Zusammenfassung. Warum polynomielle Reduktionen? Definition NP-vollständig [K5.1.1] NP-Vollständigkeitstheorie [K5]

Größe: px
Ab Seite anzeigen:

Download "Zusammenfassung. Warum polynomielle Reduktionen? Definition NP-vollständig [K5.1.1] NP-Vollständigkeitstheorie [K5]"

Transkript

1 Warum polynomielle Reduktionen? erlauben feinere Unterteilungen von Komplexitätsklassen als Turing- Reduktionen, genügen für die betrachteten Probleme, für alle von uns betrachteten Komplexitätsklassen C gilt: A p B und B C A C, für T gilt dies möglicherweise nicht, historisch bedingt. Zusammenfassung 2-DM, NF, Meisterschaft P Partition p BP SAT = p 3-SAT p p IS = p Clique = p VC DHC = p HC = p TSP 2,,sym NP-Vollständigkeitstheorie [K5] Ziel: Finde eine Klasse von Problemen, die viele praktisch relevante Probleme enthält, die außerhalb von P liegt, wenn P NP gilt. Idee: Suche Äquivalenzklasse von = p mit den schwierigsten Problemen in NP. Schwierigste Probleme : diejenigen, auf die sich alle anderen reduzieren lassen. Definition NP-vollständig [K5.1.1] Sei A ein Entscheidungsproblem. A heißt NP-vollständig (bez. p ), falls 1. A NP und 2. L NP: L p A. Analog kann C-vollständig (bez. ) für andere Komplexitätsklassen C und andere Reduktionsbegriffe ( ) definiert werden

2 Definition NP-schwer [K5.1.2] Eigenschaften v. NP-vollst. Probl. Sei A ein Problem. A heißt NP-schwer (NP-hart), falls L NP: L T A. A heißt NP-einfach (NP-leicht), falls L NP: A T L. A heißt NP-äquivalent, falls A NP-einfach und NP-schwer ist. Die NP-vollständigen Probleme bilden eine Äquivalenzklasse von = p. Beweis: 1. Seien A und B NP-vollständig A NP und L NP: L p B A p B. Analog folgt: B p A. 2. Sei A= p B und sei B NP-vollständig A NP und Beachte: Hier T statt p. L NP: L p A (später) Eigenschaften v. NP-vollst. Probl. Falls ein NP-vollständiges oder NPschweres Problem einen polyn. Algorithmus hat, folgt P=NP. Kontraposition: Falls P NP, hat kein NPvollständiges und kein NP-schweres Problem einen polyn. Algorithmus. Ist P NP oder P=NP? Es sind Tausende von NP-vollständigen Problemen bekannt; für keines kennt man einen polyn. Algorithmus. Vermutung: P NP. Beweis schwierig, da man eine Aussage über alle polyn. Algorithmen beweisen muss. Für die Lösung der Frage: Preisgeld von 1 Million Dollar

3 Probleme in NP 1. Schritt eines NP-Vollständigkeitsbeweises: Zeige, dass das Problem in NP. Für alle betrachteten (Entsch.)Probleme ist dies sehr einfach: Sei n die Eingabelänge und l(n) die Länge möglicher Lösungen. Erzeuge l(n) Zufallsbits. Teste in polyn. Zeit, ob diese eine Lösung codieren. 198 Beispiel: TSP dec Eingabe: n Städte, Entfernungsmatrix, Schranke B. Nichtdet. Algorithmus: Erzeuge n log n Zufallsbits. Teste, ob in den n Blöcken mit log n Bits jede Zahl aus 1,...,n genau einmal vorkommt. Interpretiere diese Folge als Permutation, berechne die Kosten der zug. Tour und vergleiche das Ergebnis mit B. 199 Analyse Offensichtlich: Rechenzeit polynomiell. 1. Fall: Eingabe hat Lösung mit Kosten B. Diese Lösung wird mit Wkeit >0 ausgewürfelt. 2. Fall: Eingabe hat keine Lsg. mit Kosten B. Dann wird keine solche Lösung ausgewürfelt. Analoge Vorgehensweise funktioniert für sehr viele weitere Probleme. NP enthält die Entscheidungsprobleme, bei denen die Korrektheit einer gegebenen Lösung in polynomieller Zeit überprüft werden kann. Insgesamt: TSP dec NP

4 2. Schritt eines NP-Vollständigkeitsbeweises: Zeige, dass sich alle Probleme aus NP auf das betrachtete Problem reduzieren lassen. Offensichtlich schwieriger. Überblick: 1. Vorbereitende Schritte: - Alternative Charakterisierung von NP. - Stereotype Turingmaschinen. 2. Satz von Cook: SAT ist NP-vollständig. Alternative Charakt. von NP [K5.3] Beweis von TSP dec NP hatte 2 Phasen: 1. Erzeugung der Zufallsbits ( Raten ). 2. Verifikation, dass diese eine Lösung codieren deterministische Rechnung. Rate-Verifikations-Modus von NTMs Beobachtung: Jeder polyn. zeitbeschränkte randomisierte Algorithmus kann in den Rate-Verifikations-Modus gebracht werden Rate-Verifikations-Modus Umwandlung eines rand. Algorithmus: Bei Eingabelänge n genügen p(n) Zufallsbits, wobei p Polynom. 1. Rate-Phase: Erzeuge p(n) Zufallsbits und speichere diese. 2. Verifikationsphase: Simuliere den geg. Algorithmus. Immer wenn er ein Zufallsbit braucht, nimm ein neues der gespeicherten Zufallsbits. Resultat: Äquivalenter randomisierter Algo. 204 Deterministische Simulation von NP Satz K5.3.1: Jedes Problem aus NP kann deterministisch in Zeit 2 q(n) für ein geeignetes Polynom q gelöst werden. Beweis: Sei L NP und A ein nichtdet. Rate-Verif.-Algo für L mit Rechenzeitschranke p(n). Zähle alle 2 p(n) Strings aus {0,1} p(n) auf und simuliere nacheinander A für diese Wahl von Zufallsbits. Rechenzeit: O(2 p(n) p(n)) 2 q(n). 205

