NP-vollst. u. NP-äquiv. Probleme

Größe: px
Ab Seite anzeigen:

Download "NP-vollst. u. NP-äquiv. Probleme"

Transkript

1 NP-vollst. u. NP-äquiv. Probleme Literatur: Kapitel K6. Ziel: Weitere Probleme kennen lernen (und damit weitere Basisprobleme für eigene Reduktionen) Weitere Beispiele für NP-Vollständigkeitsbeweise kennen lernen. 235

2 Bisher bewiesen (vgl. Folie 189) Partition p BP SAT = p 3-SAT p p IS = p Clique = p VC DHC = p HC = p TSP 2,,sym NP-vollständig 2-SAT P (Übungen) 236

3 Folgerung Die Optimierungsvarianten von IS, Clique, VC und TSP sind NP-äquivalent. 237

4 Rucksackprobleme [K6.3] Subset Sum Problem (SSS) Eingabe: Zahlen a 1,...,a n, G. Frage: Gibt es eine Menge I {1,...,n}, so dass i I a i = G? Satz K6.3.1: SSS ist NP-vollständig. Beweis: 1. SSS NP. 2. Reduktion von 3-SAT. Reduktion mit verbundenen Komponenten 238

5 3. Angabe der Funktion f. Eingabe für 3-SAT: Variablen x 1,...,x n, Klauseln C 1,...,C m. Zahlen der SSS-Eingabe: - n+m Ziffern in Dezimaldarstellung. - Für jede Variable x i zwei Zahlen a i und b i : C 1 C 2... C j... C m... x i... a i b i x 1 x 2 falls C j x i enthält falls C j x i enthält x n 239

6 Für jede Variable x i : C 1 C 2... C j... C m... x i... a i b i Für jede Klausel C j : d j C 1 C 2... C j... C m e j Summe G: G C 1 3 x 1 x 1 x 1 x 2 x 2 x 2... x i... x n x n C 2... C j... C m... x i x n 240

7 C 1 x 4 b a a a d 1 e 1 1 e 2 d C 2 3 C 3 3 C 4 3 x 1 1 x 2 1 x C 1 = x 1 x 2 x 3, C 2 = x 1 x 2 x 4, C 3 = x 1 x 3 x 4, C 4 = x 2 x 3 x

8 Korrektheit : Sei z=(z 1,...,z n ) erfüllende Belegung. Wähle die Zahl a i, falls z i =1, b i, falls z i =0. Summe für Variablenstellen stimmt. Da z erfüllend, sind in jedem C j 1, 2 oder 3 Literale erfüllt. 1 erfülltes Literal: Wähle d j und e j. 2 erfüllte Literale: Wähle d j. Summe für die Klauselstellen stimmt. 242

9 Korrektheit : Sei Auswahl der Zahlen mit Summe G gegeben. Falls a i gewählt: z i =1. Falls b i gewählt: z i =0. Behauptung: Dies ist erfüllende Belegung. a i und b i können nicht beide gewählt sein. Für jede Klausel C j muss mindestens eine 1 von einem a i oder b i kommen Zugehöriges Literal erfüllt. 243

10 Spezialfälle/Restriktionen Allgemein gilt: Sei A NP, sei B NP-vollständig und ein Spezialfall von A. Dann ist auch A NPvollständig. Beweis: Es ist B p A: Spezialfall bedeutet: Eine Eingabe für A entsteht aus einer Eingabe für B durch Konstantsetzen einiger Teile. Diese Abbildung ist als Funktion f der Reduktion geeignet. 244

11 Rucksackproblem Knapsack (KP) Eingabe: n Objekte mit Nutzenwerten a 1,...,a n und Gewichten g 1,...,g n, Gesamtgewicht G, Nutzenschranke B. Frage: Gibt es eine Auswahl der Objekte mit Nutzen mindestens B und Gesamtgewicht höchstens G? KP*: Spezialfall mit G=B und a i =g i. 245

12 Folgerung K6.3.2: KP und KP* sind NP-vollständig. Beweis: KP* und SSS sind äquivalent. KP ist Verallgemeinerung von KP*. Restriktion 246

13 Partition Zur Erinnerung: Eingabe: Natürliche Zahlen a 1,...,a n. Frage: Gibt es I {1,...,n} mit Folgerung K6.3.2: Partition ist NP-vollständig. Problem: Partition ist ein Spezialfall von SSS. Verkehrte Richtung für Restriktion. 247

14 Beweis Reduktion SSS p Partition: Sei X=(a 1,...,a n,g) Eingabe für SSS. Sei S*=a a n. Konstruiere Partition-Eingabe: Y=(a 1,..., a n, a n+1 =2S* G, a n+2 =S*+G) erzwingende Komponenten Beob: a a n + a n+1 + a n+2 = 4S*. 248

