I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1

Größe: px
Ab Seite anzeigen:

Download "I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1"

Transkript

1 I. Mechanik I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen Physik für Mediziner

2 Stromdichte Stromstärke = durch einen Querschnitt (senkrecht zur Flussrichtung) fließende Menge pro Zeit ( Menge = Energie, Teilchenzahl, Ladung, etc.) hier: Masse I = Δm Δ t Einheit [i] = kg s - (eigentlich Vektor) Stromdichte = Stromstärke pro Fläche i Δm j = = = ρ Δ A Δ t Δ A Δ t Δ V Δ A Δ s Δ t Δ A Δ s = ρ = ρ = ρ v Δ t Δ A j = ρ v (eigentlich Vektor) Einheit [j] = kg m - s - Physik für Mediziner

3 Kontinuitätsgleichung in fluiden Medien (Flüssigkeiten und Gasen) gilt die Kontinuitätsgleichung (auch Massenerhaltzungssatz): Materie geht nicht verloren. Pro Zeiteinheit fließt durch Fläche die gleiche Masse hinein wir durch Fläche 3 hinaus; d.h. die Stromstärke an den Orten,,3 ist überall gleich groß ρ Kontinuitätsgleichung: I = = I I3 A v = ρ A v = ρ3 A3 v3 ρ A v = const Für Flüssigkeiten (inkompressibel: ρ = const) gilt: A v = const Physik für Mediziner 3

4 Fahrbahnverengung auf Autobahn v v Um Massen-(Fahrzeug) durchsatz zu erhalten, müsste man Geschwindigkeit an Baustelle erhöhen!!! A v = A v Physik für Mediziner 4

5 Blutkreislauf Aufteilung des Blutstroms aus der Aorta (A = 4 cm ) auf sehr viele Kapillaren mit einer großen Gesamtfläche (A = 4800 cm ) mittlere Strömungsgeschwindigkeit in der Aorta: cm/s; aus A v =const mittlere Strömungsgeschwindigkeit in den Kapillaren: 0.08 cm/s Volumenstrom durch Aorta: A v = 4 cm cm/s = 84 cm 3 /s 84cm cm = 60 = l/ min 60s min in einer Minute wird das gesamte Blutvolumen des Körpers umgewälzt Physik für Mediziner 5 3 3

6 Bernoulli-Gleichung Strömung durch verengtes Rohr Energieerhaltung: Differenz der kinetischen Energien der Flüssigkeitsmenge m beim Ein- und Austritt aus Rohr: ΔE kin = m v m v Zur Bewegung der Flüssigkeitsmenge m muss Arbeit geleistet werden: Arbeit = Kraft * Weg = Druck * Fläche * Weg = Druck * Volumen m Nettoarbeit: Δ W = (p p) V = ( p p) ρ Physik für Mediziner 6

7 Bernoulli-Gleichung Energieerhaltung: ΔE kin v = v m v ΔE kin = Δ W m v ) ρ = (p p * ρ ρ v + p = ρ v + p m = Δ W = (p p) ρ Bernoullische Gleichung ρ v + p = const = p ges Ideale Flüssigkeit Reale Flüssigkeit (mit Reibung) v groß p klein Venturi Rohre Physik für Mediziner 7

8 Bernoulli-Gleichung Bei zusätzlicher Berücksichtigung des Schweredrucks: ρ v + ρ g h + p = p ges = p 0 allgemeine Form der Bernoulli Gleichung p 0 p 0 auf Wasseroberfläche und an Loch wirkt jeweils der Luftdruck p 0 Daniel Bernoulli (700-78) im Innern der Flüsigkeit in Höhe h unterhalb der Wasseroberfläche: pges = p0 + ρ g h ρ g außen: pges = p0 + ρ v v = = ρ v g Je höher Wassersäule, desto größer die Austrittsgeschwindigkeit Physik für Mediziner 8 h h

9 Wasserstrahlpumpe Anwendung: Wasserstrahlpumpe (Prinzip des Zerstäubers) v groß p klein p 0 p = p 0 ρ v (Gravitation vernachlässigt) Luftdruck p 0 drückt Wasser aus Gefäß, da Druck p im Rohr klein wegen großer Strömungsgeschwindigkeit v Wasserstrahlpumpe Physik für Mediziner 9

10 Anwendung der Bernoulli Gleichung bei Gasen p = p 0 ρ v p<p 0 hohe Stromliniendichte deutet hohe Strömungsgeschwindigkeit an Aerodynamisches Paradoxon p<p 0 zwischen den Platten Tennisball in Luftstrom Physik für Mediziner 0

11 Anwendung der Bernoulli Gleichung bei Gasen Abdecken von Dächern im Sturm: p < p 0 p 0 Dynamischer Auftrieb von Flugzeugen: v r v oben > v unten FAuftrieb = ρ A Druck oben: Druck unten: punten = p0 ρ v auf Oberseite des Flügels Zusammendrängen der Stromlinien p oben < p unten ( ) v v oben unten = Flaps ausfahren!! oben unten Physik für Mediziner p oben = p 0 ρ v Bumerang