5 Charakterisierung von NP Satz K5.3.2: Die folgenden Aussagen sind äquivalent: 1. L NP. 2. Es gibt ein Entscheidungsproblem L P und ein Polynom p, so dass L = {x z {0,1} p(n) : (x,z) L }. Beweis: : Sei L NP und A ein nichtdet. Rate- Verif.-Algo mit Rechenzeitschranke p(n). L : Sprache, die von der (determ.) Verifikationsphase akzept. wird L P. 206 : Seien L und p gemäß 2. gegeben. Konstruktion einer NTM für L: Schreibe zufällig p(n) Bits Vektor z. Simuliere die DTM M für L auf der Eingabe x und dem Zufallsvektor z. Analyse: - x L z {0,1} p(n) : (x,z) L. Dieses z wird mit positiver Wkeit erzeugt. - x L z {0,1} p(n) : (x,z) L. Also wird mit Wkeit 0 akzeptiert. 207 Charakterisierung von co-np Beweis durch Nachrechnen Erinnerung: co-np ist die Menge der Entscheidungsprobleme, deren Komplement in NP ist. Folgerung: Folgende Aussagen sind äquivalent: 1. L co-np. 2. Es gibt ein Entscheidungsproblem L P und ein Polynom p, so dass L = {x z {0,1} p(n) : (x,z) L } 208 L co-np L NP Es gibt L P und ein Polynom p mit L = {x z {0,1} p(n) : (x,z) L } Es gibt L P und ein Polynom p mit L = {x z {0,1} p(n) : (x,z) L } L P 209

6 Ist NP=co-NP? Wir haben gezeigt: L NP Es gibt L P und ein Polynom p mit L = {x z {0,1} p(n) : (x,z) L } L co-np Es gibt L P und ein Polynom p mit L = {x z {0,1} p(n) : (x,z) L } Stereotype Turingmaschinen Noch unrealistischere Variante von Turingmaschinen, die Beweise einfacher macht. Definition: Eine Turingmaschine heißt stereotyp (engl. oblivious), wenn die Kopfposition bis zum Halten der Maschine nur von der Nummer des Rechenschritts abhängt. Vermutung: NP co-np Stereotype Simulation Lemma K5.4.2: Jede TM M kann durch eine stereotype TM M simuliert werden. Für t Schritte von M genügen O(t 2 ) Schritte. Wenn M deterministisch (randomisiert) ist, dann ist es auch M. t=1 t= Schritte 8 Schritte Idee: Zum Zeitpunkt t ist der Kopf von M im Bereich t,...,t. t=3 M probiert alle möglichen Positionen aus. 12 Schritte

7 Ablaufen der möglichen Kopfpos. Setze Markierungen und an Position 0. In jedem simulierten Schritt: Verschiebe um 1 nach rechts. Verschiebe um 1 nach links. Kostet 4j Schritte für die Simulation des j-ten Schritts. Insgesamt Schritte. 214 Simulation von M Verwende weitere Markierung K, um Kopfpos. von M zu merken. Speichere den Zustand q von M. Wenn K gefunden: δ(q,a) berechnen und speichern. Kopfbewegung 0: K nicht verändern. Kopfbewegung 1 und Durchlauf nach rechts: K im nächsten Schritt schreiben. Kopfbewegung 1 und Durchlauf nach links: K beim Rücklauf des Kopfes schreiben. 215 Realisierung der Markierungen Vergrößerung des Bandalphabets. Sei Γ das Bandalphabet der zu sim. TM. Neues Bandalphabet: Γ = Γ {,B} {,B} {K,B} Der Satz von Cook [K5.4] Satz K5.4.3: SAT ist NP-vollständig. Zur Erinnerung: Definition von SAT Eingabe: Formel F in konjunktiver Form. Frage: Gibt es eine Belegung x der Variablen, so dass F (x)=1? Aufwändiger Beweis

8 Nutzen Weitere NP-Vollständigkeitsbeweise werden einfacher. Lemma: Sei A NP-vollständig, A p B und B NP. Dann ist auch B NP-vollständig. Beweis: SAT ist NP-vollständig 1. SAT NP: - Variablenbelegung auswürfeln. - Teste, ob geg. Formel erfüllt. L NP: L p A p B Trans. von p : L NP: L p B B NP B NP-vollständig

Rechenzeit für A. Sei t B die Rechenzeit eines Algo für B. Seien p,q,r monotone Polynome ( +).

