Klausur Numerische Mathematik (für Elektrotechniker), Samstag, 19. August 2017

Größe: px
Ab Seite anzeigen:

Download "Klausur Numerische Mathematik (für Elektrotechniker), Samstag, 19. August 2017"

Transkript

1 Verständnisfragen-Teil (5 Punkte) Jeder der 5 Verständnisfragenblöcke besteht aus 5 Verständnisfragen. Werden alle 5 Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block 5 Punkte. Werden 4 von 5 Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block 3 Punkte. Werden weniger als 4 Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block Punkte. Verständnisfragenblock : Es seien A, B, P, L, R, D R n n mit P Permutationsmatrix, R obere Dreiecksmatrix, L normierte untere Dreiecksmatrix und D Diagonalmatrix.. Es seien A, B symmetrisch positiv definit. Ist dann A + B immer symmetrisch positiv definit? ja. Sei A regulär. Existiert dann stets eine LDL T -Zerlegung, so dass A = LDL T? nein 3. Sei A = LDL T. Ist dann stets κ (A) = κ (D)? nein 4. Ist P stets orthogonal? ja 5. Existiert für A symmetrisch positiv definit stets eine LR-Zerlegung A = LR? ja Verständnisfragenblock : Es seien A R m n, mit Rang(A) = n m, und b R m. Weiter seien Q R m m eine orthogonale Matrix und R R m n eine obere Dreiecksmatrix so, dass A = Q R gilt. Weiter sei x R n die eindeutige Minimalstelle des Minimierungsproblems min x R n A x b.. Steht der Vektor b A x stets senkrecht auf b? nein. Sei κ (A) = 6. Beim Lösen des linearen Ausgleichsproblems über Normalengleichungen muss ein Gleichungssystem der Form Mx = f gelöst werden. Was ist κ (M)? Ist die Matrix A A T immer symmetrisch positiv definit? nein 4. Ergibt sich die Matrix R durch Gauß-Elimination mit Spaltenpivotisierung, angewandt auf A? nein 5. Ist A x b = R x Q T b für alle x R n? ja Verständnisfragenblock 3: Es seien x MIN bzw. x MAX die kleinste bzw. größte (strikt) positive Zahl sowie eps die relative Maschinengenauigkeit in der Menge M(b, m, r, R) der Maschinenzahlen gemäß Vorlesung/Buch und D := [ x MAX, x MIN ] [x MIN, x MAX ]. Ferner beschreibe fl : D M(b, m, r, R) die Standardrundung. Alle Zahlen sind im Dezimalsystem angegeben.. Was ist x MIN in M(3,,, )? 9. Was ist x MAX in M(3,,, )? 8 3. Was ist die relative Konditionszahl κ rel (x) für die Auswertung der Funktion f(x) = x + x an der Stelle x =? 5 3 = Ist die Zahl 4 in M(, 3, 99, 99) exakt darstellbar? ja 5. Gilt für alle x D, dass fl(x) x eps x? ja

2 Verständnisfragenblock 4: Es sei P (f x,..., x n ) das Lagrange Interpolationspolynom zu den Daten (x, f(x )),..., (x n, f(x n )) mit x <... < x n.. Der Aufwand für die Berechnung über dividierte Differenzen (d.h. die Newton-Darstellung) ist O(n) Operationen.. Was ist P (Q x =, x = 3, x = 4, x 3 = 5)(x) ausgewertet an der Stelle x = für Q = x 3? 6 3. Gilt P (g x,..., x n ) = g für alle Polynome g? nein 4. Wird der Fehler max x [x,x n] P (f x,..., x n )(x) f(x) für wachsendes n immer kleiner? nein 5. Ist P (f x,..., x n )(x i ) = f(x i ) für i =,,..., n? ja nein Verständnisfragenblock 5: Wir betrachten Nullstellenprobleme.. Ist die Newton-Methode immer global quadratisch konvergent? nein. Wie viele LR-Zerlegungen müssen für die Durchführungen von 4 Schritten des vereinfachten Newton-Verfahrens (für Systeme) berechnet werden, wenn alle auftretenden Gleichungssysteme mittels LR-Zerlegung gelöst werden? 3. Beim Sekantenverfahren wird die Steigung der Funktion durch einen Differenzenquotienten approximiert. 4. Für eine quadratische Funktion liefert das Newton-Verfahren für beliebige Startwerte die Lösung nach einer Iteration 5. Gibt es zu jedem Nullstellenproblem nur ein Fixpunktverfahren, mit welchem dieses gelöst werden kann? ja nein nein

3 Aufgabe Gegeben sei die Matrix ( ) A := R und eine rechte Seite Wir betrachten für < ε < eine Störung von A, A ε := ( b = R ). ( ) R + ε. Berechnen Sie die Lösung x ε des gestörten Gleichungsystems A ε x ε = b und die Lösung x des exakten Gleichungsystems A x = b sowie die Konditionszahl κ (A ε ).. Schätzen Sie den relativen Fehler der Lösung des gestörten Gleichungssystems A ε x ε = b in der -Norm unter der Annahme, dass die rechte Seite b exakt gegeben ist, ab. Geben Sie eine Bedingung an ε an, die erfüllt sein muss, damit diese Fehlerabschätzung gilt. 3. Bestimmen Sie eine Diagonalmatrix D R so, dass die Konditionszahl der Matrix AD in der -Norm minimal wird. Musterlösung. ( / A ) ε = e+ e+. Wenn b exakt gegeben ist, gilt nach dem Satz 3.9 falls κ (A) A A <. x ε = ( ) ( ε, x = + ε ) { } κ (A ε ) = A ε A ε = (3 + ε) max, = ε + 3 ε + ε + x x κ (A) κ (A) A A Es ist κ (A) = 6 und der relative Fehler von A ist A A gegeben durch 6 ε 3 <. ( ) A. A = Aε A A Damit die Abschätzung anwendbar ist, muss also ε < gelten. Setzt man die Kondition ein, wobei b exakt angenommen wurde, gilt Weiteres Umformen ergibt x x 6 6 A A ( ) A. A x x 6 ( ε 6 ε. 3 3) x x 6ε 3 6ε 3. Die gesuchte Diagonalmatrix D ist die Spaltenäquilibrierung D = ( i= i, ) a ( i= a i, ) 3+5+= Punkte = ε 3. Obige Voraussetzung ist also hier = ( ) 3 3