12 Reale Flüssigkeiten: Reibung Eine Platte mit der Fläche A wird mit der Geschwindigkeit v aus einer Flüssigkeit gezogen F R = η A dv dx η: Viskosität Einheit: [η] = kg m - s - = Pa s η Blut Pa s Aufgrund der Reibung werden benachbarte Flüssigkeitsschichten mitgerissen; aber es existiert ein Geschwindigkeitsgefälle : d v mit zunehmendem Abstand x von der Wand nimmt die Geschwindigkeit der Schichten ab. Physik für Mediziner d x die Reibungskraft ist parallel zur Plattenverscheibung gerichtet für ideale Flüssigkeiten (keine Reibung) ist η = 0 und datürlich auch dv/dx = 0

13 Strömung im Rohr mit Reibung Reibung bewirkt ein parabolisches Strömungsprofil in einem Rohr parabolisches Strömungsprofil Reibung bewirkt einen Druckabfall entlang der Strömungsrichtung Strömungswiderstand R s Stromstärk e = Druckdifferenz ; Strömungswiders tand Physik für Mediziner 3 i = Δp in reibungsfreien idealen Flüssigkeiten ist R s =0 und Δp=0 R s

14 Gesetz von Hagen - Poiseuille Strömungswiderstand von Rohren R i = s 8 = π Δp R s η L r π = r Δp η L Hagen- Poiseuille Stromstärke ändert sich mit der 4.Potenz des Radius!!! Flüssigkeit mit Viskosität η d.h. bei Verringerung des Radius einer Arterie/ Vene durch Verkalkung um 0% nimmt der Blutdurchfluss ab auf (0,8) 4 = 0,4 also um einen Faktor,4. Achtung: entsprechende Erhöhung des Blutdurchflusses bei Ballonerweiterung von Arterien!! Physik für Mediziner 4

15 Laminare und turbulente Strömung laminare Strömung: keine Durchmischung der Stromfäden laminare Strömung: Stromfäden bei Erhöhung des Druckunterschieds tritt Wirbelbildung auf: turbulente Strömung: laminare turbulente Strömung Die Reynoldsche Zahl liefert ein Kriterium für das Strömungsverhalten: ρ v r Geometrie Re = Re < 000: laminar η Re > 000: turbulent Materialparameter Blut in Aorta: Re 500 Strömung laminar Physik für Mediziner 5

16 Raubvogel im Flug: laminare Strömung zur Landung: turbulente Strömung Physik für Mediziner 6

17 Blutdruckmessung Blutdruckmessung an Armarterie (nach Riva-Rocci) Systole: Zusammenziehen der Herzkammern und Ausstoß arteriellen Bluts: Herzschlag Diastole: Erschlaffen der Vorhöfe und Auffüllen mit venösem Blut; Entspannung zwischen den Herzschlägen. durch Manschettendruck wird Arterie abgedrückt p > p sys. Manschettendruck absenken: Blut beginnt turbulent zu strömen p = p sys Stoßgeräusche durch Herzschlag 3. Manschettendruck weiter absenken: gleichmäßige Fließgeräusche: p = p dia typische Werte p sys /p dia = 0 / 80 mm Hg physikalische Einheiten: p sys /p dia = 6,0/ 0,7 kpa atm = 0,3 kpa = 760 mm Hg Physik für Mediziner 7

18 Blutdruckmessung Schweredruck ρ g h berücksichtigen! Druckvariation durch Schwerkraft: Gehirn: 8,8 kpa Fuß: 6,5 kpa ρ g h = =, kg m 3 m 9,8 s,75m = 7,7kPa wichtig!! Bei Blutdruckmessung Manschette auf Höhe des Herzens, damit keine Fehler durch Schweredruckunterschiede ρ g h auftreten Physik für Mediziner 8

19 Zusammenfassung Strömungen von Flüssigkeiten und Gasen ideale Flüssigkeiten (keine Reibung) - Kontinuitätsgleichung: konstanter Massendurchsatz ρ A v = const - Bernoulli Gleichung: ρ v + ρ g h + p = p0 = const Summe aus dynamischem und statischem Druck ist konstant reale Flüssigkeiten - Reibung bei Flüssigkeitsströmungen: Viskosität η - Strömungsverhalten (laminar oder turbulent ) bestimmt durch Reynoldsche Zahl Physik für Mediziner 9

3.4. Oberflächenspannung und Kapillarität

3.4. Oberflächenspannung und Kapillarität 3.4. Oberflächenspannung und Kapillarität Aus dem Experiment: Flüssigkeitsfaden, Moleküle der Flüssigkeit zeigen Zusammenhalt. Eigenschaften kondensierter Materie: Zwischen den Molekülen herrschen starke

Mehr

σ ½ 7 10-8 cm = 7 10-10 m σ ½ 1 nm

σ ½ 7 10-8 cm = 7 10-10 m σ ½ 1 nm Zahlenbeispiele mittlere freie Weglänge: Λ = 1 / (σ n B ) mittlere Zeit zwischen Stößen τ = Λ / < v > Gas: Stickstoff Druck: 1 bar = 10 5 Pa Dichte n = 3 10 19 cm -3 σ = 45 10-16 cm 2 σ ½ 7 10-8 cm = 7

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik Einführung:. Was ist Physik?. Experiment - Modell - Theorie.3 Geschichte der Physik.4 Physik und andere Wissenschaften.5 Maßsysteme.6 Messfehler und Messgenauigkeit

Mehr

Physik 1 für Chemiker und Biologen 9. Vorlesung

Physik 1 für Chemiker und Biologen 9. Vorlesung Physik 1 für Chemiker und Biologen 9. Vorlesung 19.12.2016 "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics,

