Institut für math.-naturw. Grundlagen Physikalisches Anfängerpraktikum. Versuch M2: Viskositätsmessung nach verschiedenen DIN-Verfahren

Größe: px
Ab Seite anzeigen:

Download "Institut für math.-naturw. Grundlagen Physikalisches Anfängerpraktikum. Versuch M2: Viskositätsmessung nach verschiedenen DIN-Verfahren"

Transkript

1 Versuch : Viskositätsmessung nach verschiedenen DIN-Verfahren 1. Aufgabenstellung Mit einem Höppler - Viskosimeter (DIN 5655) wird die dynamische Viskosität eines Mineralöles in Abhängigkeit von der Temperatur nach DIN 5015 untersucht. Mit den Messwerten werden die Koeffizienten einer empirischen Parametrisierung der Temperaturabhängigkeit bestimmt. Mit einem Rotationsviskosimeter (DIN 5019) wird die Fließkurve (Schubspannung in Abhängigkeit vom Schergefälle) aufgenommen und mit Modellfällen verglichen. 2. Literatur Hering, Martin, Stohrer, Physik für Ingenieure, VDI-Verlag, Kap (bis Gl. 2-29) Geschke (Hrsg.), Physikalisches Praktikum, Teubner, Kap. M7.0, M 7.2, M 7.4. Grundlagen Zur Durchführung des Versuches müssen folgende Begriffe bekannt sein: Newtonsche Flüssigkeiten, (innere) Reibung, zwischenmolekulare Kräfte, laminare Strömung, dynamische und kinematische Viskosität, Auftrieb, Temperaturabhängigkeit der Dichte, Stokessches Gesetz, Höppler-Viskosimeter, Temperaturabhängigkeit der Viskosität.1 Laminare Strömung und innere Reibung (NEWTONsches Reibungsgesetz) Die Viskosität ist eine charakteristische Eigenschaft von fluiden Medien. Sie kann am Modell bewegter Flüssigkeiten eingeführt werden: Bei einer laminar strömenden Flüssigkeit gleiten die einzelnen Flüssigkeitsschichten parallel zueinander ohne sich zu vermischen. Zwischen zwei benachbarten Flüssigkeitsschichten verschiedener Strömungsgeschwindigkeiten wirkt eine geschwindigkeitsabhängige Reibungskraft, die das Geschwindigkeitsgefälle zu vermindern versucht. Nach Newton gilt für diese innere Reibungskraft: F R A wobei: A Auflagefläche der Flüssigkeitsschichten Geschwindigkeitsgradient (Schergefälle) senkrecht zur Bewegungsrichtung F R Mit Hilfe der als definierten Schubspannung kann das NEWTONsche A Reibungsgesetzt auch als Proportionalität zwischen der in einer Flüssigkeit herrschenden Schubspannung und Schergefälle ausgedrückt werden:. Physiklabor (IFG) Versuch Seite 1 / 7

2 Pas wird als dynamische Viskosität der Flüssigkeit bezeichnet und ist somit ein Maß der inneren Reibung einer Flüssigkeit beim Fließen. Oft wird der Quotient aus der dynamischen Viskosität und der Dichte genutzt und als kinematische Viskosität bezeichnet. Die Viskosität einer Flüssigkeit ist ein Materialwert, der sowohl von der Temperatur, als auch von der Scherbelastung abhängig ist. Flüssigkeiten, deren Viskosität im Bereich der laminaren Strömung nur von der Temperatur abhängt, heißen NEWTONsche Flüssigkeiten. Im Bereich der Raumtemperatur nimmt die Viskosität von Flüssigkeiten mit steigender Temperatur monoton ab. Bei vielen Flüssigkeiten kann der Temperaturgang mit zwei Der Proportionalitätsfaktor mit der Einheit Konstanten A und B beschrieben werden: ( T ) A e. Dabei entspricht die Konstante A der hypothetischen Viskosität bei unendlich hoher Temperatur: A η(t) während die Konstante B, über die sogenannte lim T Aktivierungsenergie E, die erforderliche Energie ausdrückt, um die Flüssigkeitsteilchen gegeneinander zu verschieben: B E 2 J, mit k Boltzmann-Konstante! k K Die beiden Konstanten A und B werden empirisch (aus der gemessenen Temperaturabhängigkeit) bestimmt. B T.2 Messung der Viskosität nach der Kugelfall-Methode Für eine Kugel, deren Radius R und Dichte K bekannt sind, die entlang der Achse eines weiten mit der zu untersuchenden Flüssigkeit der Dichte F gefüllten Zylinders l (Radius r R ) fällt, gilt bei laminarer Umströmung die (geschwindigkeitsproportionale) Reibungskraft nach Stokes: F R 6Rv. Nach einer (meist kurzen) Beschleunigungsphase stellt sich zwischen 4R 4R Schwerkraft FG K g, Auftriebskraft FA Fl g und Reibungskraft F R das Kräftegleichgewicht ein: F G FA FR 0 und die Kugel erreicht eine konstante 1 Endgeschwindigkeit v 2 g R 2 ( K Fl ). Wenn die Kugel zum Durchlaufen einer 9 L Messstrecke L die Fallzeit t benötigt, erhält man für die Viskosität im Idealfall sehr v 2 2gR großer Gefäßweite (unendlich ausgedehnte Flüssigkeit): ( K Fl ) t. 9L Eine technisch realisierte Variante der Kugelfall-Methode ist das weiter unten beschriebene Kugelfallviskosimeter nach Höppler. Physiklabor (IFG) Versuch Seite 2 / 7