4 Aufgabe. Gegeben sei das lineare Gleichungssystem Ax = b mit A = 3 R 3 3 und b = 5 R 3. 6 a) Berechnen Sie die LR-Zerlegung von A mit Spaltenpivotisierung und ohne Äquilibrierung. Geben Sie L, R und die Permutationsmatrix P explizit an. b) Lösen Sie das System mit Hilfe der LR-Zerlegung. c) Berechnen Sie die Determinante von A mit Hilfe der LR-Zerlegung.. Sei à eine Störung einer gegebenen, nichtsingulären Matrix A R n n. Das ungestörte Problem lautet: Finde x sodass Ax = b gilt. Dieses Problem sei hier aber nicht exakt auflösbar (zum Beispiel aufgrund von Rundungsfehlern). Anstelle dessen lasse sich aber das gestörte Problem à x = b leicht und exakt nach x auflösen, wobei dementsprechend r := b A x das Residuum bzgl. der Approximation x zu x ist. Wir wollen diese Approximation nun durch einen Nachiterationsschritt verbessern. Wie lautet das Gleichungssystem, das man dazu lösen muss, und wie wird die verbesserte Approximation berechnet? In welcher Form ist à typischerweise (es reicht ein Beispiel) gegeben? Musterlösung = Punkte. a) Spaltenpivotisierung schreibt in diesem Fall zunächst vor, dass Zeilen und vertauscht werden müssen, d.h. 3 P A =.5.5.5, P =. Mithilfe der ersten Zeile werden nun Nullen in Spalte erzeugt: 3 L (P A) =, L =.5. (Anstelle der fett gedruckten Nullen, lassen sich hier zur Vereinfachung auch die relevanten Einträge von L vermerken (siehe unten)) Von dieser Matrix müssen nun Zeile und 3 vertauscht werden: A = P (L (P A)) = 3, P =. Da sich A bereits in oberer Dreiecksgestalt befindet, ist nichts mehr zu tun (L = I). Es ist also R = A. Somit ergibt sich: 3 R =, L = (P L P T ) =, P = P P =..5 Die Matrix L = (P L P T ) wird dabei durch die üblichen Rechenregeln, bzw. durch Vermerken der relevanten Einträge von L in den Null Einträgen von L (P A), ausgewertet. b) Vorwärtseinsetzen: b b = P b = 6 5 (Pivotisierung) ergibt Ly = b y = 6. 4

5 Rückwärtseinsetzen: Rx = y ergibt x = 3. c) Wir haben dann det(p ) =, det(l) =, det(r) = = det(a) = det(l) det(r) det(p ) = =. Man berechnet zuerst r := b A x = Ax A x = A(x x) = Aδ. Das zu lösende Gleichungssystem ist dann Ãδ = r. Die Korrektur ergibt dann die bessere Nährung x = x+δ. Ã ist dabei typischerweise als eine leicht invertierbare Faktorisierung gegeben, z.b. Ã = P LR. Gelöst wird dann über Vorwärts- und Rückwärtseinsetzen: P LRδ = r oder LRδ = P r 5

6 Aufgabe 3. Formulieren Sie für das Newton-Verfahren für Systeme einen Algorithmus in Pseudocode. Sie können dabei folgende Funktionen als gegeben annehmen: Funktion f(x) f (x) LR(A) VS(M, b) Ausgabe Die Funktion f ausgewertet an der Stelle x Die Jacobi-Matrix f der Funktion f berechnet und ausgewertet an der Stelle x Die Zerlegung (P, L, R), wobei P eine Permutationsmatrix ist und P A = LR gilt Der Vektor x = M b berechnet durch Vorwärtseinsetzen mit der Matrix M und dem Vektor b RS(M, b) Der Vektor x = M b berechnet durch Rückwärtseinsetzen mit der Matrix M und dem Vektor b +,, Das entsprechende Ergebnis der arithmetischen Operation für Vektoren und Matrizen. Lösen Sie das nichtlineare Gleichungssystem x x y = 7y x + x = 36 indem Sie je zwei Iterationen des Newton-Verfahrens ( und des vereinfachten Newton-Verfahrens durchführen. Benutzen Sie den Startwert x =. ) Musterlösung. Input: x. For k =,,,... : (P, L, R) LR(f (x k )) b P ( f(x k )) z VS(L, b) //Lz = P (f(x k )) =: b s k+ RS(R, z) //Rx = z x k+ x k + s k Das volle Verfahren: I x = (, ) f(x ) = (., 8.) ( ).. f (x ) =. 8. s = ( , ) x = ( , ) ( ) x f(x) = x y 7y x + x 36 II f(x ) = ( , ) ( ) f (x ) = s = (.38363, ) x = ( , ) Das vereinfachte Verfahren: I s. oben: f(x ) = (., 8.) ( ).. f (x ) =. 8. s = ( , ) ( ) f x (x) = x + 4y 4+7= Punkte () 6

7 x = ( , ) II f(x ) = ( , ) s = (.73838, ) x = ( , ) 7

8 Aufgabe 4. Gegeben seien folgende Stützstellen t i und Messwerte f i t i 3 5 f i 4 Aus theoretischen Überlegungen geht hervor, dass diese Messdaten einer Funktion f(t) = αβ t. genügen. Die Parameter α und β sollen optimal im Sinne der kleinsten Fehlerquadrate bestimmt werden. Formulieren Sie dazu das entsprechende nichtlineare Ausgleichsproblem.. Das nichtlineare Ausgleichsproblem soll jetzt über das Gauß-Newton-Verfahren gelöst werden. Seien (α k, β k ) die Werte der k-ten Iterierten. Bestimmen Sie das lineare Ausgleichsproblem, das im k-te Schritt des Verfahrens gelöst werden muss. 3. Gegeben sei nun das lineare Ausgleichsproblem Ax b min, mit A := 8 R 3 und b := R 3. x R 4 34 Bestimmen Sie die Lösung des Ausgleichsproblems über die QR-Zerlegung mit Givensrotationen. Musterlösung. Die i-te Zeile des Residuums lautet F i := f(t i ) f i = αβ ti f i. Also ist das entsprechende nichtlineare Ausgleichsproblem gegeben durch: F F = f(t ) f f(t ) f = αβ 4 αβ 3 F 3 f(t 3 ) f 3 αβ 5. Die i-te Zeile der Jakobischen J ist gegeben durch (das ist ein Gradient) : ( β t i αt i β ti ). min (α,β) R R +3+8=3 Punkte Die Jakobische im k-ten Schritt lautet dann F (α k, β k ) = β k βk 3 βk 5 α k β k 3α k βk 5α k βk 4 Das lineare Ausgleichsproblem lautet dann: ( ) F αk (α k, β k ) β k + α kβ k 4 α k β 3 k α k β 5 k min. ( α k, β k ) R R 3. Um den Eintrag A, auf Null zu bringen, betrachtet man die Einträge A, und A,. Es ergibt sich: r = sgn(a, ) =, c = A, = 3 r 5, s = A, = 4 r 5 G, = G, A =, G, b = Um den Eintrag (G, A) 3, auf Null zu bringen, betrachtet man die Einträge (G, A), und (G, A) 3,. Es ergibt sich: r = sgn((g, A), ) + 4 = 6, c = (G,A), r = 5 3, s = (G,A) 3, = r 3 8