Mehr

Physik 1 für Chemiker und Biologen 9. Vorlesung

Physik 1 für Chemiker und Biologen 9. Vorlesung Physik 1 für Chemiker und Biologen 9. Vorlesung 19.12.2016 "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics,

Mehr

Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14)

Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14) Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14) Prof. W. Meyer Übungsgruppenleiter: A. Berlin & J. Herick (NB 2/28) Ergänzung J Hydrodynamik In der Hydrodynamik beschreibt man die

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 8: Hydrodynamik, Grenzflächen Dr. Daniel Bick 01. Dezember 2017 Daniel Bick Physik für Biologen und Zahnmediziner 01. Dezember 2017 1 / 33 Übersicht 1 Mechanik

Mehr

Physik 1 für Chemiker und Biologen 9. Vorlesung

Physik 1 für Chemiker und Biologen 9. Vorlesung "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics, and the other is the turbulent motion of fluids. And about

Mehr

Physik 1 für Chemiker und Biologen 9. Vorlesung

Physik 1 für Chemiker und Biologen 9. Vorlesung "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics, and the other is the turbulent motion of fluids. And about

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 8: Hydrodynamik, Grenzflächen Dr. Daniel Bick 01. Dezember 2017 Daniel Bick Physik für Biologen und Zahnmediziner 01. Dezember 2017 1 / 33 Übersicht 1 Mechanik

Mehr

Physikalisches Grundpraktikum

Physikalisches Grundpraktikum Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Praktikum für Mediziner M1 Viskose Strömung durch Kapillaren Name: Versuchsgruppe: Datum: Mitarbeiter der Versuchsgruppe:

Mehr

5. Hydro- und Aerodynamik

5. Hydro- und Aerodynamik Hydro- und Aerodynamik: 5. Hydro- und Aerodynamik (Strömung von Fluiden, also flüssigen und gasförmigen Substanzen) blaue Linien Bahnen von Partikeln der Flüssigkeit Dichte der Linien ist ein Maß für die

Mehr

Physik 1 für Chemiker und Biologen 9. Vorlesung

Physik 1 für Chemiker und Biologen 9. Vorlesung "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics, and the other is the turbulent motion of fluids. And about

Mehr

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 7

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 7 1 Ergänzungen zur Hydrodynamik Fluide = Flüssigkeiten oder Gase - ideale Fluide - reale Fluide mit "innerer Reibung", ausgedrückt durch die sog. Viskosität Strömungen von Flüssigkeiten, d.h. räumliche

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften 1.5 Maßsysteme 1.6 Messfehler und

Mehr

Physik für Mediziner Flüssigkeiten II

Physik für Mediziner  Flüssigkeiten II Modul Physikalische und physiologische Grundlagen der Medizin I Physik für Mediziner http://www.mh-hannover.de/physik.html Flüssigkeiten II Andre Zeug Institut für Neurophysiologie zeug.andre@mh-hannover.de

Mehr

Vorlesung Physik für Pharmazeuten PPh Hydrostatik Grenzflächenspannung Hydrodynamik

Vorlesung Physik für Pharmazeuten PPh Hydrostatik Grenzflächenspannung Hydrodynamik Vorlesung Physik für Pharmazeuten PPh - 05 Hydrostatik Grenzflächenspannung Hydrodynamik 21.05.2007 Ruhende lüssigkeiten (Hydrostatik) Der hydrostatische Druck : P = A A [P]=N/m 2 = Pa(scal) 1 bar=10 5

Mehr

Die Brücke ins Studium. Vorkurs Physik. Dr. Oliver Sternal Dr. Nils-Ole Walliser September 2016

Die Brücke ins Studium. Vorkurs Physik. Dr. Oliver Sternal Dr. Nils-Ole Walliser September 2016 Die Brücke ins Studium Vorkurs Physik Dr. Oliver Sternal Dr. Nils-Ole Walliser 19.-23. September 2016 2. Fluidmechanik 2. Fluidmechanik 2.1 Fluidstatik 2. Fluidmechanik 2.1 Fluidstatik 2.1.1 Druck in ruhenden

Mehr

Sinkt ein Körper in einer zähen Flüssigkeit mit einer konstanten, gleichförmigen Geschwindigkeit, so (A) wirkt auf den Körper keine Gewichtskraft (B) ist der auf den Körper wirkende Schweredruck gleich

Mehr

3.4. Oberflächenspannung und Kapillarität

3.4. Oberflächenspannung und Kapillarität 3.4. Oberflächenspannung und Kapillarität Aus dem Experiment: Flüssigkeitsfaden, Moleküle der Flüssigkeit zeigen Zusammenhalt. Eigenschaften kondensierter Materie: Zwischen den Molekülen herrschen starke

Mehr

Zusammenfassung der hämodynamischen Modellierung Typische medizinische Gegebenheiten und auftretende Probleme bei der Modellierung

Zusammenfassung der hämodynamischen Modellierung Typische medizinische Gegebenheiten und auftretende Probleme bei der Modellierung Zusammenfassung der hämodynamischen Modellierung Typische medizinische Gegebenheiten und auftretende Probleme bei der Modellierung 1. Blut (Bettina Wiebe) 2. Gefäße und Kreislaufsystem (Stella Preußler)