Rechenzeit für A. Sei t B die Rechenzeit eines Algo für B. Seien p,q,r monotone Polynome ( +). Rechenzeit für A Sei t B die Rechenzeit eines Algo für B. Seien p,q,r monotone Polynome ( +). Rechenzeit des resultierenden Algo für A: t A (n) p(n) + q(n) t B (r(n)). Ist polynomiell, falls t B Polynom.

Mehr

NP-vollst. u. NP-äquiv. Probleme

NP-vollst. u. NP-äquiv. Probleme NP-vollst. u. NP-äquiv. Probleme Literatur: Kapitel K6. Ziel: Weitere Probleme kennen lernen (und damit weitere Basisprobleme für eigene Reduktionen) Weitere Beispiele für NP-Vollständigkeitsbeweise kennen

Mehr

Erfüllbarkeitsprobleme. Begriffe. Varianten von SAT

Erfüllbarkeitsprobleme. Begriffe. Varianten von SAT Erfüllbarkeitsprobleme SAT (satisfiability problem) Eingabe: Formel F in konjunktiver Form. Frage: Gibt es eine Belegung x der Variablen in F mit F(x)=1? Beispiel: Begriffe erfüllbar satisfiable: Eigenschaft

Mehr

Zeitkomplexität (1) Proseminar Theoretische Informatik. Proseminar Theoretische Informatik: Lisa Dohrmann 1

Zeitkomplexität (1) Proseminar Theoretische Informatik. Proseminar Theoretische Informatik: Lisa Dohrmann 1 Zeitkomplexität (1) Proseminar Theoretische Informatik Proseminar Theoretische Informatik: Lisa Dohrmann 1 Warum Komplexitätsbetrachtung? Ein im Prinzip entscheidbares und berechenbares Problem kann in

Mehr

Die Komplexitätsklassen P und NP

Die Komplexitätsklassen P und NP Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

Theorie der Informatik. Theorie der Informatik P und NP Polynomielle Reduktionen NP-Härte und NP-Vollständigkeit

Theorie der Informatik. Theorie der Informatik P und NP Polynomielle Reduktionen NP-Härte und NP-Vollständigkeit Theorie der Informatik 13. Mai 2015 20. P, NP und polynomielle Reduktionen Theorie der Informatik 20. P, NP und polynomielle Reduktionen 20.1 P und NP Malte Helmert Gabriele Röger 20.2 Polynomielle Reduktionen

Mehr

Lösungen zur Vorlesung Berechenbarkeit und Komplexität

Lösungen zur Vorlesung Berechenbarkeit und Komplexität Lehrstuhl für Informatik 1 WS 009/10 Prof. Dr. Berthold Vöcking 0.0.010 Alexander Skopalik Thomas Kesselheim Lösungen zur Vorlesung Berechenbarkeit und Komplexität. Zulassungsklausur Aufgabe 1: (a) Worin

Mehr

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, NP 254/ 333 Polynomielle Verifizierer und NP Ḋefinition Polynomieller

Mehr

Die Klasse NP und die polynomielle Reduktion

Die Klasse NP und die polynomielle Reduktion Die Klasse NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Dezember 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Härte von Hamilton-Kreis und TSP Überblick über die Komplexitätslandschaft

Härte von Hamilton-Kreis und TSP Überblick über die Komplexitätslandschaft Härte von Hamilton-Kreis und TSP Überblick über die Komplexitätslandschaft Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 5. Februar 2010 Berthold Vöcking, Informatik

Mehr

Die Klasse NP und die polynomielle Reduktion. Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen

Die Klasse NP und die polynomielle Reduktion. Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Die Klasse NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 26 Optimierungsprobleme und ihre Entscheidungsvariante Beim Rucksackproblem

Mehr

Theoretische Informatik II

Theoretische Informatik II Theoretische Informatik II Einheit 5.2 Das P N P Problem 1. Nichtdeterministische Lösbarkeit 2. Sind N P-Probleme handhabbar? 3. N P-Vollständigkeit Bei vielen schweren Problemen ist Erfolg leicht zu testen

Mehr

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V7, 5.12.2011 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar

Mehr

Berechenbarkeit und Komplexität: Polynomielle Reduktion / NP-Vollständigkeit / Satz von Cook und Levin

Berechenbarkeit und Komplexität: Polynomielle Reduktion / NP-Vollständigkeit / Satz von Cook und Levin Berechenbarkeit und Komplexität: Polynomielle Reduktion / NP-Vollständigkeit / Satz von Cook und Levin Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität 11. Januar 2008 Wiederholung

Mehr

Wissenschaftliche Arbeitstechniken und Präsentation. NP-Vollständigkeit

Wissenschaftliche Arbeitstechniken und Präsentation. NP-Vollständigkeit Wissenschaftliche Arbeitstechniken und Präsentation Dominik Fakner, Richard Hentschel, Hamid Tabibian, den 20.01.2012 Inhalt Definitionen Definition Nachweis Beispiel Reduktion Komplexitätsklasse Befasst

Mehr

Einführung (1/3) Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (1) Vorlesungen zur Komplexitätstheorie.