3 Kugelfallviskosimeter nach Höppler: Die zu untersuchende Flüssigkeit befindet sich in einem leicht gegen die Vertikale geneigten Rohr. Man misst die Zeit, die eine Kugel zum Durchlaufen einer Messstrecke in diesem Rohr benötigt. Zur oben beschriebenen Kugelfall-Methode gibt es folgende zwei Unterschiede: Der Radius des Fallrohres r ist nur wenig größer als der Kugelradius R. Ein nicht mehr vernachlässigbares Verhältnis r R führt zu einer Vergrößerung der Reibungskraft zwischen Kugel und Flüssigkeit. Da bei einem senkrechten Fall der Kugel in einem nur wenig weiteren Rohr, unkontrollierbare Wandkollisionen auftreten würden, ist das Fallrohr um einige Grad gegen die Vertikale geneigt und die Kugel gleitet bzw. rollt an der Rohrwand ( geführt ) abwärts. Die Schrägstellung des Fallrohres und die (nur schwer berechenbare) Vergrößerung der Reibungskraft werden zu einem Kalibrierfaktor K zusammengefasst. Dieser, für jede Kugel charakteristische Faktor, wird vom Hersteller empirisch mit Eichflüssigkeiten bestimmt und als Kugelkonstante K angegeben. Mit der als Fallzeit zwischen zwei Messmarken ermittelten Zeit t, gilt für die dynamische Viskosität der untersuchten Flüssigkeit: K ( K Fl ) t Für die Temperaturabhängigkeit von Kugeldichte und Dichte der Flüssigkeit auf Grund der Wärmeausdehnung gilt: ( ) (20C) ( 20C) Dabei ist der Temperaturkoeffizient der Kugeldichte bzw. der Flüssigkeitsdichte. Vor Beginn der Messungen ist das Stativ, an dem das Kugelfallviskosimeter befestigt ist, mit Nivellierschrauben und Libelle zu justieren. Dadurch wird der vorgeschriebene Winkel von 10 zwischen dem geneigten Fallrohr, in dem sich die zu untersuchende Flüssigkeit befindet, und der Vertikalen eingehalten. Das Fallrohr trägt zwei Ringmarken in einem Abstand von 100 mm, die die Messstrecke begrenzen und ist mit Stopfen verschlossen, wovon einer eine Kapillare und einen Hohlraum aufweist, um bei Temperaturänderungen unzulässige Druckschwankungen und Lufteintritt zu verhindern. Unsere Viskosimeter sind mit einem Satz von 6 Kugeln unterschiedlicher Größe und Dichte für verschiedene Viskositäts-Messbereiche ausgestattet. Im vorliegenden Versuch wird ausschließlich Kugel 4 benutzt, deren Eigenschaften unter den Auswertedaten zusammengestellt sind. Die Kugel muss blasenfrei in der Flüssigkeit liegen. Sie wird durch Drehen des Rohres um 180 zum Sinken gebracht. Zwischen dem Fallrohr und einem weiteren, konzentrisch angeordneten Glasrohr zirkuliert die Temperierflüssigkeit (Wasser) eines Thermostaten. Die Temperatur wird mit einem Digitalthermometer im Temperiervolumen des Viskosimeters angezeigt bzw. gemessen. Die Temperatur der Kugel und der untersuchten Flüssigkeit können somit nur über die Laufzeit der Kugel kontrolliert werden! Physiklabor (IFG) Versuch Seite / 7

4 . Messung der Viskosität mit dem Rotationsviskosimeter Rotationsviskosimeter werden verwendet, um die Viskosität auch von nicht-newtonschen Flüssigkeiten zu bestimmen. Bei diesen Flüssigkeiten hängt die Viskosität außer von der Temperatur auch von der Schubspannung bzw. vom Schergefälle ab. Bei einem Rotationsviskosimeter wird die Viskosität aus dem Drehmoment ermittelt, welches ein rotierender Zylinder auf die in einem Behälter befindliche Substanz ausübt. Im Falle eines Rotationsviskosimeters mit koaxialen Zylinder- Messsystem sind die ebenen und zueinander parallel gleitenden Flüssigkeitsschichten einer laminaren Strömung des unter.1 beschriebenen Modells durch konzentrische Zylinder zu ersetzen. Die Messflüssigkeit befindet sich in einem feststehenden Messbecher in dem eine innere Messspindel (durch einen Elektromotor mit konstanter und einstellbarer Drehzahl angetrieben) rotiert. Die auftretende Reibung an dem Spindelmantel bewirkt ein Drehmoment, das über die Torsion der Antriebsachse bestimmt werden kann und aus dem sich die dynamische Viskosität errechnet. Dafür werden die translatorischen Größen aus dem NEWTONschen Reibungsgesetz: F R mit den entsprechenden Größen für die Drehbewegung der Messspindel A M 2fr (siehe Abb.): F R, A 2rh und ersetzt und man erhält für die Viskosität: r R r M R r 2f 2hr Die speziellen Daten der Messgeometrie werden zu Konstanten zusammengefasst und im Eichschein des Messsystems angegeben. Das Drehmoment M (oder dazu proportionale Größen wie z. B. die Schubspannung ) als Funktion der Drehzahl f (oder Schergefälle ) kann für eine Flüssigkeit mit dem Rotationsviskosimeter aufgenommenen werden und als sog. Fließkurve M M(f ) bzw. ( ) dargestellt werden. Je nach Kurvenverlauf wird das Fließverhalten klassifiziert in: reinviskos (newtonsch) strukturviskos plastisch thixotrop Viskosität ist temperaturabhängig aber unabhängig von Drehzahl (Schergefälle) Beispiel: Mineralöle Viskositätsabnahme bei steigendem Schergefälle Beispiel: Wandfarbe Fließverhalten erst für 0 0 = Fließgrenze Beispiel: Joghurt Viskosität hängt ab von Dauer der Scherbeanspruchung (Hysterese-Effekt) Beispiel: Ketchup Physiklabor (IFG) Versuch Seite 4 / 7

5 4. Messprogramm 4.1 Messung mit dem Höppler-Kugelfallviskosimeter: Messen Sie mit einer Stoppuhr die Laufzeit einer Stahlkugel bei 4 Temperaturen (ca. 22 C, 0 C, 40 C, 50 C)! Die Zeitmessung wird gestartet, wenn der untere Kugelrand die obere Markierung auf dem Fallrohr passiert und gestoppt, wenn er die untere Markierung passiert. Achten Sie darauf, dass Sie parallaxenfrei messen. Zu Beginn und am Ende jeder Zeitmessung wird die genaue Temperatur am Thermometer des Viskosimeters abgelesen. Bei Versuchsbeginn sollte sich bereits eine konstante Temperatur eingestellt haben. Messen Sie einmal die Fallzeit bei dieser Temperatur. Erhöhen Sie dann die Solltemperatur am Thermostaten (Wasserkühlung aus!). Um in der zu prüfenden Flüssigkeit schneller eine konstante Messtemperatur zu erhalten, sollte nach jeder neuen Temperatureinstellung am Thermostaten, die Kugel ständig in Bewegung gehalten werden und kontinuierlich die Fallzeit der Kugel so lange gemessen werden, bis sich im Rahmen der Messgenauigkeit x der gleiche Wert ergibt! Schätzen Sie die Unsicherheit t der Laufzeitmessung ab! 4.2 Messung mit dem Rotationsviskosimeter Unser Rotationsviskosimeter BROOKFIELD DV - III wird über einen PC gesteuert. Das Programm Rheocalc übernimmt dabei die Steuerung der Gerätefunktionen sowie die Speicherung und Weiterverarbeitung der Messdaten. Achtung! Mit dem Rotationsviskosimeter ist ausnahmslos nur unter Anleitung und Aufsicht der Laborassistenten zu arbeiten. Messen Sie mit dem Rotationsviskosimeter BROOKFIELD DV - III die Viskosität einer vorgegebenen Flüssigkeit bei verschiedenen Drehzahlen. Die Temperatur der Flüssigkeit bleibt konstant! Drucken Sie mit dem Programm Rheocalc folgende Kurven aus: Drehmoment als Funktion der Drehzahl M M(f ) Schubspannung als Funktion der Drehzahl (f ) Viskosität als Funktion der Drehzahl (f ) und des Schergefälles ( ) Physiklabor (IFG) Versuch Seite 5 / 7