9 G,3 = G,3 G, A = 6, G,3 G, b = Als Lösung des Systems ergibt sich damit: x = 6 = x 3 ( 5) = = 8 =.8 9

10 Aufgabe 5 Es sei m n und A R m n. Weiter sei A = UΣV T eine SVD von A.. Welche Bedingung an die Singulärwerte garantiert, dass A vollen Rang hat?. Zeigen Sie, dass für alle b R m A T A A + b = A T b gilt. 3. Zeigen Sie, dass der Vektor x = A + b (eine) Lösung des linearen Ausgleichsproblems ist. Ax b min Erinnerung: Es sind also U R m m und V R n n orthogonal sowie Σ = diag(σ,..., σ n ) R m n (d.h. Σ i,i = σ i, i =,..., n und Σ i,j = wann immer i j). Dabei sind σ... σ r > = σ r+ =... = σ n die Singulärwerte, r n. Die Pseudoinverse A + R n m ist definiert als A + := V Σ + U T, Σ + := diag(σ,..., σ r,,..., ). Musterlösung. Ist σ n > (bzw. r = n), so hat A vollen Rang.. Zunächst stellen wir fest, dass A T AA + = A T zu zeigen ist. Einsetzen liefert +7+ = Punkte A T AA + = V Σ T U T UΣV T V Σ + U T A T AA + = V Σ T (U T U) Σ (V T V ) Σ + U T }{{}}{{} I I = V Σ Σ + U T, Σ = diag(σ,..., σr,,..., ) R n n = V Σ T U T = A T 3. y R n ist Lösung des linearen Ausgleichsproblems genau dann wenn y die Normalengleichung erfüllt, d.h. A T Ay = A T y. Da nach Aufgabe a) gerade A T Ax = A T b gilt, ist x demnach Lösung des linearen Ausgleichsproblems.

Matr. Nr.: Benutzter Taschenrechner (genaue Typenbezeichnung) : Name: Vorname: Unterschrift: VFr: A1: A2: A3: A4: A5: BP: Platz Nr.

Matr. Nr.: Benutzter Taschenrechner (genaue Typenbezeichnung) : Name: Vorname: Unterschrift: VFr: A1: A2: A3: A4: A5: BP: Platz Nr. Matr. Nr.: Platz Nr.: Klausur zur Numerischen Mathematik (für Elektrotechniker) Prof. Dr. Wolfgang Dahmen Samstag, 19. August 2017 Institut für Geometrie und Praktische Mathematik Hilfsmittel: dokumentenechtes

Mehr

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016 Verständnisfragen-Teil ( Punkte) Jeder der Verständnisfragenblöcke besteht aus Verständnisfragen. Werden alle Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block Punkte.

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Verständnisfragen-Teil Institut für Geometrie und Praktische Mathematik (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben).

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen IGPM RWTH Aachen Institut für Geometrie und Praktische Mathematik Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen

Mehr

eps für alle x D. 4. Die Zahl 256 ist in M(2, 4, 6, 6) exakt darstellbar.

eps für alle x D. 4. Die Zahl 256 ist in M(2, 4, 6, 6) exakt darstellbar. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H13 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Institut für Geometrie und Praktische Mathematik Multiple-Choice-Test NumaMB F08 (30 Punkte) Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Verständnisfragen-Teil Institut für Geometrie und Praktische Mathematik 4 Punkte Es gibt zu jeder der Aufgaben vier Teilaufgaben. Diese sind mit bzw. zu kennzeichnen hinschreiben. Es müssen

Mehr

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

Diplom VP Numerik 27. August 2007

Diplom VP Numerik 27. August 2007 Diplom VP Numerik 27. August 2007 Multiple-Choice-Test 30 Punkte Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine einzige Aussage angekreuzt, gilt diese

Mehr

Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV Aufgabe N1 (LR-Zerlegung mit Pivotisierung) Gegeben seien R 3.

Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV Aufgabe N1 (LR-Zerlegung mit Pivotisierung) Gegeben seien R 3. Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV 7.7.6 Aufgabe N (LR-Zerlegung mit Pivotisierung) Gegeben seien 6 8 A = 8 6 R und b = 6 R. a) Berechnen Sie die LR-Zerlegung von A mit Spaltenpivotisierung.

Mehr

Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV 6.8.005 1 Aufgabe N1 Gegeben seien A = 5-10 -5-10 8-10 -5-10 13 R 3 3 und b = a) Überprüfen Sie, ob die Matrix A positiv definit ist. b) Bestimmen

Mehr

Original - d.h. unvertauschte Reihenfolge

Original - d.h. unvertauschte Reihenfolge NumaMB F6 Verständnisfragen-Teil (3 Punkte) Jeder der 6 Verständnisfragenblöcke besteht aus Verständnisfragen. Werden alle Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es dafür 5

Mehr

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b.