Einführung (1/3) Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (1) Vorlesungen zur Komplexitätstheorie. Einführung (1/3) 3 Wir verfolgen nun das Ziel, Komplexitätsklassen mit Hilfe von charakteristischen Problemen zu beschreiben und zu strukturieren Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit

Mehr

NP Vollständigkeit. Patryk Mazur

NP Vollständigkeit. Patryk Mazur NP Vollständigkeit Patryk Mazur 04.05.2010 0.Gliderung 1. Einführung 1. Definitionen P, NP, conp, EXP, NEXP 2. Bekannte Zusammenhänge zwischen dem Klassen 3. Hypothesen zu deren zusammenhängen und deren

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 16.11.2010 INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 5. Dezember 2017 INSTITUT FÜR THEORETISCHE 0 05.12.2017 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität

Mehr

Polynomielle Verifizierer und NP

Polynomielle Verifizierer und NP Polynomielle Verifizierer und NP Definition Polynomieller Verifizierer Sei L Σ eine Sprache. Eine DTM V heißt Verifizierer für L, falls V für alle Eingaben w Σ hält und folgendes gilt: w L c Σ : V akzeptiert

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Übung am 16.12.2010 INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 18. Vorlesung 22.12.2006 1 Komplexitätstheorie - Zeitklassen Komplexitätsmaße Wiederholung: O,o,ω,Θ,Ω Laufzeitanalyse Die Komplexitätsklassen

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 06. Dezember 2011 INSTITUT FÜR THEORETISCHE 0 KIT 06.12.2011 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

3 Probabilistische Komplexitätsklassen

3 Probabilistische Komplexitätsklassen 3 Probabilistische Komplexitätsklassen 3.1 Probabilistische Turingmaschinen 3.1 Wir gehen davon aus, dass die Konzepte deterministischer und nichtdeterministischer Turingmaschinen im wesentlichen bekannt

Mehr

Formale Grundlagen der Informatik 1 Kapitel 21 P und NP

Formale Grundlagen der Informatik 1 Kapitel 21 P und NP Formale Grundlagen der Informatik 1 Kapitel 21 Frank Heitmann heitmann@informatik.uni-hamburg.de 28. Juni Frank Heitmann heitmann@informatik.uni-hamburg.de 1/41 Die Klassen Probleme in P := {L es gibt

Mehr

Randomisierte Algorithmen Algorithmen, die Zufallsbits benutzen können. Fehlerfreie Algorithmen (Las-Vegas-Alg)

Randomisierte Algorithmen Algorithmen, die Zufallsbits benutzen können. Fehlerfreie Algorithmen (Las-Vegas-Alg) Wiederholung Randomisierte Algorithmen Algorithmen, die Zufallsbits benutzen können. Fehlerfreie Algorithmen (Las-Vegas-Alg) Komplexitätsklassen: EP=ZPP Algorithmen mit Fehlern (Monte-Carlo-Alg) Zweiseitiger

Mehr

subexponentielle Algorithmen (d.h. Laufzeiten wie z. B. 2 n oder

subexponentielle Algorithmen (d.h. Laufzeiten wie z. B. 2 n oder Wie schwer ist SAT? Ziel: Nachweis, dass SAT eines der schwersten Probleme in NP ist: SAT ist das erste bekannte Beispiel eines NP-vollständigen Problems. Demnach kann SAT mit bisher bekannten Techniken

Mehr

NP-Vollständigkeit des Erfüllbarkeitsproblems

NP-Vollständigkeit des Erfüllbarkeitsproblems NP-Vollständigkeit des Erfüllbarkeitsproblems Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 25 Def: NP-Härte Definition (NP-Härte) Ein Problem L heißt NP-hart,

Mehr

Gliederung. 1. Einführung. 2. Polynominal Reduktion und NP-Vollständigkeit. 3. Geschichte. 4. Reale Probleme und Lösungsansetze 5.

Gliederung. 1. Einführung. 2. Polynominal Reduktion und NP-Vollständigkeit. 3. Geschichte. 4. Reale Probleme und Lösungsansetze 5. Gliederung 1. Einführung 1. Definitionen P, NP, conp, EXP, NEXP 2. Bekannte Zusammenhänge zwischen dem Klassen 3. Hypothesen zu deren zusammenhängen und deren Konsequenzen 2. Polynominal Reduktion und

Mehr

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Wintersemester 2005/2006 20.12.2005 18. Vorlesung 1 Komplexitätstheorie - Zeitklassen Komplexitätsmaße Wiederholung: O,o,ω,Θ,Ω Laufzeitanalyse

Mehr

Vorlesung VL-13. P versus NP. Wdh.: LOOP versus WHILE. Korrektur: Primitiv rekursive Funktionen (2) Wdh.: Kostenmodelle der RAM

Vorlesung VL-13. P versus NP. Wdh.: LOOP versus WHILE. Korrektur: Primitiv rekursive Funktionen (2) Wdh.: Kostenmodelle der RAM Organisatorisches VL-13: P versus NP (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger Nächste Vorlesung: Mittwoch, Dezember 13, 14:15 15:45 Uhr, Roter Hörsaal Webseite: http://algo.rwth-aachen.de/lehre/ws1718/buk.php

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Nichtdeterminismus David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Nichtdeterminismus NTM Nichtdeterministische Turingmaschine Die

Mehr

Präsenzübung Berechenbarkeit und Komplexität

Präsenzübung Berechenbarkeit und Komplexität Lehrstuhl für Informatik 1 WS 2013/14 Prof. Dr. Berthold Vöcking 28.01.2014 Kamal Al-Bawani Benjamin Ries Präsenzübung Berechenbarkeit und Komplexität Musterlösung Name:...................................