Mehr

Strömungen. Kapitel 10

Strömungen. Kapitel 10 Kapitel 10 Strömungen In Kapitel 9 behandelten wir die statistische Bewegung einzelner Moleküle in einem Gas, aber noch keine makroskopische Bewegung des Mediums. Der Mittelwert der Impulse aller Teilchen

Mehr

Physik 1 für Chemiker und Biologen 10. Vorlesung

Physik 1 für Chemiker und Biologen 10. Vorlesung Physik 1 für Chemiker und Biologen 10. Vorlesung 15.01.2018 The Universal Label https://xkcd.com/1123/ Heute: - Wiederholung: Bernoulli - Gleichung - Viskose Fluide - Kapillarkräfte - Schwingungen - harmonisch

Mehr

Zusammenfassung 23.10.2006, 0. Einführung

Zusammenfassung 23.10.2006, 0. Einführung Zusammenfassung 23.10.2006, 0. Einführung - Umrechnung der gebräuchlichen Einheiten - Teilung/Vervielfachung von Einheiten - Kenngrößen des reinen Wassers (z.b. Dichte 1000 kg/m 3 ) Zusammenfassung 30.10.2006,

Mehr

Physik 1 für Chemiker und Biologen 10. Vorlesung

Physik 1 für Chemiker und Biologen 10. Vorlesung Physik 1 für Chemiker und Biologen 10. Vorlesung 14.01.2019 The Universal Label https://xkcd.com/1123/ Heute: - Wiederholung: Bernoulli - Gleichung - Viskose Fluide - Kapillarkräfte - Schwingungen - harmonisch

Mehr

df Druck p 1.5 Fluide: Mechanik der Flüssigkeiten und Gase 1.5.1 Ruhende Flüssigkeiten und Gase 1.5.1.1 Druck

df Druck p 1.5 Fluide: Mechanik der Flüssigkeiten und Gase 1.5.1 Ruhende Flüssigkeiten und Gase 1.5.1.1 Druck .5 Fluide: Mechanik der Flüssigkeiten und Gase Wir haben im Kaitel Mechanik bisher behandelt: ) Masseunkte ) Feste Körer (Starre Körer, elastische Körer siehe Vorl. techn. Mechanik!) Feste Körer haben

Mehr

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms

Mehr

Klausur Strömungsmechanik 1 WS 2009/2010

Klausur Strömungsmechanik 1 WS 2009/2010 Klausur Strömungsmechanik 1 WS 2009/2010 03. März 2010, Beginn 15:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Taschenrechner (nicht programmierbar) TFD-Formelsammlung (ohne handschriftliche

Mehr

Hydrodynamik y II - Viskosität

Hydrodynamik y II - Viskosität Physik A VL9 (..0) Hydrodynamik y II - Viskosität Die Viskosität ität Das Gesetz on Hagen-Poiseuille Die Stokes sche Reibung Die Reynolds-Zahl Viskose Fluide Viskosität bisher: Kräfte zwischen dem strömenden

Mehr

Physik I im Studiengang Elektrotechnik

Physik I im Studiengang Elektrotechnik hysik I im Studiengang Elektrotechnik - Mechanik deformierbarer Körper - rof. Dr. Ulrich Hahn WS 015/016 Deformation Starrer Körper: Kraftwirkung Translation alle Massenpunkte: gleiches Rotation alle Massenpunkte:

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Prüfungsfrage Strömung der Flüssigkeiten. Fluideigenschaften. Strömungslehre. HYDROSTATIK keine Bewegung

Prüfungsfrage Strömung der Flüssigkeiten. Fluideigenschaften. Strömungslehre. HYDROSTATIK keine Bewegung 016.11.18. Prüfungsfrage Strömung der Flüssigkeiten Typen der Flüssigkeitsströmung. Die Reynolds-Zahl. Die Viskosität. Die Gesetzmäßigkeiten der Flüssigkeitsströmung: die Gleichung der Kontinuität, das

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #7 28/10/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Mechanik Teil 3 - Versuche M1 Dichte und Hydrodynamik: Bestimmung der Dichte eines zylindrischen

Mehr

Physik 1 für Chemiker und Biologen 10. Vorlesung

Physik 1 für Chemiker und Biologen 10. Vorlesung Physik 1 für Chemiker und Biologen 10. Vorlesung 14.01.2019 The Universal Label https://xkcd.com/1123/ Heute: - Wiederholung: Bernoulli - Gleichung - Viskose Fluide - Kapillarkräfte - Schwingungen - harmonisch

Mehr

Physik 1 für Chemiker und Biologen 10. Vorlesung

Physik 1 für Chemiker und Biologen 10. Vorlesung Physik 1 für Chemiker und Biologen 10. Vorlesung 15.01.2018 The Universal Label https://xkcd.com/1123/ Heute: - Wiederholung: Bernoulli - Gleichung - Viskose Fluide - Kapillarkräfte - Schwingungen - harmonisch

Mehr

Biophysik für Pharmazeuten

Biophysik für Pharmazeuten Transportprozesse II. III. Diffusion (Volumentransport) (Stofftransport) Biophysik für Pharmazeuten 11. 4. 016. Transportprozesse Elektrischer Strom en I. Elektrischer Strom (el. Ladungstransport) IV.