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b. NumaMB F14 Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Bewertung: Vier Fragen richtig beantwortet

Mehr

Diplom VP Numerik 28. August 2006

Diplom VP Numerik 28. August 2006 Diplom VP Numerik 8. August 6 Multiple-Choice-Test Punkte) Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine einzige Aussage angekreuzt, gilt diese Aufgabe

Mehr

4. Großübung. Lösung linearer Gleichungssysteme

4. Großübung. Lösung linearer Gleichungssysteme 4. Großübung Lösung linearer Gleichungssysteme Gesucht x, x, x 3, x 4 R, sodass gilt. mit A R 4 4, x R 4, b R 4 x x + 3x 3 + x 4 = 5 6x 3x 7x x 4 = 5 4x + 4x + 5x 3 5x 4 = 3 8x + x + x 3 + x 4 = 8 3 x

Mehr

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: b a 2 3a 1

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: b a 2 3a 1 Name: Matr.-Nr.: 2 Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: 1 1 0 2 b 1 1 2 4 1 1 4 6 x = 1 1. 2 2 2a 2 3a 1 (a) Bringen Sie das lineare Gleichungssystem auf Treppenform. (b) Für welche

Mehr

Klausur zur Numerischen Mathematik im Maschinenbau

Klausur zur Numerischen Mathematik im Maschinenbau Matr. Nr.: Platz Nr.: Klausur zur Numerischen Mathematik im Maschinenbau Zugelassene Hilfsmittel: Prof. Dr. Arnold Reusken Donnerstag 20. August 2015 Institut für Geometrie und Praktische Mathematik Die

Mehr

Diplom VP Informatik / Numerik 2. September 2002

Diplom VP Informatik / Numerik 2. September 2002 Diplom VP Informatik / Numerik. September 00 Aufgabe Gegeben sei das lineare Gleichungssystem A x = b mit 0 4 0 0 0 0 A = 4 0 0 0 0 0 0 0 0 und b = 4 4 8 5. Punkte a Berechnen Sie die Cholesky Zerlegung

Mehr

(d) das zu Grunde liegende Problem gut konditioniert ist.

(d) das zu Grunde liegende Problem gut konditioniert ist. Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt

Mehr

VF-3: Gegeben seien die Daten f(x 0 ), f(x 1 ),..., f(x n ) mit x 0,..., x n paarweise verschiedenen und

VF-3: Gegeben seien die Daten f(x 0 ), f(x 1 ),..., f(x n ) mit x 0,..., x n paarweise verschiedenen und IGPM RWTH Aachen Verständnisfragen-Teil NumaMB F10 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Aussagen Diese sind mit wahr bzw falsch zu kennzeichnen (hinschreiben) Es müssen alle Fragen mit wahr

Mehr

Diplom VP Numerik 21. März 2005

Diplom VP Numerik 21. März 2005 Diplom VP Numerik. März 5 Aufgabe Gegeben sei das lineare Gleichungssystem Ax = b mit A = 3 3 4 8 und b = 4 5.5 6. ( Punkte) a) Berechnen Sie die LR-Zerlegung von A mit Spaltenpivotisierung. Geben Sie

Mehr

f(x) dx soll numerisch approximiert werden durch eine

f(x) dx soll numerisch approximiert werden durch eine NumaMB H4 Verständnisfragen-Teil (4 Punkte) Es gibt zu jeder der Aufgaben vier Teilaufgaben. Diese sind mit bzw. zu kennzeichnen (hinschreiben). Bewertung: Vier Fragen richtig beantwortet ergibt Punkte.

Mehr

Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung. x = x 2 e x 1.

Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung. x = x 2 e x 1. Name: Matrikel-Nr.: 1 Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung R 3 R 2, x 1 f : x 1 + e x2 2 sin(x3 ) x = x 2 e x 1 (1 + x 2 1 + x, 2x 3 )

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Institut für Geometrie und Praktische Mathematik Diplom VP Numerik 13. September 004 Aufgabe 1 10 0 40 Gegeben sei die Matrix A = 80 10 10. 10 5 5 (6 Punkte) a) Skalieren (Zeilenäquilibrierung)

Mehr

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012)

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Technische Universität München Zentrum Mathematik, M1 Prof. Dr. Boris Vexler Dr. Ira Neitzel Dipl.-Math. Alana Kirchner 7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Diese Auswahl

Mehr

Institut für Geometrie und Praktische Mathematik Numerisches Rechnen WS 2013/2014. Klausur Numerisches Rechnen ( ) (Musterlösung)

Institut für Geometrie und Praktische Mathematik Numerisches Rechnen WS 2013/2014. Klausur Numerisches Rechnen ( ) (Musterlösung) Rheinisch-Westfälische Technische Hochschule Aachen Institut für Geometrie und Praktische Mathematik Numerisches Rechnen WS 03/0 Prof. Dr. Martin Grepl Dipl.-Math. Jens Berger Dr. Jochen Schütz Klausur

Mehr

(c) Gegeben sei der zweidimensionale Raum L mit den Basisfunktionen. [ φ i, φ j ] 3 i,j=1 =

(c) Gegeben sei der zweidimensionale Raum L mit den Basisfunktionen. [ φ i, φ j ] 3 i,j=1 = 1. (a) i. Wann besitzt A R n n eine eindeutige LR-Zerlegung mit R invertierbar? ii. Definieren Sie die Konditionszahl κ(a) einer Matrix A bzgl. einer Norm.! iii. Welche Eigenschaften benötigt eine Matrix

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 6/7 837 Aufgabe Punkte): Gegeben sei das lineare Gleichungssystem Ax = b mit A = 6 3 und

Mehr

Diplom VP Informatik/Numerik 9. September 2000 / Seite 1. Aufgabe 1: L-R-Zerlegung, Nachiteration / Ly = b. y = Rx = y.

Diplom VP Informatik/Numerik 9. September 2000 / Seite 1. Aufgabe 1: L-R-Zerlegung, Nachiteration / Ly = b. y = Rx = y. Diplom VP Informatik/Numerik 9 September 2000 / Seite 1 1 Pivotisierung : 2 L-R-Zerlegung von A: 3 Vorwärtseinsetzen: (pivotisierung) Aufgabe 1: L-R-Zerlegung, Nachiteration A A = 4 2 10 2 6 9 2 1 6 L

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme Vorlesungsskript HM-Numerik (SS 4): Kapitel Version: 9 Mai 4 Lineare Gleichungssysteme Gegeben: A R n n mit det(a) b R n Gesucht: x R n mit Ax = b Zeilenäquilibrierung Möchten zunächst die Kondition des

Mehr

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren 2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren Problem (P2): Löse Ax = b, A R n und b R. 2.1 Satz: Die folgenden Aussagen sind äquivalent: (i) Ax = b ist für jedes b eindeutig lösbar;