Mehr

Proseminar Komplexitätstheorie P versus NP Wintersemester 2006/07. Nichtdeterministische Turingmaschinen und NP

Proseminar Komplexitätstheorie P versus NP Wintersemester 2006/07. Nichtdeterministische Turingmaschinen und NP Proseminar Komplexitätstheorie P versus NP Wintersemester 2006/07 Vortrag am 17.11.2006 Nichtdeterministische Turingmaschinen und NP Yves Radunz Inhaltsverzeichnis 1 Wiederholung 3 1.1 Allgemeines........................................

Mehr

Statt Turingmaschinen anzugeben, genügt die Angabe eines C++ Programms oder die Angabe eines Pseudocodes.

Statt Turingmaschinen anzugeben, genügt die Angabe eines C++ Programms oder die Angabe eines Pseudocodes. Turingmaschinen Wir haben Turingmaschinen eingeführt. Bis auf einen polynomiellen Anstieg der Rechenzeit haben Turingmaschinen die Rechenkraft von parallelen Supercomputern! Statt Turingmaschinen anzugeben,

Mehr

Einige Grundlagen der Komplexitätstheorie

Einige Grundlagen der Komplexitätstheorie Deterministische Polynomialzeit Einige Grundlagen der Komplexitätstheorie Ziel: NP-Vollständigkeit als ressourcenbeschränktes Analagon zur RE-Vollständigkeit. Komplexitätstheorie untersucht den Ressourcenbedarf

Mehr

Theoretische Informatik. nichtdeterministische Turingmaschinen NDTM. Turingmaschinen. Rainer Schrader. 29. April 2009

Theoretische Informatik. nichtdeterministische Turingmaschinen NDTM. Turingmaschinen. Rainer Schrader. 29. April 2009 Theoretische Informatik Rainer Schrader nichtdeterministische Turingmaschinen Zentrum für Angewandte Informatik Köln 29. April 2009 1 / 33 2 / 33 Turingmaschinen das Konzept des Nichtdeterminismus nahm

Mehr

Probleme aus NP und die polynomielle Reduktion

Probleme aus NP und die polynomielle Reduktion Probleme aus NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 15. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

VL-13: Polynomielle Reduktionen. (Berechenbarkeit und Komplexität, WS 2018) Gerhard Woeginger

VL-13: Polynomielle Reduktionen. (Berechenbarkeit und Komplexität, WS 2018) Gerhard Woeginger VL-13: Polynomielle Reduktionen (Berechenbarkeit und Komplexität, WS 2018) Gerhard Woeginger WS 2018, RWTH BuK/WS 2018 VL-13: Polynomielle Reduktionen 1/46 Organisatorisches Nächste Vorlesungen: Donnerstag,

Mehr

Vorname Name Matrikelnummer 1. a) Benennen Sie die übrigen 6 Komponenten einer nicht-deterministischen Turingmaschine (TM): (3 Punkte)

Vorname Name Matrikelnummer 1. a) Benennen Sie die übrigen 6 Komponenten einer nicht-deterministischen Turingmaschine (TM): (3 Punkte) 1 Aufgabe 1 (19 Punkte) a) Benennen Sie die übrigen 6 Komponenten einer nicht-deterministischen Turingmaschine (TM): (3 Punkte) Q, die endliche Zustandsmenge b) Was besagt die Church-Turing-These? (1 Punkt)

Mehr

Kapitel 4: Komplexitätstheorie Gliederung

Kapitel 4: Komplexitätstheorie Gliederung Gliederung 0. Motivation und Einordnung 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 4.1. Motivation und Grundbegriffe 4.2. Die Komplexitätsklassen P und NP 4.3.

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Vollständigkeit 1 David Kappel Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz 20.05.2016 Übersicht Schwere Definition CIRCUIT-VALUE ist P-schwer

Mehr

Kapitel L:II. II. Aussagenlogik

Kapitel L:II. II. Aussagenlogik Kapitel L:II II. Aussagenlogik Syntax der Aussagenlogik Semantik der Aussagenlogik Eigenschaften des Folgerungsbegriffs Äquivalenz Formeltransformation Normalformen Bedeutung der Folgerung Erfüllbarkeitsalgorithmen

Mehr

THEORETISCHE INFORMATIK UND LOGIK

THEORETISCHE INFORMATIK UND LOGIK THEORETISCHE INFORMATIK UND LOGIK 9. Vorlesung: NP und NP-Vollständigkeit Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 10. Mai 2017 Rückblick PTime und LogSpace als mathematische Modelle

Mehr

Rucksackproblem und Verifizierbarkeit

Rucksackproblem und Verifizierbarkeit Rucksackproblem und Verifizierbarkeit Gegeben: n Gegenstände mit Gewichten G={g 1,g 2,,g n } und Werten W={w 1,w 2,,w n } sowie zulässiges Gesamtgewicht g. Gesucht: Teilmenge S {1,,n} mit i i S unter der

Mehr

Berechenbarkeits- und Komplexitätstheorie

Berechenbarkeits- und Komplexitätstheorie Berechenbarkeits- und Komplexitätstheorie Lerneinheit 5: Die Klasse NP Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Wintersemester 2015/2016 26.9.2015 Einleitung Thema dieser Lerneinheit

Mehr

Einfache Zusammenhänge

Einfache Zusammenhänge Einfache Zusammenhänge Eine TM, die t(n) Zeit (d.h. Schritte) zur Verfügung hat, kann nicht mehr als t(n) Bandzellen besuchen. Umgekehrt gilt dies nicht! Platz kann wiederverwendet werden, Zeit nicht!