6 5. Auswertung 5.1 Berechnen Sie aus der mittleren Fallzeit die Viskosität des Öls bei den verschiedenen Temperaturen! Beachten Sie dabei die Temperaturabhängigkeit von Kugel-/Öldichte und überprüfen Sie, ob diese Dichtekorrektur (unter Berücksichtigung der Messgenauigkeit der Zeitmessung) hier erforderlich ist! Vergleichen Sie die gemessene Temperaturabhängigkeit mit der Formel ( T ) A e. Stellen Sie dazu den natürlichen Logarithmus der Viskositätswerte ln( /Pas) über dem Reziproken der Temperatur T 1 in einem Diagramm dar. Bestimmen Sie aus dieser halblogarithmischen Darstellung die ausgleichende Gerade und daraus die Konstanten A und B sowie die Aktivierungsenergie E k B (in ev anzugeben)! Vergleichen Sie die Herstellerangabe der Viskosität mit Ihren Ergebnissen! Hinweis: Dazu müssen Sie mit Ihrer Parametrisierung die Viskosität bei der entsprechenden Temperatur bestimmen und aus der Herstellerangabe (kinematische Viskosität ) die dynamische Viskosität mit den korrekten Einheiten berechnen! Zeichnen Sie Ihre Messwerte für sowie die Parametrisierung in ein gemeinsames lineares Diagramm als Funktion der Temperatur (in C) ein! Bestimmen Sie aus diesem Diagramm graphisch (ohne Fehlerangabe) den Temperaturbereich, in dem die Viskosität des Öles zwischen Pas und 0.05 Pas liegt. Bestimmen Sie graphisch oder rechnerisch die Viskosität des Öles bei 5C und bei 95C! 5.2 Diskutieren Sie die Messergebnisse (zu 4.2) und geben Sie den Viskositätstyp der untersuchten Flüssigkeit an! Daten der verwendeten Kugel und des untersuchten Öls: Kugel 4 Gerät 1 Gerät 2 Kugelkonstante 6 Pa m 6 Pa m K 1, K Dichte K 20C 8,10 10 m Temperaturkoeffizient Kugeldichte K 0.9 m K Öl (Herstellerangaben): Industrie-Getriebeöl, ISO VG 460 Dichte 20C Öl m Temperaturkoeffizient Öldichte Öl 0.59 m K 2 mm Kinematische Viskosität 40C 460 s Physiklabor (IFG) Versuch Seite 6 / 7 B T

7 6. Kontrollfragen: 1) Wodurch unterscheiden sich reale und ideale Flüssigkeiten? 2) Was versteht man unter einer laminaren Strömung? ) Skizzieren Sie das Geschwindigkeitsprofil in einer laminaren Rohrströmung 4) Auf welchen physikalischen Vorgang ist die Erscheinung der Viskosität bei Flüssigkeiten zurückzuführen? 5) Wie ist die Viskosität definiert und welche Messverfahren gibt es dafür? 6) Wie lautet die SI-Einheit der dynamischen Viskosität? 7) Was versteht man unter kinematischer Viskosität und welche Einheit hat sie? 8) Was versteht man unter einer NEWTONscher Flüssigkeit? 9) Warum ist beim Höppler-Viskosimeter das Fallrohr um einen kleinen Winkel gegen die Vertikale geneigt, statt senkrecht zu stehen? 10) Wie ändert sich die Viskosität eines Öles bei steigender Temperatur: 11) steigt? bleibt gleich? nimmt ab? 12) Welchem mathematischen Gesetz folgt die Temperaturabhängigkeit der Viskosität einer Flüssigkeit? 1) Begründen Sie, warum sich die Kugel in einem Höppler-Kugelfallviskosimeter nach ausreichend langer Zeit mit konstanten Geschwindigkeit in der Flüssigkeit bewegt! Physiklabor (IFG) Versuch Seite 7 / 7

dx bewegt sich eine Flüssigkeit in Form einer laminaren d Strömung : Einzelne Schichten gleiten übereinander ohne

dx bewegt sich eine Flüssigkeit in Form einer laminaren d Strömung : Einzelne Schichten gleiten übereinander ohne Versuch : Viskosität 1. Aufgabenstellung Mit einem Höppler - Viskosimeter (DIN 53015) wird die dynamische Viskosität von Öl in Abhängigkeit von der Temperatur untersucht. Mit den Messwerten werden die

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I Name: Kugelfallviskosimeter Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von

Mehr

Labor zur Vorlesung Physik

Labor zur Vorlesung Physik Labor zur Vorlesung Physik 1. Zur Vorbereitung Die folgenden Begriffe sollten Sie kennen und erklären können: Viskosität, Innere Reibung von üssigkeiten, Stokeskraft, Auftrieb, laminare Strömung, Inkompressibilität

Mehr

Versuch 4 Messung der dynamischen Viskosität mit dem Rotationsviskosimeter (Grundlagen DIN 53018)

Versuch 4 Messung der dynamischen Viskosität mit dem Rotationsviskosimeter (Grundlagen DIN 53018) Versuch 4 Messung der dynamischen Viskosität mit dem Rotationsviskosimeter (Grundlagen DIN 53018) Versuch 4 Messung der dynamischen Viskosität mit dem Rotationsviskosimeter (Grundlagen DIN 53018) 4.1 Begriff

Mehr

Kugelfallviskosimeter

Kugelfallviskosimeter S20 Name: Kugelfallviskosimeter Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig (keine Gruppenlösung!)

Mehr

Versuch M11 - Viskosität von Flüssigkeiten. Gruppennummer: lfd. Nummer: Datum:

Versuch M11 - Viskosität von Flüssigkeiten. Gruppennummer: lfd. Nummer: Datum: Ernst-Moritz-Arndt Universität Greifswald Institut für Physik Versuch M11 - Viskosität von Flüssigkeiten Name: Mitarbeiter: Gruppennummer: lfd. Nummer: Datum: 1. Aufgabenstellung 1.1. Versuchsziel Bestimmen

Mehr

Innere Reibung von Flüssigkeiten

Innere Reibung von Flüssigkeiten Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: Bearbeitet: Versuch: L. Jahn RF M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Aktualisiert: am 29. 03. 2010 Innere Reibung von

Mehr

Viskositätsmessung mit dem Rotationsviskosimeter

Viskositätsmessung mit dem Rotationsviskosimeter Versuch: 1 Versuchsziel und Anwendung Viskositätsmessung mit dem Rotationsviskosimeter Die Aufgabe besteht darin, ein Schmieröl auf sein Viskositätsverhalten in Abhängigkeit von der Temperatur zu untersuchen.

