert QuickSort teilt das gegebene Array anhand

Mehr

11. Rekursion, Komplexität von Algorithmen

11. Rekursion, Komplexität von Algorithmen 11. Rekursion, Komplexität von Algorithmen Teil 2 Java-Beispiele: Power1.java Hanoi.java K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 Version: 23. Nov. 2015 Anwendung der Rekursion Rekursiv

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2013/14 1. Vorlesung Kapitel 1: Sortieren Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Das Problem Eingabe Gegeben: eine Folge A = a 1, a 2,..., a

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 20. November 2014 INSTITUT FÜR THEORETISCHE 0 KIT 20.11.2014 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Informatik 1 ( ) D-MAVT F2010. Schleifen, Felder. Yves Brise Übungsstunde 5

Informatik 1 ( ) D-MAVT F2010. Schleifen, Felder. Yves Brise Übungsstunde 5 Informatik 1 (251-0832-00) D-MAVT F2010 Schleifen, Felder Nachbesprechung Blatt 3 Aufgabe 1 ASCII... A > a Vorsicht: Lösen Sie sich von intuitiven Schlussfolgerungen. A ist nicht grösser als a, denn in

Mehr

Übungen zu Algorithmen

Übungen zu Algorithmen Institut für Informatik Universität Osnabrück, 08.11.2016 Prof. Dr. Oliver Vornberger http://www-lehre.inf.uos.de/~ainf Lukas Kalbertodt, B.Sc. Testat bis 16.11.2016, 14:00 Uhr Nils Haldenwang, M.Sc. Übungen

Mehr

Einführung (1/3) Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (1) Vorlesungen zur Komplexitätstheorie.

Einführung (1/3) Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (1) Vorlesungen zur Komplexitätstheorie. Einführung (1/3) 3 Wir verfolgen nun das Ziel, Komplexitätsklassen mit Hilfe von charakteristischen Problemen zu beschreiben und zu strukturieren Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Jochen Hoenicke Software Engineering Albert-Ludwigs-University Freiburg Sommersemester 2014 Jochen Hoenicke (Software Engineering) Einführung in die Informatik Sommersemester

Mehr

Stabilitätsabschätzungen Vorlesung vom

Stabilitätsabschätzungen Vorlesung vom Stabilitätsabschätzungen Vorlesung vom 8.12.17 Auswertungsbäume zur systematischen Stabilitätsabschätzung Auswertungsbaum: Knoten, gerichtete Kanten, Wurzel, Blätter Zerlegung in Teilbäume Von den Blättern

Mehr

Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20.

Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20. Übersicht Datenstrukturen und Algorithmen Vorlesung 5: (K4) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.informatik.rwth-aachen.de/i2/dsal12/ 20.

Mehr

Härte von Hamilton-Kreis und TSP Überblick über die Komplexitätslandschaft

Härte von Hamilton-Kreis und TSP Überblick über die Komplexitätslandschaft Härte von Hamilton-Kreis und TSP Überblick über die Komplexitätslandschaft Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 5. Februar 2010 Berthold Vöcking, Informatik

Mehr

8 Komplexitätstheorie

8 Komplexitätstheorie 8 Komplexitätstheorie Formale Grundlagen der Informatik I Herbstsemester 2012 Robert Marti Vorlesung teilweise basierend auf Unterlagen von Prof. emer. Helmut Schauer Grundidee der Komplexitätstheorie

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Weitere NP-vollständige Probleme Wir betrachten nun folgende Reduktionskette und weisen dadurch nach, daß alle diese Probleme NP-hart sind (sie sind auch in NP und damit NP-vollständig). SAT p 3-SAT p

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 1. Vorlesung Kapitel 1: Sortieren Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Das Problem Eingabe Gegeben: eine Folge A = a 1, a 2,..., a

Mehr

Informatik II: Algorithmen & Datenstrukturen. Blättern Sie nicht um bevor Sie dazu aufgefordert werden!

Informatik II: Algorithmen & Datenstrukturen. Blättern Sie nicht um bevor Sie dazu aufgefordert werden! Albert-Ludwigs-Universität Institut für Informatik Prof. Dr. F. Kuhn Informatik II: Algorithmen & Datenstrukturen Montag, 29. August, 2014, 14:00 17:00 Name:...........................................................