Mehr

14. Strömende Flüssigkeiten und Gase

14. Strömende Flüssigkeiten und Gase 14. Strömende Flüssigkeiten und Gase 14.1. orbemerkungen Es gibt viele Analogien zwischen Flüssigkeiten und Gasen (wegen der freien erschiebbarkeit der Teilchen); Hauptunterschied liegt in der Kompressibilität

Mehr

Medizinische Biophysik Transportprozesse

Medizinische Biophysik Transportprozesse Medizinische Biophysik Transportprozesse I. Elektrischer Ladungstransport (el. Strom). Grundbegriffe Elektrische Stromstärke, -dichte. Transportgesetz = ohmsches Gesetz 3. Anwendungen Messung on Biopotenzialen

Mehr

Kapitel 3 Mechanik von Flüssigkeiten und Gasen. 3.1 Druck 3.2 Oberflächenspannung, Kapillarität 3.3 Strömungen 3.4 Reale Fluide

Kapitel 3 Mechanik von Flüssigkeiten und Gasen. 3.1 Druck 3.2 Oberflächenspannung, Kapillarität 3.3 Strömungen 3.4 Reale Fluide Kapitel 3 3.1 Druck 3.2 Oberflächenspannung, Kapillarität 3.3 Strömungen 3.4 Reale Fluide Das hydrostatische Paradoxon h 1 2 3 A A A Beobachtung: Gleicher Druck am Boden Das hydrostatische Paradoxon h

Mehr

Medizinische Biophysik Transportprozesse

Medizinische Biophysik Transportprozesse Medizinische Biophysik Transportprozesse III. Volumentransport (en) Fortsetzung 4. von reellen Flüssigkeiten Newtonsches Reibungsgesetz 016. 04. 05. Viskosität Anwendung: Viskosität des Blutes Kritische

Mehr

Physik 1 für Chemiker und Biologen 10. Vorlesung

Physik 1 für Chemiker und Biologen 10. Vorlesung Physik 1 für Chemiker und Biologen 10. Vorlesung 09.01.2016 http://xkcd.com/1781/ Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de Heute: - Wiederholung: Bernoulli - Gleichung - Viskose Fluide - Kapillarkräfte

Mehr

Medizinische Biophysik 20

Medizinische Biophysik 20 Transportprozesse II. III. Diffusion (Volumentransport) (Stofftransport) Medizinische Biophysik 0 Transportprozesse en I. Elektrischer Strom (el. Ladungstransport) IV. Wärmeleitung (Energietransport) V.

Mehr

6. Welche der folgenden Anordnungen von vier gleich großen ohmschen Widerständen besitzt den kleinsten Gesamtwiderstand?

6. Welche der folgenden Anordnungen von vier gleich großen ohmschen Widerständen besitzt den kleinsten Gesamtwiderstand? 1 1. Welche der folgenden Formulierungen entspricht dem ersten Newton schen Axiom (Trägheitsprinzip)? Ein Körper verharrt in Ruhe oder bewegt sich mit konstanter gleichförmiger Geschwindigkeit, wenn die

Mehr

Dynamische Viskosität von Gasen (Hagen-Poiseuille' sches Gesetz)

Dynamische Viskosität von Gasen (Hagen-Poiseuille' sches Gesetz) Versuch Nr. 58 Dynamische Viskosität von Gasen (Hagen-Poiseuille' sches Gesetz) Stichworte: Kinetische Gastheorie, ideales Gas, charakteristische Größen zur Beschreibung von Gasen (s.u.), Hagen-Poiseuille'sches

Mehr

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2 Fachrichung Physik Physikalisches Grundprakikum Ersell: Bearbeie: Versuch: L. Jahn SR M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Akualisier: am 29. 03. 2010 Srömung im Rohr Inhalsverzeichnis

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Vorlesung 25.11.2016 Kapitel 8: Ruhende Gase, Hydrodynamik, Viskosität Dr. Björn Wonsak 1 Platz für Fehlerrechnung 2 Platz für Fehlerrechnung 3 Platz für Fehlerrechnung

Mehr

10.3.1 Druckverlust in Rohrleitungen bei laminarer Strömung (Re < 2320)

10.3.1 Druckverlust in Rohrleitungen bei laminarer Strömung (Re < 2320) 0.3-0.3 Rohrströmung 0.3. Druckverlust in Rohrleitungen bei laminarer Strömung (Re < 30) Bei laminarer Rohrströmung läßt sich der Reibungsverlust theoretisch berechnen, as bei der turbulenten Strömung

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik WS 06/7 Lösung 3 Ronja Berg (ronja.berg@ph.tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Aufgabe : Stahlseil (a)

Mehr

Übungsblatt 1 (13.05.2011)

Übungsblatt 1 (13.05.2011) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 11 Übungsblatt 1 (13.5.11) 1) Wasserstrahl Der aus einem Wasserhahn senkrecht nach unten ausfließende Wasserstrahl verjüngt

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 9: Turbulente Strömungen, Grenzflächen, Schwingungen Dr. Daniel Bick 30. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 30. November 2016

Mehr

Besprechung am /

Besprechung am / PN1 - Physik 1 für Chemiker und Biologen Prof. J. Lipfert WS 2018/19 Übungsblatt 10 Übungsblatt 10 Besprechung am 15.01.2019/17.01.2019 Aufgabe 1 Wassertank. Ein Tank soll durch einen komplett mit Wasser