Mehr

M 7 Innere Reibung von Flüssigkeiten

M 7 Innere Reibung von Flüssigkeiten M 7 Innere Reibung von Flüssigkeiten 1. Aufgabenstellung 1.1 Bestimmen Sie die dynamische Viskosität von Glyzerin bei Zimmertemperatur nach der Kugelfallmethode. 1.2 Überprüfen Sie, ob für die verwendeten

Mehr

Grundpraktikum M6 innere Reibung

Grundpraktikum M6 innere Reibung Grundpraktikum M6 innere Reibung Julien Kluge 1. Juni 2015 Student: Julien Kluge (564513) Partner: Emily Albert (564536) Betreuer: Pascal Rustige Raum: 215 Messplatz: 2 INHALTSVERZEICHNIS 1 ABSTRACT Inhaltsverzeichnis

Mehr

Carl-Engler-Schule Karlsruhe Physik-Labor (BS/BK/FS) 1 (5)

Carl-Engler-Schule Karlsruhe Physik-Labor (BS/BK/FS) 1 (5) Carl-Engler-Schule Karlsruhe Physik-Labor (BS/BK/FS) 1 (5) Laborversuch: Viskosität 1. Grundlagen Die Viskosität ist eine Materialkenngröße. Sie beschreibt die Zähigkeit von Flüssigkeiten bzw. von Gasen

Mehr

Laborpraktikum Prozeßmeßtechnik. Versuch Viskositätsmessung PM 2

Laborpraktikum Prozeßmeßtechnik. Versuch Viskositätsmessung PM 2 Otto-von-Guericke-Universität Magdeburg Fakultät für Elektrotechnik und Informationstechnik Institut für Mikro- und Sensorsysteme (IMOS) Laborpraktikum Prozeßmeßtechnik Versuch Viskositätsmessung PM 2

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum Viskosität von Flüssigkeiten Laborbericht Korrigierte Version 9.Juni 2002 Andreas Hettler Inhalt Kapitel I Begriffserklärungen 5 Viskosität 5 Stokes sches

Mehr

Freie Universität Berlin

Freie Universität Berlin 2.5.2014 Freie Universität Berlin - Fachbereich Physik Kugelfallviskosimeter Protokoll zum Versuch des physikalischen Grundpraktikums I Teilnehmer: Ludwig Schuster, ludwig.schuster@fu- berlin.de Florian

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften 1.5 Maßsysteme 1.6 Messfehler und

Mehr

Abb.1 Zur Veranschaulichung: Scherung eines Fluids zwischen zwei Platten

Abb.1 Zur Veranschaulichung: Scherung eines Fluids zwischen zwei Platten Viskosität Die innere Reibung von Fluiden wird durch ihre dynamische Viskosität η beschrieben. Die dynamische Viskosität η eines Fluids stellt dessen Widerstand gegen einen erzwungenen, irreversiblen Ortswechsel

Mehr

109 Kugelfallmethode nach Stokes

109 Kugelfallmethode nach Stokes 109 Kugelfallmethode nach Stokes 1. Aufgaben 1.1 Messen Sie die Fallzeit von Stahlkugeln mit unterschiedlichem Durchmesser in Rizinusöl! 1.2 Bestimmen Sie daraus die dynamische Viskosität des Öls, und

Mehr

Versuch M10 für Physiker Viskosität

Versuch M10 für Physiker Viskosität Versuch M10 für Physiker Viskosität I. Physikalisches Institut, Raum 103 Stand: 12. Oktober 2012 generelle Bemerkungen bitte Versuchspartner angeben bitte Versuchsbetreuer angeben bitte nur handschriftliche

Mehr

Versuch V1 - Viskosität, Flammpunkt, Dichte

Versuch V1 - Viskosität, Flammpunkt, Dichte Versuch V1 - Viskosität, Flammpunkt, Dichte 1.1 Bestimmung der Viskosität Grundlagen Die Viskosität eines Fluids ist eine Stoffeigenschaft, die durch den molekularen Impulsaustausch der einzelnen Fluidpartikel

Mehr

3.5.6 Geschwindigkeitsprofil (Hagen-Poiseuille) ******

3.5.6 Geschwindigkeitsprofil (Hagen-Poiseuille) ****** 3.5.6 ****** 1 Motivation Bei der Strömung einer viskosen Flüssigkeit durch ein Rohr ergibt sich ein parabolisches Geschwindigkeitsprofil. 2 Experiment Abbildung 1: Versuchsaufbau zum Der Versuchsaufbau

Mehr

3. Innere Reibung von Flüssigkeiten

3. Innere Reibung von Flüssigkeiten IR1 3. Innere Reibung von Flüssigkeiten 3.1 Einleitung Zwischen den Molekülen in Flüssigkeiten wirken anziehende Van der Waals Kräfte oder wie im Falle des Wassers Kräfte, die von sogenannten Wasserstoffbrückenbindungen

Mehr

Vergleich Auslaufbecher und Rotationsviskosimeter

Vergleich Auslaufbecher und Rotationsviskosimeter Vergleich Auslaufbecher und Rotationsviskosimeter Die Viskositätsmessung mit dem Auslaufbecher ist, man sollte es kaum glauben, auch in unserer Zeit der allgemeinen Automatisierung und ISO 9 Zertifizierungen

Mehr

Versuch 6. Zähigkeit (Viskosität) Abbildung 1. v τ=η (1) y

Versuch 6. Zähigkeit (Viskosität) Abbildung 1. v τ=η (1) y Versuch 6 Zähigkeit (Viskosität) Gesetz von Stokes Wenn zwei feste Körper aufeinander gleiten, so wird ihre Bewegung dadurch gehet, dass zwischen den Körpern ein Reibungswiderstand herrscht. in ähnliches

Mehr

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und Univ.-Prof. Dr.-Ing. Wolfram Frank 14.10.2005 Lehrstuhl für Fluiddynamik und Strömungstechnik Aufgabe Name:... Matr.-Nr.:... Vorname:... HS I / HS II / IP / WI (Punkte) Frage 1)... Frage 2)... Beurteilung:...