Mehr

Lösung Semesterendprüfung

Lösung Semesterendprüfung MNUM Mathematik: Numerische Methoden Herbstsemester 17 Dr Christoph Kirsch ZHAW Winterthur Aufgabe 1 : Lösung Semesterendprüfung Wir schreiben zuerst die Gleichungen f(x i ; a, a 1, a y i, i 1,,, 1, als

Mehr

(x x j ) x [a,b] n! j=0

(x x j ) x [a,b] n! j=0 IGPM RWTH Aachen Verständnisfragen-Teil NumaMB F10 (4 Punkte Es gibt zu jeder der 1 Aufgaben vier Aussagen. Diese sind mit bzw. zu kennzeichnen (hinschreiben. Es müssen alle Fragen mit oder gekennzeichnet

Mehr

Öffnen Sie den Klausurbogen erst nach Aufforderung! Mathematische Grundlagen II (CES) SS 2016 Klausur

Öffnen Sie den Klausurbogen erst nach Aufforderung! Mathematische Grundlagen II (CES) SS 2016 Klausur Prof. Dr. Benjamin Stamm Prof. Dr. Martin Grepl Öffnen Sie den Klausurbogen erst nach Aufforderung! Zugelassene Hilfsmittel: Mathematische Grundlagen II (CES) SS 2016 Klausur 29.07.2016 Dokumentenechtes

Mehr

Wiederholungsklausur Numerisches Rechnen ( ) (Musterlösung)

Wiederholungsklausur Numerisches Rechnen ( ) (Musterlösung) Rheinisch-Westfälische Technische Hochschule Aachen Institut für Geometrie und Praktische Mathematik Numerisches Rechnen WS 2010/2011 Prof. Dr. Martin Grepl Jens Berger, Jörn Thies Frings Wiederholungsklausur

Mehr

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2. MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw

Mehr

Kapitel 3. Lineare Ausgleichsrechnung. Problem: Löse A x = b, A R m n, b R m, wobei. Rang(A) < Rang([A;b])

Kapitel 3. Lineare Ausgleichsrechnung. Problem: Löse A x = b, A R m n, b R m, wobei. Rang(A) < Rang([A;b]) Kapitel 3. Lineare Ausgleichsrechnung Problem: Löse A x = b, A R m n, b R m, wobei Rang(A) < Rang([A;b]) zugelassen ist, d.h. Ax = b ist nur im weitesten Sinne lösbar. 3.1 Lineares Ausgleichsproblem: Zu

Mehr

Klausur Numerisches Rechnen ( ) (Musterlösung)

Klausur Numerisches Rechnen ( ) (Musterlösung) Rheinisch-Westfälische Technische Hochschule Aachen Institut für Geometrie und Praktische Mathematik Numerisches Rechnen WS 01/013 Prof. Dr. M. Grepl J. Berger, P. Esser, L. Zhang Klausur Numerisches Rechnen

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 5 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 21 Prof. Dr. Klaus Höllig (IMNG)

Mehr

A 1 A 2 A 3 A 4 A 5 A 6 A 7

A 1 A 2 A 3 A 4 A 5 A 6 A 7 Institut für Geometrie und Praktische Mathematik Numerisches Rechnen für Informatiker WS 7/8 Prof. Dr. H. Esser J. Grande, Dr. M. Larin Klausur Numerisches Rechnen für Informatiker Hilfsmittel: keine (außer

Mehr

Überbestimmte Gleichungssysteme

Überbestimmte Gleichungssysteme Siebente Vorlesung, 8. Mai 2008, Inhalt Überbestimmte Gleichungssysteme Kleinste Quadrate: einfaches Beispiel, elementare Herleitung Normalengleichungen Transformation mit QR-Zerlegung und SVD Nichtlineare

Mehr

Numerische Mathematik I für Ingenieure Multiple-Choice Klausuraufgaben Frühjahr 08

Numerische Mathematik I für Ingenieure Multiple-Choice Klausuraufgaben Frühjahr 08 Numerische Mathematik I für Ingenieure Multiple-Choice Klausuraufgaen Frühjahr 08 Hier einige Hinweise zu den MC-Aufgaen. Die Lösungen sollten nicht auswendig gelernt werden. Man sollte verstehen, warum

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Versus QR Matrizen mit vollem Rang 27. Mai 2011 Versus QR Inhaltsverzeichnis 1 2 3 Beispiel 4 Beispiel 5 6 Versus QR Kondition Vergleich Beispiel Versus QR Zu finden: Gerade, die den Punkten (0, 6), (1,

Mehr

Begleitmaterial zur Vorlesung Numerik I

Begleitmaterial zur Vorlesung Numerik I Begleitmaterial zur Vorlesung Numerik I Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik I 1 / 49 Inhalte der Numerik

Mehr

Ausgleichsprobleme. 3 Nichtlineare Ausgleichsprobleme

Ausgleichsprobleme. 3 Nichtlineare Ausgleichsprobleme 1 Normalengleichung Ausgleichsprobleme A T A T = AA 2 Orthogonalisierungsverfahren A = Q R 3 Nichtlineare Ausgleichsprobleme Typeset by FoilTEX 1 Motivation Ausgleichsprobleme treten meist dann auf, wenn

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b

Mehr

Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen

Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Wintersemester 2012/201 Zwischentest Teil 1: 1. Was bedeuten die Bezeichnungen O(h) und o(h)? (Definition) (siehe Skript!)

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2015 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8 Such-Algorithmen

Mehr

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

Zusammenfassung Numerische Mathematik für Elektrotechniker

Zusammenfassung Numerische Mathematik für Elektrotechniker Zusammenfassung Numerische Mathematik für Elektrotechniker RWTH Aachen, SS 2006, Prof. Dr. W. Dahmen c 2006 by Sebastian Strache, Ralf Wilke Korrekturen bitte an Ralf.Wilke@rwth-aachen.de 27. August 2006

Mehr

d) Produkte orthogonaler Matrizen sind wieder orthogonal.

d) Produkte orthogonaler Matrizen sind wieder orthogonal. Die orthogonale Matrizen Definition: Eine Matrix Q R n n heißt orthogonal, falls QQ T = Q T Q = I gilt. Die Eigenschaften orthogonaler Matrizen: a) det(q) = ±1; b) Qx 2 = x 2 für alle x R n, also Q 2 =

Mehr

Öffnen Sie den Klausurbogen erst nach Aufforderung! Mathematische Grundlagen II (CES) WS 2016/17 Klausur

Öffnen Sie den Klausurbogen erst nach Aufforderung! Mathematische Grundlagen II (CES) WS 2016/17 Klausur Prof. Dr. Benjamin Stamm Prof. Dr. Martin Grepl Öffnen Sie den Klausurbogen erst nach Aufforderung! Zugelassene Hilfsmittel: Mathematische Grundlagen II (CES) WS 2016/17 Klausur 17.03.2017 Dokumentenechtes

Mehr

Lineare Algebra. 10. Übungsstunde. Steven Battilana.