Mehr

Primzahlen und Programmieren

Primzahlen und Programmieren Primzahlen Wir wollen heute gemeinsam einen (sehr grundlegenden) Zusammenhang zwischen Programmieren und Mathematik herstellen. Die Zeiten in denen Mathematiker nur mit Zettel und Stift (oder Tafel und

Mehr

Probabilistische Primzahltests

Probabilistische Primzahltests 23.01.2006 Motivation und Überblick Grundsätzliches Vorgehen Motivation und Überblick Als Primzahltest bezeichnet man ein mathematisches Verfahren, mit dem ermittelt wird, ob eine gegebene Zahl eine Primzahl

Mehr

abgeschlossen unter,,,, R,

abgeschlossen unter,,,, R, Was bisher geschah Turing-Maschinen können Sprachen L X akzeptieren entscheiden Funktionen berechnen f : X X (partiell) Menge aller Turing-akzeptierbaren Sprachen genau die Menge aller Chomsky-Typ-0-Sprachen

Mehr

Praktische Grenzen der Berechenbarkeit

Praktische Grenzen der Berechenbarkeit Arno Schwarz Praktische Grenzen der Berechenbarkeit Während es im ersten Abschnitt um prinzipiell unlösbare Probleme ging, wenden wir uns nun Aufgaben zu, deren Lösbarkeit praktische Grenzen gesetzt sind.

Mehr

Voronoi-Diagramme. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Voronoi-Diagramme. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 29.05.2011 Das Postamt-Problem b(p, q) = {x R 2 : xp = xq } p q h(p, q) h(q, p) = {x :

Mehr

Clevere Algorithmen programmieren

Clevere Algorithmen programmieren ClevAlg 2017 Arithmetische Operationen Clevere Algorithmen programmieren Dennis Komm, Jakub Závodný, Tobias Kohn 27. September 2017 Addition zweier Zahlen Addition von Zahlen Wir stellen Zahlen als Strings

Mehr

4. Algorithmen und Datenstrukturen I Grundlagen der Programmierung 1 (Java)

4. Algorithmen und Datenstrukturen I Grundlagen der Programmierung 1 (Java) 4. Algorithmen und Datenstrukturen I Grundlagen der Programmierung 1 (Java) Fachhochschule Darmstadt Haardtring 100 D-64295 Darmstadt Prof. Dr. Bernhard Humm FH Darmstadt, 8./15. November 2005 Einordnung

Mehr

Programmierkurs Java

Programmierkurs Java Programmierkurs Java Dr. Dietrich Boles Aufgaben zu UE16-Rekursion (Stand 09.12.2011) Aufgabe 1: Implementieren Sie in Java ein Programm, das solange einzelne Zeichen vom Terminal einliest, bis ein #-Zeichen

Mehr

Programmieren in C. Rekursive Funktionen. Prof. Dr. Nikolaus Wulff

Programmieren in C. Rekursive Funktionen. Prof. Dr. Nikolaus Wulff Programmieren in C Rekursive Funktionen Prof. Dr. Nikolaus Wulff Rekursive Funktionen Jede C Funktion besitzt ihren eigenen lokalen Satz an Variablen. Dies bietet ganze neue Möglichkeiten Funktionen zu

Mehr

Zunächst ein paar einfache "Rechen"-Regeln: Lemma, Teil 1: Für beliebige Funktionen f und g gilt:

Zunächst ein paar einfache Rechen-Regeln: Lemma, Teil 1: Für beliebige Funktionen f und g gilt: Der Groß-O-Kalkül Zunächst ein paar einfache "Rechen"-Regeln: G. Zachmann Informatik 1 - WS 05/06 Komplexität 22 Additionsregel Lemma, Teil 1: Für beliebige Funktionen f und g gilt: Zu beweisen: nur das

Mehr

Arrays. Gilbert Beyer und Annabelle Klarl. Einführung in die Informatik. Zentralübung zur Vorlesung Einführung in die Informatik

Arrays. Gilbert Beyer und Annabelle Klarl. Einführung in die Informatik. Zentralübung zur Vorlesung Einführung in die Informatik Arrays Zentralübung zur Vorlesung Einführung in die Informatik http://www.pst.ifi.lmu.de/lehre/wise-11-12/infoeinf WS11/12 Inhalte der heutigen Vorlesung: Arraytypen Speicherdarstellung von Arrays Auswertung

Mehr

3.2. Divide-and-Conquer-Methoden

3.2. Divide-and-Conquer-Methoden LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE 3.2. Divide-and-Conquer-Methoden Divide-and-Conquer-Methoden Einfache Sortieralgorithmen reduzieren die Größe des noch

Mehr

Kapitel 1. Exakte Suche nach einem Wort. R. Stiebe: Textalgorithmen, WS 2003/04 11