Mehr

Strömung. 1 Einleitung. 2 Physikalische Grundlagen. Versuchsziele:

Strömung. 1 Einleitung. 2 Physikalische Grundlagen. Versuchsziele: 1 Strömung Versuchsziele: Experimentelle Überprüfung des Hagen-Poiseuill schen Gesetzes Durchführung zweier Methoden der Viskositätsbestimmung von Flüssigkeiten Ermittlung der Temperaturabhängigkeit der

Mehr

GRUNDLAGEN DER SCHMIERSTOFFE

GRUNDLAGEN DER SCHMIERSTOFFE Grundl d Schmierstoffe.06.01.1 Praktische Einheiten/Umrechnungen 1 dyn s cm 2 = 1 Poise (P) = 100 cp 1 1 N m 2 = 1 Pascal (Pa) N s m 2 = 1 Pa s 1 cp = 1 mpa s Definition der Viskosität Grundl d Schmierstoffe.06.01.2

Mehr

Vergleichbarkeit von Viskositätsmessungen. Warum bewährte Messvorschriften nicht umgeschrieben werden müssen!

Vergleichbarkeit von Viskositätsmessungen. Warum bewährte Messvorschriften nicht umgeschrieben werden müssen! Vergleichbarkeit von Viskositätsmessungen. Warum bewährte Messvorschriften nicht umgeschrieben werden müssen! Lothar Gehm, Jutta Schelske-Gehm; prorheo GmbH In der täglichen Praxis ist die Messung der

Mehr

Hydrodynamik y II - Viskosität

Hydrodynamik y II - Viskosität Physik A VL9 (..0) Hydrodynamik y II - Viskosität Die Viskosität ität Das Gesetz on Hagen-Poiseuille Die Stokes sche Reibung Die Reynolds-Zahl Viskose Fluide Viskosität bisher: Kräfte zwischen dem strömenden

Mehr

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und Univ.-Prof. Dr.-Ing. Wolfram Frank 01.10.2002 Lehrstuhl für Fluiddynamik und Strömungstechnik Aufgabe Name:... Vorname:... (Punkte) 1)... Matr.-Nr.:... HS I / HS II / IP / WI 2)... 3)... Beurteilung:...

Mehr

Newtonsche Kalibrierflüssigkeiten der Viskosität

Newtonsche Kalibrierflüssigkeiten der Viskosität Arbeitsgruppe 3.32 Flüssigkeitseigenschaften Newtonsche Kalibrierflüssigkeiten der Viskosität sind Proben newtonscher Flüssigkeiten, die rückverfolgbar an das Nationale Normal der Einheit der Viskosität

Mehr

Rheologische Eigenschaften von Pektinen in Lösungen, Fruchtzubereitungen und Gelen:

Rheologische Eigenschaften von Pektinen in Lösungen, Fruchtzubereitungen und Gelen: Anwendungstechnische Information Rheologische Eigenschaften von Pektinen in Lösungen, Fruchtzubereitungen und Gelen: Praxisrelevante rheologische Messmethoden Teil 1: Viskosität Rheologische Eigenschaften

Mehr

Dynamische Viskosität von Gasen (Hagen-Poiseuille' sches Gesetz)

Dynamische Viskosität von Gasen (Hagen-Poiseuille' sches Gesetz) Versuch Nr. 58 Dynamische Viskosität von Gasen (Hagen-Poiseuille' sches Gesetz) Stichworte: Kinetische Gastheorie, ideales Gas, charakteristische Größen zur Beschreibung von Gasen (s.u.), Hagen-Poiseuille'sches

Mehr

VII Physikalische Größen von Fluiden

VII Physikalische Größen von Fluiden VII Physikalische Größen von Fluiden Inhaltsverzeichnis 1 Einleitung 1 2 Grundlagen 2 2.1 Beschreibung von Fluiden 2 2.2 Physikalische Größen 3 2.2.1 Dichte 3 2.2.2 Dynamische Viskosität 3 3 Versuchsteil

Mehr

Viskosität und Dichte von wässrigen n-propanollösungen

Viskosität und Dichte von wässrigen n-propanollösungen Viskosität und Dichte von wässrigen n-propanollösungen Zusammenfassung Die Viskositäten von n-propanollösungen wurden mit Hilfe eines Ubbelohde-Viskosimeters bei einer Temperatur von 30 C bestimmt. Dabei

Mehr

M21. Viskosität. ν = ρ

M21. Viskosität. ν = ρ M1 Viskosität In vielen Fällen wird bei Betrachtungen zur Mechanik vorausgesetzt, dass Reibungseffekte vernachlässigbar sind. In diesem Versuch sielt die Reibung in üssigkeiten die zentrale Rolle, es soll

Mehr

Die Viskositätsmessung ist in verschiedenen DIN- Normen geregelt. Dies sind z. B.

Die Viskositätsmessung ist in verschiedenen DIN- Normen geregelt. Dies sind z. B. Messfehler bei rheologischen Untersuchungen Lothar Gehm Jede Viskositätsmessung oder rheologische Untersuchung wird von Menschen vorbereitet oder ausgeführt und somit ist das Ergebnis nicht nur vom Messgerät,

Mehr

HAAKE Rheometer. Einführung in Rheologie und Rheometrie. Gebhard Schramm. Gebrüder HAAKE GmbH, Karlsruhe. von. tmmmm

HAAKE Rheometer. Einführung in Rheologie und Rheometrie. Gebhard Schramm. Gebrüder HAAKE GmbH, Karlsruhe. von. tmmmm tmmmm HAAKE Einführung in Rheologie und Rheometrie von Gebhard Schramm Gebrüder HAAKE GmbH, Karlsruhe Vorwort 1 1. Einführung in die Rheometrie 4 2. Definition der Grundgrößen der Rheologie 9 2.1 Grundlagen

Mehr

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 7

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 7 1 Ergänzungen zur Hydrodynamik Fluide = Flüssigkeiten oder Gase - ideale Fluide - reale Fluide mit "innerer Reibung", ausgedrückt durch die sog. Viskosität Strömungen von Flüssigkeiten, d.h. räumliche

Mehr

Inhaltsverzeichnis. 1 Einleitung 2. 2 Versuchsaufbau 2. 3 Brechungsindex Messverfahren Messergebnisse Interpretation...

Inhaltsverzeichnis. 1 Einleitung 2. 2 Versuchsaufbau 2. 3 Brechungsindex Messverfahren Messergebnisse Interpretation... Inhaltsverzeichnis 1 Einleitung 2 2 Versuchsaufbau 2 3 Brechungsindex 2 3.1 Messverfahren.................................. 2 3.2 Messergebnisse................................. 3 3.3 Interpretation..................................