Lineare Algebra. 10. Übungsstunde. Steven Battilana. Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch November 3, 26 Erinnerung Gram-Schmidt Verfahren Sei V ein euklidischer/unitärer Vektorraum mit dim(v ) n < Gegeben: W span{v,...,

Mehr

19. Januar Universität Erlangen-Nürnberg Department Mathematik PD Dr. Markus Bause. . Danach liefert die Gauss-Elinination. .

19. Januar Universität Erlangen-Nürnberg Department Mathematik PD Dr. Markus Bause. . Danach liefert die Gauss-Elinination. . Universität Erlangen-Nürnberg Department Mathematik PD Dr Markus Bause Numerik I 9 Januar A Gegeben sei die Matrix A = a Führen Sie eine Zeilenskalierung der Matrix durch Klausur b Bestimmen Sie mit Hilfe

Mehr

Kapitel 2: Lineare Gleichungssysteme

Kapitel 2: Lineare Gleichungssysteme Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 2: Lineare Gleichungssysteme Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 205 HM: Numerik (SS 205), Kapitel

Mehr

2 Direkte Lösungsverfahren für lineare Gleichungen

2 Direkte Lösungsverfahren für lineare Gleichungen (2.1) Sei x = (x n ) n=1,...,n R N, A = (a m,n ) m=1,...,m, n=1,...,n R M,N. a) Sei 1 m n N. Dann ist x[m : n] = (x k ) k=m,...,n R 1+n m Teilvektor von x. b) Seien 1 m 1 m 2 M, 1 n 1 n 2 N. Dann ist A[m

Mehr

Banach scher Fixpunktsatz. 1) D ist abgeschlossen und konvex; 2) f ist selbstabbildend, d.h. f(d) D;

Banach scher Fixpunktsatz. 1) D ist abgeschlossen und konvex; 2) f ist selbstabbildend, d.h. f(d) D; Institut für Geometrie und Praktische Mathematik Höhere Mathematik IV (für Elektrotechniker und Technische Informatiker) - Numerik - SS 2007 Dr. S. Börm, Dr. M. Larin Banach scher Fixpunktsatz Gegeben

Mehr

MODULPRÜFUNG MODUL MA 1302 Einführung in die Numerik

MODULPRÜFUNG MODUL MA 1302 Einführung in die Numerik ................ Note Name Vorname 1 I II Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Obige Angaben sind richtig: Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT

Mehr

LR Zerlegung. Michael Sagraloff

LR Zerlegung. Michael Sagraloff LR Zerlegung Michael Sagraloff Beispiel eines linearen Gleichungssystems in der Ökonomie (Input-Output Analyse Wir nehmen an, dass es 3 Güter G, G, und G 3 gibt Dann entspricht der Eintrag a i,j der sogenannten

Mehr

Computergestützte Mathematik zur Linearen Algebra

Computergestützte Mathematik zur Linearen Algebra Computergestützte Mathematik zur Linearen Algebra Pivotwahl und Gleitkommaarithmetik Achim Schädle 3. und 20. Dezember 208 Achim Schaedle (HHU) CompLinA 3. und 20. Dezember 208 Instabilitäten bei Gauß-Elimination

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2017 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8

Mehr

1 Singulärwertzerlegung und Pseudoinverse

1 Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung A sei eine Matrix mit n Spalten und m Zeilen. Zunächst sei n m. Bilde B = A A. Dies ist eine n n-matrix. Berechne die Eigenwerte von B. Diese

Mehr

Klausur Numerisches Rechnen ( ) (Musterlösung)

Klausur Numerisches Rechnen ( ) (Musterlösung) Rheinisch-Westfälische Technische Hochschule Aachen Institut für Geometrie und Praktische Mathematik Numerisches Rechnen WS / Prof. Dr. M. Grepl P. Esser, G. Welper, L. Zhang Klausur Numerisches Rechnen

Mehr

Matrixzerlegungen. 6. Vorlesung Numerische Methoden I. Clemens Brand. 2. April Nachträge und Wiederholung. Links-Rechts- Zerlegung

Matrixzerlegungen. 6. Vorlesung Numerische Methoden I. Clemens Brand. 2. April Nachträge und Wiederholung. Links-Rechts- Zerlegung Matrixzerlegungen. 6. Vorlesung 170004 Numerische Methoden I Clemens Brand QR- QR- 2. April 2009 Gliederung Elimination faktorisiert A = L R QR- QR- QR- QR- Eine Zusammenfassung der Folien 6 14 der letzten

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

PS Numerische Mathematik für LAK WS 08/09, LV-Nr.: , HS Übungsblatt (bis )

PS Numerische Mathematik für LAK WS 08/09, LV-Nr.: , HS Übungsblatt (bis ) . Übungsblatt (bis 5.0.2008). Aufgabe. Skizzieren Sie die Einheitskugeln K (0,) im R 2 für die Normen, 2 und. 2. Aufgabe. Beweisen Sie x x 2 n x für alle x R n. 3. Aufgabe. Bestimmen Sie die relative Konditionszahl

Mehr

Erweiterungen der LR-Zerlegung

Erweiterungen der LR-Zerlegung Prof. Thomas Richter 6. Juli 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomas.richter@ovgu.de Material zur Vorlesung Algorithmische Mathematik II am 06.07.2017 Erweiterungen

Mehr

Rechenaufwand der LR- und LDL T - Zerlegung

Rechenaufwand der LR- und LDL T - Zerlegung 6. Großübung Rechenaufwand der LR- und LDL T - Zerlegung Rückwärtseinsetzen Der Algorithmus kann der Folie 3.0 entnommen werden. Dieser kann in die folgenden Rechenoperationen aufgesplittet werden: Für