15 X=(a 1,...,a n,g) Korrektheit: Y=(a 1,..., a n, a n+1 =2S* G, a n+2 =S*+G) : Sei I Lösung von X, also i I a i =G: Dann ist I {n+1} Lösung von Y. : Sei J Lösung für Y. Falls n+1 J, vertausche J und J={1,...,n+2} J. Dann ist J {n+1} eine Lösung für X. 249

16 Aufteilung u. Lastverteilung [K6.4] Wir haben bereits gezeigt: Partition p BP. Folgerung K6.4.1: BP ist NP-vollständig. BP Eingabe: n Objekte mit Größen a 1,...,a n, Kistengröße b, Zahl k. Aufgabe: Genügen k Kisten der Größe b, um alle Objekte zu verpacken? 250

17 Sequencing with Intervals (SWI) Eingabe: A={a 1,...,a n } Menge v. Aufgaben mit l(a): Bearbeitungsdauer von Aufgabe a, length r(a): frühester Bearbeitungszeitpunkt von a, d(a): Deadline für a release time Frage: Können die Aufgaben von einem Prozessor so bearbeitet werden, dass keine Aufgabe unterbrochen wird und alle Bedingungen eingehalten werden? 251

18 Satz K6.4.2: SWI ist NP-vollständig. Beweis: 1. SWI NP klar. 2. Reduktion Partition p SWI 3. Eingabe f. Partition: X=(s 1,...,s n ). Sei S = s s n, ist o.b.d.a. gerade Zahl. Erzeuge n+1 Aufgaben a 1,...,a n+1. Für 1 i n: l(a i )=s i, r(a i )=0, d(a i )=S+1, l(a n+1 )=1, r(a n+1 )=S/2, d(a n+1 )=S/2+1. a n+1 0 S/2 S/2+1 S+1 252

19 Cliquenprobleme [K6.5] Graphisomorphie (GI) Eingabe: Graphen G 1 =(V 1,E 1 ), G 2 =(V 2,E 2 ). Frage: Sind G 1 und G 2 isomorph, d.h., gibt es eine Funktion f : V 1 V 2 mit {v 1,v 2 } E 1 {f(v 1 ),f(v 2 )} E 2? GI NP klar. Für GI kennt man weder einen polyn. Algo., noch einen NP-Vollst.beweis. 253

20 Teilgraphisomorphie Subgraph Isomorphism (SI) Eingabe: Graphen G 1 =(V 1,E 1 ), G 2 =(V 2,E 2 ). Frage: Gibt es einen Teilgraphen von G 1, der zu G 2 isomorph ist? Teilgraph von G 1 : Knotenmenge V V 1. Kantenmenge: Alle Kanten aus E 1, die zwischen Knoten aus V verlaufen. 254

21 Satz K6.5.1: SI ist NP-vollständig. Beweis: 1. SI NP klar. 2. Reduktion Clique p SI. 3. Eingabe für Cliquenproblem: (G,k). Sei G 1 =G, G 2 =vollständiger Graph auf k Knoten. 4. G enthält k-clique Restriktion G 1 enthält zu G 2 isomorphen Subgraphen. 255

22 Graphfärbbarkeit Graph Colorability (GC) Eingabe: Unger. Graph G=(V,E), Zahl k. Frage: Können die Knoten von G mit k Farben gefärbt werden, so dass benachbarte Knoten verschieden gefärbt werden? 256

23 Bsp: Färben von Landkarten 257

24 Satz K6.5.2: GC ist NP-vollständig. Beweis: 1. GC NP klar. 2. Reduktion von 3-SAT. 3. Sei 3-SAT-Eingabe mit Variablen x 1,...,x n und Klauseln C 1,...,C m gegeben. Wähle k=3 (3 Farben) 258

25 Komponenten für Klauseln: v 1 v 2 w v 3 Beob. (für legale 3-Färbungen): 1.Wenn v 1, v 2 und v 3 dieselbe Farbe haben, dann hat auch w diese Farbe. 2.Wenn einer der v-knoten die Farbe 1 hat, kann auch w die Farbe 1 bekommen. 259

26 x 1 C 1 =x 1 x 2 x n 3 u x 2 x 1 x 2 C 2 w 1 x n x n 2 260

27 Korrektheit Sei erfüllende Belegung gegeben. x i =0: x i -Knoten bekommt Farbe 2, x i -Knoten bekommt Farbe 1. x i =1: x i -Knoten bekommt Farbe 1, x i -Knoten bekommt Farbe 2. Da die Belegung erfüllend ist, kann jede Klauselkomponente so gefärbt werden, dass w die Farbe 1 bekommt. 261

28 Korrektheit Sei legale Färbung gegeben. O.B.d.A.: w hat Farbe 1, u hat Farbe 3. Variablenknoten haben Farben 1 und 2. x i -Knoten hat Farbe 1: Belegung x i =1, x i -Knoten hat Farbe 2: Belegung x i =0. Annahme: C j dadurch nicht erfüllt. Alle v-knoten von C j haben Farbe 2 w hat Farbe 2. Widerspruch. 262