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 Physik PHYSIK /B SS WS 07 03/4 Inhalt der Vorlesung. Teilchen. Einzelne Teilchen B. Mehrteilchensysteme Starrer Körer - Bewegung Translation Rotation lüssigkeiten Hydrostatik Hydrodynamik Physik PHYSIK

Mehr

3. Mechanik deformierbarer Körper

3. Mechanik deformierbarer Körper 3. Mechanik deformierbarer Körper 3.1 Aggregatzustände 3.2 Festkörper Struktur der Festkörper Verformung von Festkörpern 3.3 Druck Schweredruck Auftrieb 3.4 Grenzflächen Oberflächenspannung, Kohäsion,

Mehr

Strömende Flüssigkeiten und Gase

Strömende Flüssigkeiten und Gase Strömende Flüssigkeiten und Gase Laminare und turbulente Strömungen Bei laminar strömenden Flüssigkeiten oder Gasen bewegen sich diese in Schichten, die sich nicht miteinander vermischen. Es treten keine

Mehr

Besprechung am /

Besprechung am / PN1 - Physik 1 für Chemiker und Biologen Prof. J. Lipfert WS 2017/18 Übungsblatt 10 Übungsblatt 10 Besprechung am 16.01.2018/18.01.2018 Aufgabe 1 Bluttranfusion: Ein Patient benötigt dringend eine Bluttransfusion.

Mehr

9.Vorlesung EP WS2008/9

9.Vorlesung EP WS2008/9 9.Vorlesung EP WS2008/9 I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik c) Oberflächenspannung und Kapillarität 6. Hydro- und Aerodynamik

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 7: Hydrostatik Dr. Daniel Bick 29. November 2017 Daniel Bick Physik für Biologen und Zahnmediziner 29. November 2017 1 / 27 Übersicht 1 Mechanik deformierbarer

Mehr

Vorlesung Physik für Pharmazeuten PPh - 05

Vorlesung Physik für Pharmazeuten PPh - 05 Vorlesung Physik für Pharmazeuten PPh - 05 Festkörper Mechanik deformierbarer Körper Hydrostatik Grenzflächenspannung Hydrodynamik Der kristalline Festkörper Kristallformen - Raumgitter (Kristallgitter)

Mehr

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und Univ.-Prof. Dr.-Ing. Wolfram Frank 01.10.2002 Lehrstuhl für Fluiddynamik und Strömungstechnik Aufgabe Name:... Vorname:... (Punkte) 1)... Matr.-Nr.:... HS I / HS II / IP / WI 2)... 3)... Beurteilung:...

Mehr

Besprechung am /

Besprechung am / PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 016/17 Übungsblatt 9 Übungsblatt 9 Besprechung am 10.01.017 / 1.01.017 Aufgabe 1 Dakota Access Pipeline. Die Dakota Access Pipeline ist eine

Mehr

Schweredruck von Flüssigkeiten

Schweredruck von Flüssigkeiten Schweredruck von Flüssigkeiten Flüssigkeiten sind nahezu inkompressibel. Kompressibilität κ: Typische Werte: Wasser: 4.6 10-5 1/bar @ 0ºC Quecksilber: 4 10-6 1/bar @ 0ºC Pentan: 4. 10-6 1/bar @ 0ºC Dichte

Mehr

lokaler und globaler konvektiver Wärmeübergang (Oberflächentemperatur T s = const.)

lokaler und globaler konvektiver Wärmeübergang (Oberflächentemperatur T s = const.) lokaler und globaler konvektiver Wärmeübergang (Oberflächentemperatur T s = const.) Temperaturgrenzschicht Geschwindigkeitsgrenzschicht Vergleich von Geschwindigkeits- und Temperaturgrenzschicht laminare

Mehr

1.9. Hydrodynamik Volumenstrom und Massenstrom Die Strömungsgeschwindigkeit

1.9. Hydrodynamik Volumenstrom und Massenstrom Die Strömungsgeschwindigkeit 1.9.1. Volumenstrom und Massenstrom 1.9. Hydrodynamik Strömt eine Flüssigkeit durch ein Gefäss, so bezeichnet der Volumenstrom V an einer gegebenen Querschnittsfläche das durchgeströmte Volumen dv in der

Mehr

3.5.6 Geschwindigkeitsprofil (Hagen-Poiseuille) ******

3.5.6 Geschwindigkeitsprofil (Hagen-Poiseuille) ****** 3.5.6 ****** 1 Motivation Bei der Strömung einer viskosen Flüssigkeit durch ein Rohr ergibt sich ein parabolisches Geschwindigkeitsprofil. 2 Experiment Abbildung 1: Versuchsaufbau zum Der Versuchsaufbau

Mehr

Blutkreislauf, Arbeit des Herzens

Blutkreislauf, Arbeit des Herzens Blutkreislauf, Arbeit des Herzens Physikalische Grundprinzipien der Hämodynamik Blutmenge im Körper 80 ml Blut pro kg Körpergewicht 8 % des Körpergewichtes Erwachsener: 5-6 l Blutvolumen Blutverlust: 10

Mehr

5. Arbeit und Energie

5. Arbeit und Energie Inhalt 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5.5 Beispiele 5.1 Arbeit 5.1 Arbeit Konzept der Arbeit führt zur Energieerhaltung. 5.1 Arbeit Wird Masse m mit einer