Mehr

MODULPRÜFUNG Numerische Methoden (Elektrotechnik, Meteorologie, Geodäsie und Geoinformatik)

MODULPRÜFUNG Numerische Methoden (Elektrotechnik, Meteorologie, Geodäsie und Geoinformatik) Karlsruher Institut für Technologie KIT) Institut für Analysis Dr. S. Wugalter Herbst 7.9.7 MODULPRÜFUNG Numerische Methoden Elektrotechnik, Meteorologie, Geodäsie und Geoinformatik) Aufgabe 4 Punkte)

Mehr

Gaußsche Ausgleichsrechnung

Gaußsche Ausgleichsrechnung Kapitel 6 Gaußsche Ausgleichsrechnung 6. Gaußsche Methode der kleinsten Fehlerquadrate Die Gaußsche Methode der kleinsten Fehlerquadrate wurde 89 von C.F. Gauß in dem Aufsatz Theorie der Bewegung der Himmelkörper

Mehr

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei die Matrix

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei die Matrix Name: Matr.-Nr.: 2 Aufgabe 1. Gegeben sei die Matrix 1 1 1 A = 3 3 3 2 2 2 (a) Bestimmen Sie Rang(A), Kern(A) und Bild(A). Ist A invertierbar? Geben Sie zwei verschiedene rechte Seiten b 1, b 2 an, so

Mehr

Lineare Algebra und Numerische Mathematik D-BAUG. Winter 2013 Prof. H.-R. Künsch. , a R. det(a) = 0 a = 1.

Lineare Algebra und Numerische Mathematik D-BAUG. Winter 2013 Prof. H.-R. Künsch. , a R. det(a) = 0 a = 1. b Musterlösung Lineare Algebra und Numerische Mathematik D-BAUG. Multiple Choice) Gegeben sei die folgende Matrix Winter 3 Prof. H.-R. Künsch A = a a) deta) = genau dann wenn gilt x a =. a =. ), a R. x

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R. Käppeli L. Herrmann W. Wu Herbstsemester 2016 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 6 Aufgabe 6.1 Berechnen Sie die Determinanten der beiden

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 9. Aufgabe 9.1. Herbstsemester Dr. V. Gradinaru D. Devaud A.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 9. Aufgabe 9.1. Herbstsemester Dr. V. Gradinaru D. Devaud A. Dr V Gradinaru D Devaud A Hiltebrand Herbstsemester 2014 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 9 Aufgabe 91 91a) Sei A eine n n-matrix Das Gleichungssystem Ax

Mehr

a ij x j max a ik = x 1 max max a ij x 0. a ij = e k 1 max

a ij x j max a ik = x 1 max max a ij x 0. a ij = e k 1 max 2.1 a) Sei x R n fest, aber beliebig gewählt. Sei i 0 {1,...,n} ein Index mit Dann gilt zunächst x i0 = max,...,n x i. x = max x i = x i0 = ( x i0 p) ( ) 1/p 1/p x i p = x p,...,n für alle p 1. Umgekehrt

Mehr

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching October 2, 207 Erinnerung Definition. Ein Skalarprodukt ist eine Abbildung, : E n E n E, v, w v, w = n k= v

Mehr

MAV-NUM Applied Numerics Frühlingssemester Serie 4. (a) Berechnen Sie per Hand die LR-Zerlegung der Matrix

MAV-NUM Applied Numerics Frühlingssemester Serie 4. (a) Berechnen Sie per Hand die LR-Zerlegung der Matrix MAV-NUM Applied Numerics Frühlingssemester 08 Dr. Evelyne Knapp ZHAW Winterthur Serie 4 Aufgabe (LR Zerlegung Theorie): (a) Berechnen Sie per Hand die LR-Zerlegung der Matrix 3 0 0 0 (b) Lösen Sie mit

Mehr

Numerik 1 Eine Zusammenfassung

Numerik 1 Eine Zusammenfassung Numerik 1 Eine Zusammenfassung Steffi, Balthasar, Julian und Julian WS 2009/2010 - M Bause Contents 1 Fehleranalyse 3 11 Kondition eines Problems 3 111 Definition einer Norm 3 112 Relative & absolute Kondition

Mehr

3 Lineare Algebra Vektorräume

3 Lineare Algebra Vektorräume 3 Lineare Algebra Vektorräume (31) Sei K ein Körper Eine kommutative Gruppe V bzgl der Operation + ist ein Vektorraum über K, wenn eine Operation : K V V (λ, v) λv existiert mit i) v,w V λ,µ K: λ (v +

Mehr

Übungsaufgaben zur Numerischen Mathematik für Ingenieure. a) Bestimme die normalisierte Dezimaldarstellung der folgenden Dualzahlen

Übungsaufgaben zur Numerischen Mathematik für Ingenieure. a) Bestimme die normalisierte Dezimaldarstellung der folgenden Dualzahlen RWTH Aachen Institut für Geometrie und Praktische Mathematik Übungsaufgaben zur Numerischen Mathematik für Ingenieure 2 Fehleranalyse: Kondition, Rundungsfehler, Stabilität Aufgabe 2. a) Bestimme die normalisierte

Mehr

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,...

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,... Cramersche Regel Satz 2.4. Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei A j := (a,...,a j,b,a j+,...,a n ) also die Matrix, die entsteht, wenn in A die j-spalte durch den

Mehr

Numerisches Rechnen Panikzettel

Numerisches Rechnen Panikzettel panikzettel.philworld.de Numerisches Rechnen Panikzettel der Dude, Luca Oeljeklaus, Tobias Polock, Philipp Schröer, Caspar Zecha Version 9 0.03.208 Inhaltsverzeichnis Einleitung 2 2 Fehleranalyse: Kondition,

Mehr

4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung

4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung 4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung In vielen Anwendungen treten lineare Gleichungssysteme auf, die eine unterschiedliche Anzahl von Gleichungen und Unbekannten besitzen: Ax

Mehr

Numerische Mathematik

Numerische Mathematik Numerische Mathematik SS 999 Augabe 6 Punkte Das Integral I ln d soll numerisch bis au eine Genauigkeit von mindestens - approimiert werden. a Wie groß muss die Anzahl N der Teilintervalle sein damit mit