Mehr

Grundpraktikum der Physik. Versuch 05. Viskosität von Flüssigkeiten. Durchführung am 09.11.2007. Gruppe D12 Betreuer: Anne Kröske

Grundpraktikum der Physik. Versuch 05. Viskosität von Flüssigkeiten. Durchführung am 09.11.2007. Gruppe D12 Betreuer: Anne Kröske Grundpraktikum der Physik Versuch 05 Viskosität von Flüssigkeiten Durchführung am 09.11.2007 Gruppe D12 Betreuer: Anne Kröske Nadine Kremer nadine.kremer@uni-ulm.de Rainer Pfeiffer rainer.pfeiffer@uni-ulm.de

Mehr

W2 Gasthermometer. 1. Grundlagen: 1.1 Gasthermometer und Temperaturmessung

W2 Gasthermometer. 1. Grundlagen: 1.1 Gasthermometer und Temperaturmessung W2 Gasthermometer Stoffgebiet: Versuchsziel: Literatur: Temperaturmessung, Gasthermometer, Gasgesetze Mit Hilfe eines Gasthermometers sind der Ausdehnungs- und Druckkoeffizient von Luft zu bestimmen. Beschäftigung

Mehr

Klausur Strömungsmechanik I

Klausur Strömungsmechanik I ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik I 08. 08. 2014 1. Aufgabe (12 Punkte) Eine Ölbarriere in der Form eines Zylinders mit dem Durchmesser D schwimmt im Meer. Sie taucht in dem

Mehr

Fluidmechanik. Thema Erfassung der Druckverluste in verschiedenen Rohrleitungselementen. -Laborübung- 3. Semester. Namen: Datum: Abgabe:

Fluidmechanik. Thema Erfassung der Druckverluste in verschiedenen Rohrleitungselementen. -Laborübung- 3. Semester. Namen: Datum: Abgabe: Strömungsanlage 1 Fachhochschule Trier Studiengang Lebensmitteltechnik Fluidmechanik -Laborübung-. Semester Thema Erfassung der Druckverluste in verschiedenen Rohrleitungselementen Namen: Datum: Abgabe:

Mehr

RHEOTEST Medingen. Rheometer RHEOTEST RN - Anwendung Schmierstoffe. Aufgabenstellung im Forschungs- und Entwicklungsbereich

RHEOTEST Medingen. Rheometer RHEOTEST RN - Anwendung Schmierstoffe. Aufgabenstellung im Forschungs- und Entwicklungsbereich RHEOTEST Medingen Rheometer RHEOTEST RN - Anwendung Schmierstoffe Aufgabenstellung im Forschungs- und Entwicklungsbereich Die Fließeigenschaften bestimmen allein oder beeinflussen wesentlich die beiden

Mehr

Aufgaben zur Einführung in die Messtechnik Größen und Einheiten

Aufgaben zur Einführung in die Messtechnik Größen und Einheiten F 1 Aufgaben zur Einführung in die Messtechnik Größen und Einheiten Wolfgang Kessel Braunschweig.PPT/F1/2004-11-02/Ke AUFGABE01 F 2 AUFGABE01: Potenzprodukte physikalischer Größen. Stellen Sie die nachfolgenden

Mehr

Elastizität und Torsion

Elastizität und Torsion INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 Elastizität und Torsion 1 Einleitung Ein Flachstab, der an den

Mehr

Physikalisches Grundpraktikum

Physikalisches Grundpraktikum Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Praktikum für Mediziner M1 Viskose Strömung durch Kapillaren Name: Versuchsgruppe: Datum: Mitarbeiter der Versuchsgruppe:

Mehr

Dynamik. 4.Vorlesung EPI

Dynamik. 4.Vorlesung EPI 4.Vorlesung EPI I) Mechanik 1. Kinematik 2.Dynamik a) Newtons Axiome (Begriffe Masse und Kraft) b) Fundamentale Kräfte c) Schwerkraft (Gravitation) d) Federkraft e) Reibungskraft 1 Das 2. Newtonsche Prinzip

Mehr

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X Praktikum Physik Protokoll zum Versuch 1: Viskosität Durchgeführt am 26.01.2012 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

Physik für Mediziner Flüssigkeiten II

Physik für Mediziner  Flüssigkeiten II Modul Physikalische und physiologische Grundlagen der Medizin I Physik für Mediziner http://www.mh-hannover.de/physik.html Flüssigkeiten II Andre Zeug Institut für Neurophysiologie zeug.andre@mh-hannover.de

Mehr

Versuch 41: Viskosität durchgeführt am

Versuch 41: Viskosität durchgeführt am Physikalisch-chemisches Grundpraktikum Gruppe 6 Philipp von den Hoff Andreas J. Wagner Versuch 4: Viskosität durchgeführt am 26.05.2004 Zielsetzung: Ziel des Versuches ist es, die Viskosität von n-butan-2-ol

Mehr

Versuch Nr.53. Messung kalorischer Größen (Spezifische Wärmen)

Versuch Nr.53. Messung kalorischer Größen (Spezifische Wärmen) Versuch Nr.53 Messung kalorischer Größen (Spezifische Wärmen) Stichworte: Wärme, innere Energie und Enthalpie als Zustandsfunktion, Wärmekapazität, spezifische Wärme, Molwärme, Regel von Dulong-Petit,

Mehr

Mechanische Verfahren

Mechanische Verfahren Fachhochschule Trier, Fachbereich BLV Studiengang Lebensmitteltechnik Mechanische Verfahren - Laborübung - 5. Semester Name:...... Datum:... Versuch: Rheologie Scherviskosität Einsatz des Kugelfall-Viskosimeters

Mehr

Physikalische Chemie

Physikalische Chemie Physikalische Chemie - - Viskosität Version: Juli 2016 Titelbild: Couette-Viskometer, Versuchsaufbau und Querschnitt Zusammenfassung In diesem Versuch benutzen Sie ein Couette-Viskometer, um abhängig von

Mehr

WS 2001/2002 Studienbegleitende Prüfung (DPO 1983)/Studienleistung (DPO 1995)

WS 2001/2002 Studienbegleitende Prüfung (DPO 1983)/Studienleistung (DPO 1995) Universität - Gesamthochschule Kassel Fachgebiet Geohydraulik und Ingenieurhydrologie Prof. Dr. rer. nat. Manfred Koch GhK WS 2001/2002 Studienbegleitende Prüfung (DPO 1983)/Studienleistung (DPO 1995)

Mehr

Sinkt ein Körper in einer zähen Flüssigkeit mit einer konstanten, gleichförmigen Geschwindigkeit, so (A) wirkt auf den Körper keine Gewichtskraft (B) ist der auf den Körper wirkende Schweredruck gleich

Mehr

Phase Inhalt Sozialform Medien Standards. Experimentelle Überprüfung der Hypothesen