Mehr

Einführung in Algorithmen und Komplexität

Einführung in Algorithmen und Komplexität Einführung in Algorithmen und Komplexität SS2004 w u v High Performance = Innovative Computer Systems + Efficient Algorithms Friedhelm Meyer auf der Heide 1 Was haben wir bisher gemacht? - Rechenmodell:

Mehr

abgeschlossen unter,,,, R,

abgeschlossen unter,,,, R, Was bisher geschah Turing-Maschinen können Sprachen L X akzeptieren entscheiden Funktionen berechnen f : X X (partiell) Menge aller Turing-akzeptierbaren Sprachen genau die Menge aller Chomsky-Typ-0-Sprachen

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 20. November 2014 INSTITUT FÜR THEORETISCHE 0 KIT 20.11.2014 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Komplexitätstheorie (VI) 20.07.2016 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 DTIME und NTIME / DSPACE und NSPACE DTIME(T(n)) ist die Klasse

Mehr

Die Komplexitätsklassen P und NP

Die Komplexitätsklassen P und NP Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 3. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Probabilistische Turingmaschinen

Probabilistische Turingmaschinen Probabilistische Turingmaschinen Eike Müller 1. Juni 2010 Inhaltsverzeichnis 1 Motivation 2 2 Probabilistische Turingmaschinen 2 3 Einseitige Fehler und Nullseitige Fehler 3 3.1 Einseitige Fehler....................................

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Theoretische Informatik Mitschrift

Theoretische Informatik Mitschrift 10. Komplexitätstheorie Theoretische Informatik Mitschrift Klassifikation algorithmischer Probleme (formalisiert als Sprachen) nach ihrem Bedarf an Berechnungsressourcen (= Rechenzeit, Speicherplatz als

Mehr

14. Die polynomiell beschränkten Komplexitätsklassen. Die Grenzen der tatsächlichen Berechenbarkeit

14. Die polynomiell beschränkten Komplexitätsklassen. Die Grenzen der tatsächlichen Berechenbarkeit 14. Die polynomiell beschränkten Komplexitätsklassen Die Grenzen der tatsächlichen Berechenbarkeit PRINZIPIELLE VS. TATSÄCHLICHE BERECHENBARKEIT Prinzipielle (theoretische) Berechenbarkeit: Eine Funktion

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Reduktion. Komplexitätsklassen.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Reduktion. Komplexitätsklassen. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Nichtdeterministische Platzklassen

Nichtdeterministische Platzklassen Sommerakademie 2010 Rot an der Rot AG 1: Wieviel Platz brauchen Algorithmen wirklich? Nichtdeterministische Platzklassen Ulf Kulau August 23, 2010 1 Contents 1 Einführung 3 2 Nichtdeterminismus allgemein

Mehr

Registermaschine. c(1) c(2) c(3) c(4) Speicher. Programm

Registermaschine. c(1) c(2) c(3) c(4) Speicher. Programm Registermaschine Speicher c(1) c(2) c(3) c(4) PC Akku Programm 1 Befehle einer Registermaschine LOAD i STORE i CLOAD i ILOAD i ISTORE i ADD i SUB i, MUL i, DIV i GOTO i IF (Akku? L) GOTO j END Lade c(i)

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Die Komplexitätsklasse P David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Äquivalenz von RM und TM Äquivalenz, Sätze Simulation DTM

Mehr

NP-vollständige Probleme

NP-vollständige Probleme NP-vollständige Probleme Dr. Eva Richter 6. Juli 2012 1 / 13 NP-Vollständigkeit Definition Eine Sprache B heißt NP-vollständig, wenn sei zwei Bedingungen erfüllt: (i) B ist in NP (ii) Jedes Problem A in

Mehr

Zufall oder Absicht?

Zufall oder Absicht? Zufall oder Absicht? Randomisierung und Derandomisierung Prof. Markus Bläser Universität des Saarlandes 4. Januar 2010 1 / 21 Zufall oder Absicht? 1 Randomisierte Algorithmen 2 Polynom-Identitätstests

Mehr

1 Wichtige Definitionen, Sätze und Lemmas aus Kapitel 1

1 Wichtige Definitionen, Sätze und Lemmas aus Kapitel 1 1 Wichtige Definitionen, Sätze und Lemmas aus Kapitel 1 Alphabet, Wort, Konkatenation, Sprache, Leere Sprache, Definition 1.1 Seien Σ 1 und Σ 2 zwei Alphabete. Eine Substitution von Σ 1 nach Σ 2 ist eine

Mehr

Semi-Entscheidbarkeit und rekursive Aufzählbarkeit

Semi-Entscheidbarkeit und rekursive Aufzählbarkeit Semi-Entscheidbarkeit und rekursive Aufzählbarkeit Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 9. November 2009 Berthold Vöcking, Informatik 1 () Vorlesung