Mehr

Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min)

Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min) Lehrstuhl für Angewandte Mathematik Montanuniversität Leoben 70 004 Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan. 207 2:00-4:00 (20 min) Name Matrikelnummer Mündliche Prüfung: Bitte markieren

Mehr

3. Lineare Gleichungssysteme

3. Lineare Gleichungssysteme 3. Lineare Gleichungssysteme 1 3.1. Problemstellung 2 3.2. Direkte Verfahren 3 3.3. Normen und Fehleranalyse 4 3.4. Iterative Verfahren 5 3.5. Konvergenz von linearen Iterationsverfahren 6 3.6. Gradienten-Verfahren

Mehr

Klausur zur Vordiplom-Prüfung

Klausur zur Vordiplom-Prüfung Technische Universität Hamburg-Harburg SS 25 Arbeitsbereich Mathematik Dr. Jens-Peter M. Zemke Klausur zur Vordiplom-Prüfung Numerische Verfahren 22. Juli 25 Sie haben 9 Minuten Zeit zum Bearbeiten der

Mehr

Musterlösungen zur Leistungsnachweisklausur vom Studiengang Informatik, Ingenieurinformatik, Lehramt

Musterlösungen zur Leistungsnachweisklausur vom Studiengang Informatik, Ingenieurinformatik, Lehramt TU ILMENAU Institut für Mathematik Numerische Mathematik PD Dr. W. Neundorf Musterlösungen zur Leistungsnachweisklausur vom.0.006 Studiengang Informatik, Ingenieurinformatik, Lehramt 1. Lineare Algebra

Mehr

Nichtlineare Ausgleichsrechnung

Nichtlineare Ausgleichsrechnung 10. Großübung Nichtlineare Ausgleichsrechnung Allgemeines Problem: Wir betrachten ein nichtlineares System F : R n R m mit (m > n, d.h. das System ist überbestimmt und F i (x g(t i ; x g i! 0 i 1,.., m.

Mehr

y (k) (0) = y (k) y(z) = c 1 e αz + c 2 e βz. c 1 + c 2 = y 0 k=1 k=1,...,m y k f k (x)

y (k) (0) = y (k) y(z) = c 1 e αz + c 2 e βz. c 1 + c 2 = y 0 k=1 k=1,...,m y k f k (x) 9 Ausgleichsrechnung 9.1 Problemstelllung Eine Reihe von Experimenten soll durchgeführt werden unter bekannten Versuchsbedingungen z Ê m. Es sollen Größen x Ê n bestimmt werden, für die ein Gesetz gelten

Mehr

Ausgleichsproblem. Definition (1.0.3)

Ausgleichsproblem. Definition (1.0.3) Ausgleichsproblem Definition (1.0.3) Gegeben sind n Wertepaare (x i, y i ), i = 1,..., n mit x i x j für i j. Gesucht ist eine stetige Funktion f, die die Wertepaare bestmöglich annähert, d.h. dass möglichst

Mehr

Lineare Gleichungssysteme, LR-Zerlegung

Lineare Gleichungssysteme, LR-Zerlegung Prof Thomas Richter 2 Juni 27 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomasrichter@ovgude Material zur Vorlesung Algorithmische Mathematik II am 22627 Lineare Gleichungssysteme,

Mehr

Ökonometrische Analyse

Ökonometrische Analyse Institut für Statistik und Ökonometrie, Freie Universität Berlin Ökonometrische Analyse Dieter Nautz, Gunda-Alexandra Detmers Rechenregeln für Matrizen Notation und Matrixeigenschaften: Eine Matrix A der

Mehr

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR LR-Zerlegung bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR Definition 2.17 Unter einer LR-Zerlegung einer Matrix A R n n verstehen wir eine

Mehr

1 Euklidische Approximation

1 Euklidische Approximation 1 Euklidische Approximation Sei V ein reeller euklidischer Vektorraum. Das Skalarprodukt in V wird mit, V und die Norm mit V bezeichnet. V N V sei ein Teilraum der Dimension N < mit Basis {φ n } n=1,...,n.

Mehr

4 Lineare Ausgleichsrechnung

4 Lineare Ausgleichsrechnung Numerik I 15 4 Lineare Ausgleichsrechnung Die folgende Tabelle zeigt die Bevölkerungsentwicklung in den U.S.A. 19 191 192 193 194 75.995 91.972 15.711 123.23 131.669 195 196 197 198 199 15.697 179.323

Mehr

Lösungen zu Blatt 13 der Übungen zur Vorlesung Numerik, LMU München, Wintersemester 2016/2017

Lösungen zu Blatt 13 der Übungen zur Vorlesung Numerik, LMU München, Wintersemester 2016/2017 Lösungen zu Blatt 13 der Übungen zur Vorlesung Numerik, LMU München, Wintersemester 01/017 Peter Philip, Sabine Bögli. Januar 017 1. 10 Punkte) a) Betrachten Sie R mit der Maximumsnorm. Berechnen Sie die

Mehr

Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau,

Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau, Universität Siegen, Department Maschinenbau, 7.7. Aufgabe y 3 l 3 3 F l l x Das dargestellte Fachwerk soll statisch mit Hilfe der FEM untersucht werden. Die Knoten und Elemente sind in der Abbildung nummeriert.

Mehr

Lineare Gleichungssysteme: direkte Verfahren

Lineare Gleichungssysteme: direkte Verfahren Sechste Vorlesung, 24. April 2008, Inhalt Lineare Gleichungssysteme: direkte Verfahren Dreiecksmatrizen Gauß-Elimination LR-Zerlegung Anwendungen: Determinante, Inverse 1 Lösungsverfahren für lineare Gleichungssysteme

Mehr

Gliederung. Links-Rechts-Zerlegung Elimination faktorisiert A = L R. Determinante Inverse. Kleinste Quadrate. Lösung durch. Links-Rechts- Zerlegung

Gliederung. Links-Rechts-Zerlegung Elimination faktorisiert A = L R. Determinante Inverse. Kleinste Quadrate. Lösung durch. Links-Rechts- Zerlegung Matrixzerlegungen. 7. Vorlesung 170004 Numerische Methoden I Clemens Brand 29. April 2010 Gliederung Elimination faktorisiert A = L R Die A = L R Faktorisieren: Zerlege A in ein Produkt (einfacherer) Angenommen,

Mehr