Phase Inhalt Sozialform Medien Standards. Experimentelle Überprüfung der Hypothesen / Planungshinweise.1 Stundenverlaufsplan Phase Inhalt Sozialform Medien Standards Hinführung Hypothesenbildung Experiment Dokumentation, Auswertung und Interpretation Weiterführende Aufgabe Abschluss am

Mehr

Versuch 212 Zähigkeit von Flüssigkeiten

Versuch 212 Zähigkeit von Flüssigkeiten Versuch 212 Zähigkeit von Flüssigkeiten I Messaufbau Messzylinder aus Hartglas mit Messskaler, gefüllt mit Polyethylenglykol. Am unteren Teil des Zylinders befindet sich eine Präzisionskapillare (Länge:

Mehr

Die Förderhöhe einer Pumpe errechnet sich wie folgt: Sie setzt sich also zusammen aus: dem zu überwindenden Höhenunterschied

Die Förderhöhe einer Pumpe errechnet sich wie folgt: Sie setzt sich also zusammen aus: dem zu überwindenden Höhenunterschied Zum Verständnis der folgenden Kapitel werden wir zuerst die in dieser Broschüre verwendeten Fachbegriffe der definieren und erläutern. Im Stichwortverzeichnis finden Sie diese Begriffe alphabetisch geordnet

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #7 28/10/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Mechanik Teil 3 - Versuche M1 Dichte und Hydrodynamik: Bestimmung der Dichte eines zylindrischen

Mehr

Prüfungsfrage Strömung der Flüssigkeiten. Fluideigenschaften. Strömungslehre. HYDROSTATIK keine Bewegung

Prüfungsfrage Strömung der Flüssigkeiten. Fluideigenschaften. Strömungslehre. HYDROSTATIK keine Bewegung 016.11.18. Prüfungsfrage Strömung der Flüssigkeiten Typen der Flüssigkeitsströmung. Die Reynolds-Zahl. Die Viskosität. Die Gesetzmäßigkeiten der Flüssigkeitsströmung: die Gleichung der Kontinuität, das

Mehr

KLAUSUR STRÖMUNGSLEHRE. Blockprüfung für. Maschinenbau. und. Wirtschaftsingenieurwesen. (3 Stunden)

KLAUSUR STRÖMUNGSLEHRE. Blockprüfung für. Maschinenbau. und. Wirtschaftsingenieurwesen. (3 Stunden) Univ.-Prof. Dr.-Ing. Wolfram Frank 09.10.2003 Lehrstuhl für Fluiddynamik und Strömungstechnik Name:... Vorname:... (Punkte) Matr.-Nr.:... HS I / HS II / IP / WI Aufg. 1)... Aufg. 2)... Beurteilung:...

Mehr

Tutorium Hydromechanik I und II

Tutorium Hydromechanik I und II Tutorium Hydromechanik I und II WS 2017/2018 12.03.2018 Prof. Dr. rer. nat. M. Koch Vorgelet von: Ehsan Farmani 1 Aufgabe 46 Wie groß ist die relative Änderung (%) vom Druck, wenn a) wir die absolute Temperatur

Mehr

Physikprotokoll: Fehlerrechnung. Martin Henning / Torben Zech / Abdurrahman Namdar / Juni 2006

Physikprotokoll: Fehlerrechnung. Martin Henning / Torben Zech / Abdurrahman Namdar / Juni 2006 Physikprotokoll: Fehlerrechnung Martin Henning / 736150 Torben Zech / 7388450 Abdurrahman Namdar / 739068 1. Juni 2006 1 Inhaltsverzeichnis 1 Einleitung 3 2 Vorbereitungen 3 3 Messungen und Auswertungen

Mehr

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre ρ L0

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre ρ L0 ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre 03. 08. 007 1. Aufgabe (10 Punkte) Ein mit elium gefüllter Ballon (Volumen V 0 für z = 0) steigt in einer Atmosphäre mit der Gaskonstante R

Mehr

Naturwissenschaftliches Praktikum. Rotation. Versuch 1.1

Naturwissenschaftliches Praktikum. Rotation. Versuch 1.1 Naturwissenschaftliches Praktikum Rotation Versuch 1.1 Inhaltsverzeichnis 1 Versuchsziel 3 2 Grundlagen 3 2.1 Messprinzip............................. 3 2.2 Energiesatz............................. 3 2.3

Mehr

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund Fadenpendel M1) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

Praktikum Verfahrenstechnik. Ermittlung der Viskositäten von Motorölen

Praktikum Verfahrenstechnik. Ermittlung der Viskositäten von Motorölen Fakultät für Chemieingenieurwesen und Verfahrenstechnik Praktikum Verfahrenstechnik Versuch: Ermittlung der Viskositäten von Motorölen - Kugelfallviskosimetrie - Bernhard Hochstein Bernhard.Hochstein@kit.edu

Mehr

Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung)

Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung) Versuch Nr. 57 Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung) Stichworte: Dampf, Dampfdruck von Flüssigkeiten, dynamisches Gleichgewicht, gesättigter Dampf, Verdampfungsenthalpie, Dampfdruckkurve,

Mehr

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund Fadenpendel M) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

Reibung zwischen Festkörpern und in Flüssigkeiten

Reibung zwischen Festkörpern und in Flüssigkeiten Versuch 2 Reibung zwischen Festkörpern und in Flüssigkeiten Versuchsziel: Zunächst soll das in der Praxis wichtige Phänomen der Reibung zwischen Festkörpern untersucht werden. Einerseits ist sie Voraussetzung

Mehr

Physik 1 für Chemiker und Biologen 9. Vorlesung

Physik 1 für Chemiker und Biologen 9. Vorlesung Physik 1 für Chemiker und Biologen 9. Vorlesung 19.12.2016 "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics,

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 8: Hydrodynamik, Grenzflächen Dr. Daniel Bick 01. Dezember 2017 Daniel Bick Physik für Biologen und Zahnmediziner 01. Dezember 2017 1 / 33 Übersicht 1 Mechanik

Mehr

Phasengleichgewicht. 1. Experimentelle Bestimmung des Dampfdrucks von Methanol als Funktion der Temperatur. A fl. A g

Phasengleichgewicht. 1. Experimentelle Bestimmung des Dampfdrucks von Methanol als Funktion der Temperatur. A fl. A g Physikalisch-Chemische Praktika Phasengleichgewicht Versuch T-2 Aufgaben 1. Experimentelle Bestimmung des Dampfdrucks von Methanol als Funktion der Temperatur. 2. Ermittlung der Phasenumwandlungsenthalpie

Mehr

Versuch 4 - Trägheitsmoment und Drehimpuls

Versuch 4 - Trägheitsmoment und Drehimpuls UNIVERSITÄT REGENSBURG Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum A1 Versuch 4 - Trägheitsmoment und Drehimpuls 23. überarbeitete Auflage 2009 Dr. Stephan Giglberger Prof.