Mehr

Komplexitätstheorie WiSe 2011/12 in Trier. Henning Fernau Universität Trier

Komplexitätstheorie WiSe 2011/12 in Trier. Henning Fernau Universität Trier Komplexitätstheorie WiSe 2011/12 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Komplexitätstheorie Gesamtübersicht Organisatorisches / Einführung Motivation / Erinnerung / Fragestellungen

Mehr

P, NP und NP -Vollständigkeit

P, NP und NP -Vollständigkeit P, NP und NP -Vollständigkeit Mit der Turing-Maschine haben wir einen Formalismus kennengelernt, um über das Berechenbare nachdenken und argumentieren zu können. Wie unsere bisherigen Automatenmodelle

Mehr

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V8, 12.12.2011 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar

Mehr

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V5, 21.11.2011 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar

Mehr

Weitere universelle Berechnungsmodelle

Weitere universelle Berechnungsmodelle Weitere universelle Berechnungsmodelle Mehrband Turingmaschine Nichtdeterministische Turingmaschine RAM-Modell Vektoradditionssysteme λ-kalkül µ-rekursive Funktionen 1 Varianten der dtm Mehrkopf dtm Kontrolle

Mehr

Komplexitätsklasse P. Manchmal wird mit P auch nur die Menge der Entscheidungsprobleme mit Polynomialzeitalgorithmen bezeichnet.

Komplexitätsklasse P. Manchmal wird mit P auch nur die Menge der Entscheidungsprobleme mit Polynomialzeitalgorithmen bezeichnet. Komplexitätsklasse P Definition K3.1.1: Ein Problem L gehört zur Komplexitätsklasse P, wenn es einen deterministischen Algorithmus mit polynomieller Rechenzeit für L gibt. Manchmal wird mit P auch nur

Mehr

Musterlösung der Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2012/13

Musterlösung der Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2012/13 Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Musterlösung der Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 22/3 Vorname Nachname Matrikelnummer

Mehr

KESS - Die Komplexität evolutionär stabiler Strategien

KESS - Die Komplexität evolutionär stabiler Strategien KESS - Die Komplexität evolutionär stabiler Strategien Andreas Lochbihler Universität Karlsruhe (TH) 0..008 K. Etessami, A. Lochbihler: The computational complexity of evolutionarily stable strategies.

Mehr

Dank. Theoretische Informatik II. Komplexitätstheorie. Teil VI. Komplexitätstheorie. Vorlesung

Dank. Theoretische Informatik II. Komplexitätstheorie. Teil VI. Komplexitätstheorie. Vorlesung Dank Vorlesung Theoretische Informatik II Bernhard Beckert Institut für Informatik Diese Vorlesungsmaterialien basieren zum Teil auf den Folien zu den Vorlesungen von Katrin Erk (gehalten an der Universität

Mehr

8 Komplexitätstheorie und Kryptologie

8 Komplexitätstheorie und Kryptologie 8 Komplexitätstheorie und Kryptologie Verschlüsselung, Authentisierung,... müssen schnell berechenbar sein. Formal: polynomiell zeitbeschränkte Funktionen/Algorithmen Angreifer hat beschränkte Ressourcen.

Mehr

Mehrband-Turingmaschinen und die universelle Turingmaschine

Mehrband-Turingmaschinen und die universelle Turingmaschine Mehrband-Turingmaschinen und die universelle Turingmaschine Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 15 Turingmaschinen mit mehreren Bändern k-band

Mehr

Proseminar Theoretische Informatik. Die Klasse NP. von Marlina Spanel

Proseminar Theoretische Informatik. Die Klasse NP. von Marlina Spanel Proseminar Theoretische Informatik Die Klasse NP von Marlina Spanel 29.11.2011 1 Gliederung Gliederung Problem des Handlungsreisenden Die Klasse NP Einleitung und Wiederholung Sprachen Nichtdeterministische

Mehr

Theoretische Informatik II

Theoretische Informatik II Theoretische Informatik II Einheit 4.2 Modelle für Typ-0 & Typ-1 Sprachen 1. Nichtdeterministische Turingmaschinen 2. Äquivalenz zu Typ-0 Sprachen 3. Linear beschränkte Automaten und Typ-1 Sprachen Maschinenmodelle

Mehr

Theoretische Informatik. Probabilistische Turingmaschinen PTM PTM. Rainer Schrader. 10. Juni 2009

Theoretische Informatik. Probabilistische Turingmaschinen PTM PTM. Rainer Schrader. 10. Juni 2009 Theoretische Informatik Rainer Schrader Probabilistische Turingmaschinen Institut für Informatik 10. Juni 009 1 / 30 / 30 Gliederung probabilistische Turingmaschinen Beziehungen zwischen und NDTM es stellt

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Übung am 22.12.2011 INSTITUT FÜR THEORETISCHE 0 KIT 09.01.2012 Universität des Andrea Landes Schumm Baden-Württemberg - Theoretische und Grundlagen der Informatik

Mehr

Der komplexitätstheoretische Zugang zur Kryptographie

Der komplexitätstheoretische Zugang zur Kryptographie Der komplexitätstheoretische Zugang zur Kryptographie Claus Diem Im Wintersemester 2017 / 18 Literatur Oded Goldreich: Foundations of Cryptography Jonathan Katz & Yeduda Lindell: Intoduction to Modern