Mehr

I. Mechanik. 10.Vorlesung EP WS2009/10

I. Mechanik. 10.Vorlesung EP WS2009/10 10.Vorlesung EP WS2009/10 I. Mechanik 6. Hydro- und Aerodynamik a) Kontinuitäts- und Bernoulli-Gleichung b) Definition von Viskosität Hagen-Poiseuille - und Stokes - Gesetz 7. Schwingungen Versuche: Druckabfall

Mehr

Vorlesung STRÖMUNGSLEHRE Zusammenfassung

Vorlesung STRÖMUNGSLEHRE Zusammenfassung Lehrstuhl für Fluiddynamik und Strömungstechnik Vorlesung STRÖMUNGSLEHRE Zusammenfassung WS 008/009 Dr.-Ing. Jörg Franke Bewegung von Fluiden ( Flüssigkeiten und Gase) - Hydro- und Aerostatik > Druckverteilung

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 9: Turbulente Strömungen, Grenzflächen, Schwingungen Dr. Daniel Bick 30. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 30. November 2016

Mehr

5. Arbeit und Energie

5. Arbeit und Energie 5. Arbeit und Energie 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5. Arbeit und Energie Konzept der Arbeit führt zur Energieerhaltung. 5.1 Arbeit Wird Masse m mit

Mehr

5. Arbeit und Energie Physik für E-Techniker. 5.1 Arbeit. 5.3 Potentielle Energie Kinetische Energie. Doris Samm FH Aachen

5. Arbeit und Energie Physik für E-Techniker. 5.1 Arbeit. 5.3 Potentielle Energie Kinetische Energie. Doris Samm FH Aachen 5. Arbeit und Energie 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 54 5.4 Kinetische Energie 5. Arbeit und Energie Konzept der Arbeit führt zur Energieerhaltung. 51 5.1 Arbeit Wird Masse

Mehr

Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2

Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2 Formelsammlung Physik für Biologen und Geowissenschaftler 15. Juni 2005 Inhaltsverzeichnis 1 Grundlagen 2 SI - Einheiten............................................... 2 Fehlerberechnung.............................................

Mehr

600 Mechanik der Kontinua. 610 Feste Körper 620 Flüssigkeiten und Gase

600 Mechanik der Kontinua. 610 Feste Körper 620 Flüssigkeiten und Gase 600 Mechanik der Kontinua 60 Feste Körer 60 Flüssigkeiten und Gase um was geht es? Beschreibung on Bewegungen (hys. Verhalten) des nicht-starren Körers (elastisch, lastisch) Kontinuum Hydro- und Aerodynamik

Mehr

Physik für Naturwissenschaftler

Physik für Naturwissenschaftler Physik für Naturwissenschaftler I Mechanik und Wärmelehre Für Chemiker, Biologen, Geowissenschaftler von Hugo Neuert Prof. emer. an der Universität Hamburg 2., überarbeitete Auflage Wissenschaftsverlag

Mehr

MA+PHY2. Physik-Formelsammlung. Flavio De Roni Studiengang Wirtschaftsingenieur Innovation 4. Semester

MA+PHY2. Physik-Formelsammlung. Flavio De Roni Studiengang Wirtschaftsingenieur Innovation 4. Semester MA+PHY2 Physik-Formelsammlung Flavio De Roni Studiengang Wirtschaftsingenieur Innovation 4. Semester HSLU-T&A 12.05.2012 2 MA+PHY2 Formelsammlung Physik Änderungsverzeichnis Version Datum Autor Änderung

Mehr

Grundlagen Arbeit & Energie Translation & Rotation Erhaltungssätze Gravitation Reibung Hydrodynamik. Physik: Mechanik. Daniel Kraft. 2.

Grundlagen Arbeit & Energie Translation & Rotation Erhaltungssätze Gravitation Reibung Hydrodynamik. Physik: Mechanik. Daniel Kraft. 2. Physik: Mechanik Daniel Kraft 2. März 2013 CC BY-SA 3.0, Grafiken teilweise CC BY-SA Wikimedia Grundlagen Zeit & Raum Zeit t R Länge x R als Koordinate Zeit & Raum Zeit t R Länge x R als Koordinate Raum

Mehr

Seite 1 von 10. Für eine ideale Flüssigkeit (inkompressibel und ohne innere Reibung) gilt das Gesetz von Bernoulli wie folgt:

Seite 1 von 10. Für eine ideale Flüssigkeit (inkompressibel und ohne innere Reibung) gilt das Gesetz von Bernoulli wie folgt: Seite 1 von 10 Strömungslehre Für eine ideale Flüssigkeit (inkompressibel und ohne innere Reibung) gilt das Gesetz von Bernoulli wie folgt: p + gh + ½ v² = konstant oder für zwei verschiedene Punkte auf

Mehr

Medizinische Biophysik Transportprozesse

Medizinische Biophysik Transportprozesse Medizinische Biophysik Transportprozesse I. Elektrischer Ladungstransport (el. Strom). Grundbegriffe Elektrische Stromstärke, -dichte. Transportgesetz = ohmsches Gesetz 06. 03. 9. 3. nwendungen Messung

Mehr

Zur Erinnerung Stichworte aus der 12. Vorlesung:

Zur Erinnerung Stichworte aus der 12. Vorlesung: Stichworte aus der 12. Vorlesung: Zur Erinnerung Aggregatzustände: Dehnung Scherung Torsion Hysterese Reibung: fest, flüssig, gasförmig Gleit-, Roll- und Haftreibung Experimentalphysik I SS 2008 13-1 Hydrostatik

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I Name: Kugelfallviskosimeter Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von

Mehr

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms

Mehr

Grundlagen der Mechanik

Grundlagen der Mechanik Ausgabe 2007-09 Grundlagen der Mechanik (Formeln und Gesetze) Die Mechanik ist das Teilgebiet der Physik, in welchem physikalische Eigenschaften der Körper, Bewegungszustände der Körper und Kräfte beschrieben

Mehr

Lösungen Aufgabenblatt 10

Lösungen Aufgabenblatt 10 Ludwig Maximilians Universität München Fakultät für Physik Lösungen Aufgabenblatt 1 Übungen E1 Mechanik WS 217/218 Dozent: Prof. Dr. Hermann Gaub Übungsleitung: Dr. Martin Benoit und Dr. Res Jöhr Verständnisfragen

Mehr

8. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler

8. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler 8. Vorlesung EP I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik (Fortsetzung: Auftrieb) c) Oberflächenspannung und Kapillarität Versuche:

Mehr

Srömungsgesetze FORTGESCHRITTENE GRUNDLAGEN. Stromstärke und Strömungsgeschwindigkeit. Wandspannung. Kontinuitäts-Gesetz.

Srömungsgesetze FORTGESCHRITTENE GRUNDLAGEN. Stromstärke und Strömungsgeschwindigkeit. Wandspannung. Kontinuitäts-Gesetz. Srömungsgesetze Ohmsches Gesetz Stromstärke und Strömungsgeschwindigkeit Kontinuitäts-Gesetz Strömungswiderstände Viskosität Transmuraler Druck Wandspannung Laplace-Gesetz Compliance Pulsatile Strömung

Mehr

Physik-Vorlesung SS Fluide.

Physik-Vorlesung SS Fluide. Physik Fluide 3 Physik-Vorlesung SS 2016. Fluide. SS 16 2. Sem. B.Sc. Oec. und B.Sc. CH Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nichtkommerziell Weitergabe unter gleichen

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung

Mehr

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und Univ.-Prof. Dr.-Ing. Wolfram Frank 14.10.2005 Lehrstuhl für Fluiddynamik und Strömungstechnik Aufgabe Name:... Matr.-Nr.:... Vorname:... HS I / HS II / IP / WI (Punkte) Frage 1)... Frage 2)... Beurteilung:...

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas Thermodynamik Teilgebiet der klassischen Physik. Wir betrachten statistisch viele Teilchen. Informationen über einzelne Teilchen werden nicht gewonnen bzw.

Mehr

Labor zur Vorlesung Physik

Labor zur Vorlesung Physik Labor zur Vorlesung Physik 1. Zur Vorbereitung Die folgenden Begriffe sollten Sie kennen und erklären können: Viskosität, Innere Reibung von üssigkeiten, Stokeskraft, Auftrieb, laminare Strömung, Inkompressibilität

Mehr

9.Vorlesung EP WS2009/10

9.Vorlesung EP WS2009/10 9.Vorlesung EP WS2009/10 I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik c) Oberflächenspannung und Kapillarität 6. Hydro- und Aerodynamik

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 215/16 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Dr. Neelima Paul, Nitin Saxena, Daniel Moseguí

Mehr

Innere Reibung von Gasen

Innere Reibung von Gasen Blatt: 1 Aufgabe Bestimmen Sie die Viskosität η von Gasen aus der Messung der Strömung durch Kapillaren. Berechnen Sie aus den Messergebnissen für jedes Gas die Sutherland-Konstante C, die effektiven Moleküldurchmesser

Mehr

7. Schichtenströmung 7-1. Aufgabe 7.1 [3]

7. Schichtenströmung 7-1. Aufgabe 7.1 [3] 7-1 7. Schichtenströmung Aufgabe 7.1 [3] Auf einer Unterlage befindet sich eine Ölschicht der Dicke h = 2 mm, auf der eine Platte mit der Geschwindigkeit v 0 gleitet. Ein Druckanstieg in Bewegungsrichtung

Mehr

13 Flüssigkeitsdynamik

13 Flüssigkeitsdynamik 3 Flüssigkeitsdynamik Strömungstypen laminar turbulent Laminare Strömung In einer laminaren Strömung folgt jedes Teilchen einer Strömungslinie. Die Richtung des Geschwindigkeitsektors ist dabei tangential

Mehr

c S sin 2 1 2 c c p sin 4 4.8 Kugelumströmung 4.8.1 Ideale reibungsfreie Umströmung der Kugel (Potentialströmung) Geschwindigkeit auf der Oberfläche

c S sin 2 1 2 c c p sin 4 4.8 Kugelumströmung 4.8.1 Ideale reibungsfreie Umströmung der Kugel (Potentialströmung) Geschwindigkeit auf der Oberfläche 4.7 Kugelumströmung... 4.7. Ideale reibungsfreie Umströmung der Kugel (Potentialströmung)... 4.7. Reibungsbehaftete Umströmung der Kugel... 4.8 Zylinderumströmung... 4.9 Rohrströmung... 5 4.9. Laminare

Mehr