Mehr

M 7 Innere Reibung von Flüssigkeiten

M 7 Innere Reibung von Flüssigkeiten M 7 Innere Reibung von Flüssigkeiten 1. Aufgabenstellung 1.1 Bestimmen Sie die dynamische Viskosität von (wasserfreiem) Glyzerin bei Zimmertemperatur nach der Kugelfallmethode. 1. Überprüfen Sie, ob für

Mehr

Auf vielfachen Wunsch Ihrerseits gibt es bis auf weiteres die Vorlesungen und Übungen und Lösung der Testklausur im Internet:

Auf vielfachen Wunsch Ihrerseits gibt es bis auf weiteres die Vorlesungen und Übungen und Lösung der Testklausur im Internet: Auf vielfachen Wunsch Ihrerseits gibt es bis auf weiteres die Vorlesungen und Übungen und Lösung der Testklausur im Internet: http://www.physik.uni-giessen.de/dueren/ User: duerenvorlesung Password: ******

Mehr

Physik 1 für Chemiker und Biologen 9. Vorlesung

Physik 1 für Chemiker und Biologen 9. Vorlesung "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics, and the other is the turbulent motion of fluids. And about

Mehr

Protokoll zum Physikalischen Praktikum Versuch 7 - Elementarladung nach Millikan

Protokoll zum Physikalischen Praktikum Versuch 7 - Elementarladung nach Millikan Protokoll zum Physikalischen Praktikum Versuch 7 - Elementarladung nach Millikan Experimentatoren: Thomas Kunze Sebastian Knitter Betreuer: Dr. v. Oeynhausen Rostock, den 25.04.2005 Inhaltsverzeichnis

Mehr

5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 2009

5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 2009 5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 009 Aufgabe 5.1: Trägheitskräfte Auf eine in einem Aufzug stehende Person (Masse 70 kg) wirken

Mehr

Aufgabensammlung zum Üben Blatt 1

Aufgabensammlung zum Üben Blatt 1 Aufgabensammlung zum Üben Blatt 1 Seite 1 Lineare Funktionen ohne Parameter: 1. Die Gerade g ist durch die Punkte A ( 3 4 ) und B( 2 1 ) festgelegt, die Gerade h durch die Punkte C ( 5 3 ) und D ( -2-2

Mehr

Skript zum Versuch A46. Innere Reibung von Gasen: Gasviskosität. Dez Herausgeber: Institut für Physikalische Chemie

Skript zum Versuch A46. Innere Reibung von Gasen: Gasviskosität. Dez Herausgeber: Institut für Physikalische Chemie Physikalische-Chemisches Praktikum für Anfänger Skript zum Versuch A46 Innere Reibung von Gasen: Gasviskosität Dez. 2018 Herausgeber: Institut für Physikalische Chemie 1 Aufgabe Man messe die Viskosität

Mehr

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum Fachrichtung Physik Physikalisches Grundpraktikum Versuch: RO Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010 Rotation Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Allgemeine Grundlagen 2 2.1

Mehr

2.0 Dynamik Kraft & Bewegung

2.0 Dynamik Kraft & Bewegung .0 Dynamik Kraft & Bewegung Kraft Alltag: Muskelkater Formänderung / statische Wirkung (Gebäudestabilität) Physik Beschleunigung / dynamische Wirkung (Impulsänderung) Masse Schwere Masse: Eigenschaft eines

Mehr

Wie schwer ist eine Masse? S

Wie schwer ist eine Masse? S 1.1.2.1 Wie schwer ist eine Masse? S Eine Masse ist nicht nur träge, sondern auch schwer. Das soll bedeuten, dass nicht nur eine Kraft nötig ist, um eine Masse zu beschleunigen, sondern dass jede Masse

Mehr

I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1

I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1 I. Mechanik I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen Physik für Mediziner Stromdichte Stromstärke = durch einen Querschnitt (senkrecht zur Flussrichtung) fließende Menge pro Zeit ( Menge

Mehr

Trägheitsmoment (TRÄ)

Trägheitsmoment (TRÄ) Physikalisches Praktikum Versuch: TRÄ 8.1.000 Trägheitsmoment (TRÄ) Manuel Staebel 3663 / Michael Wack 34088 1 Versuchsbeschreibung Auf Drehtellern, die mit Drillfedern ausgestattet sind, werden die zu

Mehr

= 4 = x + 3. y(x) = x

= 4 = x + 3. y(x) = x Ü Aufgabenblatt Inhalt Brüche. Gleichungen. Summen. Potenzen. Logarithmen. Ebener Winkel (Definition und Einheiten). Trigonometrische Funktionen. Basisgrößen und Basiseinheiten des SI. Bequemes Rechnen

Mehr

LK Lorentzkraft. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2

LK Lorentzkraft. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2 LK Lorentzkraft Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Magnetfeld dünner Leiter und Spulen......... 2 2.2 Lorentzkraft........................

Mehr

Versuchsauswertung: P1-26,28: Aeromechanik

Versuchsauswertung: P1-26,28: Aeromechanik Praktikum Klassische Physik I Versuchsauswertung: P1-26,28: Aeromechanik Christian Buntin Jingfan Ye Gruppe Mo-11 Karlsruhe, 18. Januar 21 christian.buntin@student.kit.edu JingfanYe@web.de Inhaltsverzeichnis

Mehr

Ideale Gase. Abb.1: Versuchsanordnung von Torricelli

Ideale Gase. Abb.1: Versuchsanordnung von Torricelli Ideale Gase 1 Empirische Gasgesetze, Einblick in die Geschichte der Naturwissenschaften. Wie hängt das Volumen eines Gases von Druck, Temperatur und Stoffmenge ab? Definition Volumen V: Das Volumen V ist

Mehr

Spezifischer elektrischer Widerstand und TK R -Wert von Leiter- und Widerstandswerkstoffen

Spezifischer elektrischer Widerstand und TK R -Wert von Leiter- und Widerstandswerkstoffen Fachbereich 1 Laborpraktikum Physikalische Messtechnik/ Werkstofftechnik Spezifischer elektrischer Widerstand und TK R -Wert von Leiter- und Widerstandswerkstoffen Bearbeitet von Herrn M. Sc. Christof

Mehr

Dynamik. 4.Vorlesung EP

Dynamik. 4.Vorlesung EP 4.Vorlesung EP I) Mechanik 1. Kinematik 2.Dynamik Fortsetzung a) Newtons Axiome (Begriffe Masse und Kraft) b) Fundamentale Kräfte c) Schwerkraft (Gravitation) d) Federkraft e) Reibungskraft Versuche: 1.

Mehr