Kapitel 1. Exakte Suche nach einem Wort. R. Stiebe: Textalgorithmen, WS 2003/04 11 Kapitel 1 Exakte Suche nach einem Wort R. Stiebe: Textalgorithmen, WS 2003/04 11 Überblick Aufgabenstellung Gegeben: Text T Σ, Suchwort Σ mit T = n, = m, Σ = σ Gesucht: alle Vorkommen von in T Es gibt

Mehr

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Divide-and-Conquer. Vorlesung 9: Quicksort (K7)

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Divide-and-Conquer. Vorlesung 9: Quicksort (K7) Datenstrukturen und Algorithmen Vorlesung 9: (K7) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.rwth-aachen.de/i2/dsal0/ Algorithmus 8. Mai 200 Joost-Pieter

Mehr

Rückblick: Längste gemeinsame Zeichenkette

Rückblick: Längste gemeinsame Zeichenkette aaadg3icdvjdb9mwfhuwbin8bcablxytanngm5rjbjogkvhcc9kq6dapjirhvu3donfmoxvbyn/gff4z/wyngrib48pjjs/98m25tgrbtqndx96kf2f17r21+8gdh48ep1nfehqizakyjjguup0lvipgoywmnwlocgu0swscjsspjf/0aptmmv9iqglijky5n3fgjammg55pforwywsw0xxqcvwkvtoomgxe20edkiyaucqsygsiy1m9pcehpn4148nfvi2pmbewm8qgjigu57bnry0bwnje0ulh+65zhyt4neyupstkagavokg6fneb3zfbs5imgpwyv4lithi4x2a8adg5vrhna1tx3228g6p/fju6qhqqcl/zdrkqxdo56u3wn8pe4ga/fhua/wvrl2xtc/gctxbszevjvliyg9wwqbuer2fhylfwccbafs41fjqtaqpjgha0abxbfgqgrlxx3q7mnamd23aanx7lmcmesewe3ocw/tvd0kzrkktczkoivulryft9izrlqxn97xxr+pjbxzri8errvtucyut9o1mz248tz4vsqm66rmelwebi5mrhkvfajkgcoexxjwvmc6oom+4cbqrntp2rdrv+mghlfu9/qvqtwhfott0x1mdxfuaype45wadunh/0x/8hj4nefpaiz3ubw/1urmgnvuav0rak0ds0rb/rmroh5i28794p76e/6u/4a3+vc13xrnkeowvmh/0gfb8bjw==

Mehr

Zeichenketten Benedikt Straßner. Programming Systems Group Martensstr Erlangen Germany

Zeichenketten Benedikt Straßner. Programming Systems Group Martensstr Erlangen Germany Zeichenketten 16.04.2018 Benedikt Straßner Programming Systems Group Martensstr. 3 91058 Erlangen Germany Übersicht String Matching Algorithmen Naive Stringsuche Knuth Morris Pratt (KMP) Algorithmus Boyer-Moore

Mehr

Algorithmen und Datenstrukturen 2 VU 3.0 Nachtragstest SS Oktober 2016

Algorithmen und Datenstrukturen 2 VU 3.0 Nachtragstest SS Oktober 2016 Technische Universität Wien Institut für Computergraphik und Algorithmen Algorithms and Complexity Group 186.815 Algorithmen und Datenstrukturen 2 VU 3.0 Nachtragstest SS 2016 5. Oktober 2016 Machen Sie

Mehr

Rekursive Funktionen

Rekursive Funktionen Um Rekursion zu verstehen, muss man vor allem Rekursion verstehen. http://www2.norwalk-city.k12.oh.us/wordpress/precalc/files/2009/05/mona-lisa-jmc.jpg Rekursive Funktionen OOPM, Ralf Lämmel Was ist Rekursion?

Mehr

11. Rekursion. - Wiederholung von Anweisungen: durch Iteration und Rekursion - Anwendungsfälle der Rekursion

11. Rekursion. - Wiederholung von Anweisungen: durch Iteration und Rekursion - Anwendungsfälle der Rekursion 11. Rekursion 258 K. Bothe, PI1, WS 2000/01 259 ' ( ) - Wiederholung von Anweisungen: durch Iteration und Rekursion - Anwendungsfälle der Rekursion - induktiv definierte Funktionen - rekursive Problemlösungen

Mehr

Komplexität von Algorithmen

Komplexität von Algorithmen Komplexität von Algorithmen Prof. Dr. Christian Böhm WS 07/08 in Zusammenarbeit mit Gefei Zhang http://www.dbs.informatik.uni-muenchen.de/lehre/nfinfosw Ressourcenbedarf - Größenordnungen Prozesse verbrauchen

Mehr