Mehr

Übung Theoretische Grundlagen

Übung Theoretische Grundlagen Übung Theoretische Grundlagen Komplexitätstheorie Nico Döttling 8. Januar 2010 INSTITUT FÜR KRYPTOGRAPHIE UND SICHERHEIT KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Platzkomplexität David Kappel Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz 22.04.2016 Platzkomplexität Platzkomplexitätsklassen Zeit vs. Platzbedarf

Mehr

VL-18: Jenseits von P und NP. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger

VL-18: Jenseits von P und NP. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger VL-18: Jenseits von P und NP (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger WS 2017, RWTH BuK/WS 2017 VL-18: Jenseits von P und NP 1/43 Organisatorisches Nächste (letzte) Vorlesung: Mittwoch,

Mehr

Teil III. Komplexitätstheorie

Teil III. Komplexitätstheorie Teil III Komplexitätstheorie 125 / 160 Übersicht Die Klassen P und NP Die Klasse P Die Klassen NP NP-Vollständigkeit NP-Vollständige Probleme Weitere NP-vollständige Probleme 127 / 160 Die Klasse P Ein

Mehr

Berechenbarkeit und Komplexität: Erläuterungen zur Turingmaschine

Berechenbarkeit und Komplexität: Erläuterungen zur Turingmaschine Berechenbarkeit und Komplexität: Erläuterungen zur Turingmaschine Prof. Dr. Berthold Vöcking Lehrstuhl Informatik Algorithmen und Komplexität 24. Oktober 26 Programmierung der TM am Beispiel Beispiel:

Mehr

13. Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie

13. Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie 13 Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie 13 Woche: NP-Vollständigkeit, Satz von Cook-Levin, Anwendungen 276/ 333 N P-Vollständigkeit Ḋefinition NP-vollständig Sei

Mehr

Konjunktive Normalform

Konjunktive Normalform Konjunktive Normalform Eine Formel α in konjunktiver Normalform hat die Form α k 1 k 2... k r. Die Klauseln k 1,..., k r sind Disjunktionen von Literalen, also Disjunktionen von Variablen oder negierten

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Teil VI. Komplexitätstheorie.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Teil VI. Komplexitätstheorie. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Algorithmen und Komplexität

Algorithmen und Komplexität Algorithmen und Komplexität Thema: NP-vollständige Probleme Erbschaftsproblem (Partition) von Jörg Winkler 17. Juli 2003 Inhaltsverzeichnis 1 GRUNDLEGENDES ZUM ERBSCHAFTSPROBLEM...3 1.1 PROBLEMVORSTELLUNG...

Mehr

NP-Vollständigkeit einiger Zahlprobleme

NP-Vollständigkeit einiger Zahlprobleme NP-Vollständigkeit einiger Zahlprobleme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 22. Januar 2010 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Organisatorisches. VL-18: Jenseits von P und NP. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger

Organisatorisches. VL-18: Jenseits von P und NP. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger Organisatorisches VL-18: Jenseits von P und NP (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger Nächste (letzte) Vorlesung: Mittwoch, Januar 24, 14:15 15:45 Uhr, Roter Hörsaal Webseite: http://algo.rwth-aachen.de/lehre/ws1718/buk.php

Mehr

Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen. Wintersemester 2012/13

Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen. Wintersemester 2012/13 Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: und effiziente Algorithmen Wintersemester 2012/13 Prof. Barbara König Übungsleitung: Henning Kerstan & Sebastian Küpper Barbara

Mehr

6.3 NP-Vollständigkeit. alle anderen Probleme in NP darauf polynomiell reduzierbar. 1 Polynomielle Reduzierbarkeit p

6.3 NP-Vollständigkeit. alle anderen Probleme in NP darauf polynomiell reduzierbar. 1 Polynomielle Reduzierbarkeit p 6.3 NP-Vollständigkeit 1 Polynomielle Reduzierbarkeit p 2 NP-vollständige Probleme = härteste Probleme in NP, alle anderen Probleme in NP darauf polynomiell reduzierbar 3 Satz: SAT ist NP-vollständig Definition

Mehr

Teil III: Komplexitätstheorie

Teil III: Komplexitätstheorie Teil III: Komplexitätstheorie 1. Vorbemerkungen bisher: welche Probleme sind entscheidbar (lösbar) und welche nicht? jetzt: welche entscheidbaren Probleme sind effizient zu lösen. Beispiel: es gibt 40!

Mehr

Formale Grundlagen der Informatik 1 Kapitel 20

Formale Grundlagen der Informatik 1 Kapitel 20 Formale Grundlagen der Informatik 1 Kapitel 20 Zeit- und Platzkomplexität Frank Heitmann heitmann@informatik.uni-hamburg.de 27. Juni 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/52 Motivation

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Einführung. Vorgehensweise in der theor. Inf. Bsp. für ein praktisches Problem. Theoretische Informatik für Studierende der angewandten Informatik

Einführung. Vorgehensweise in der theor. Inf. Bsp. für ein praktisches Problem. Theoretische Informatik für Studierende der angewandten Informatik Theoretische Informatik für Studierende der angewandten Informatik Sommersemester 2008 Beate Bollig Informatik 2 Einführung 1. Was ist theoretische Informatik? 2. Überblick über die Vorlesung 3. Gebrauchsanleitung

Mehr