29 Spezialfall: festes k k-gc Eingabe: Graph G Frage: Ist G mit k Farben färbbar? Folgerung K6.5.3: 3-GC ist NP-vollständig. Übungsaufgaben: Zeige, dass 2-GC P. Zeige, dass k-gc für alle k 3 NP-vollständig ist. 263

30 Zusammenfassung Kompl.theorie Betrachtete Rechnermodelle: Turingmaschinen, Registermaschinen Varianten: deterministisch, randomisiert, nichtdeterministisch Komplexitätstheorie für randomisierte Algorithmen Komplexitätsklassen ZPP, RP, BPP, PP Probability Amplification Nichtdeterminismus als Spezialfall von Randomisierung 264

31 Zusammenfassung Kompl.theorie Zentrale Begriffe der NP- Vollständigkeitstheorie Turing-Reduktionen und polynomielle Reduktionen NP-vollständige und NP-schwere Probleme Satz von Cook, Vereinfachung von Beweisen der NP-Vollständigkeit Zahlreiche Reduktionen zwischen verschiedenen Problemen 265

32 Fazit NP-Vollständigkeit Ein Beweis der NP-Vollständigkeit liefert eine starken Hinweis darauf, dass ein Problem keinen polyn. Algo hat. Nutzen Keine Zeit dafür ver(sch)wenden, einen Algo zu suchen, den es wohl nicht gibt. Beweis liefert Hinweise darauf, was an dem Problem schwer ist Überlegen, ob wir das richtige Problem lösen. Fehlgeschlagene Versuche liefern Hinweise auf polynomielle Algos. 266

33 Fazit NP-Vollständigkeit (Forts.) Reduktionen mit verbundenen Komponenten erlauben es, Beziehungen zwischen nicht verwandten Problemen herzustellen. 3-SAT ist häufig ein Ausgangsproblem für Reduktionen. 267

Erfüllbarkeitsprobleme. Begriffe. Varianten von SAT

Erfüllbarkeitsprobleme. Begriffe. Varianten von SAT Erfüllbarkeitsprobleme SAT (satisfiability problem) Eingabe: Formel F in konjunktiver Form. Frage: Gibt es eine Belegung x der Variablen in F mit F(x)=1? Beispiel: Begriffe erfüllbar satisfiable: Eigenschaft

Mehr

Rechenzeit für A. Sei t B die Rechenzeit eines Algo für B. Seien p,q,r monotone Polynome ( +).

Rechenzeit für A. Sei t B die Rechenzeit eines Algo für B. Seien p,q,r monotone Polynome ( +). Rechenzeit für A Sei t B die Rechenzeit eines Algo für B. Seien p,q,r monotone Polynome ( +). Rechenzeit des resultierenden Algo für A: t A (n) p(n) + q(n) t B (r(n)). Ist polynomiell, falls t B Polynom.

Mehr

Dank. Theoretische Informatik II. Teil VI. Vorlesung

Dank. Theoretische Informatik II. Teil VI. Vorlesung Dank Vorlesung Theoretische Informatik II Bernhard Beckert Institut für Informatik Diese Vorlesungsmaterialien basieren zum Teil auf den Folien zu den Vorlesungen von Katrin Erk (gehalten an der Universität

Mehr

Zusammenfassung. Warum polynomielle Reduktionen? Definition NP-vollständig [K5.1.1] NP-Vollständigkeitstheorie [K5]

Zusammenfassung. Warum polynomielle Reduktionen? Definition NP-vollständig [K5.1.1] NP-Vollständigkeitstheorie [K5] Warum polynomielle Reduktionen? erlauben feinere Unterteilungen von Komplexitätsklassen als Turing- Reduktionen, genügen für die betrachteten Probleme, für alle von uns betrachteten Komplexitätsklassen

Mehr

NP-vollständige Probleme. Michael Budahn - Theoretische Informatik 1

NP-vollständige Probleme. Michael Budahn - Theoretische Informatik 1 NP-vollständige Probleme Michael Budahn - Theoretische Informatik 1 Motivation Michael Budahn - Theoretische Informatik 2 Motivation viele praxisrelevante Probleme sind NPvollständig und eine Lösung würde

Mehr

Abbildung 1: Reduktion: CLIQUE zu VERTEX-COVER. links: Clique V = {u, v, x, y}. rechts:der Graph Ḡ mit VC V \ V = {w, z}

Abbildung 1: Reduktion: CLIQUE zu VERTEX-COVER. links: Clique V = {u, v, x, y}. rechts:der Graph Ḡ mit VC V \ V = {w, z} u v u v z w z w y x y x Abbildung 1: Reduktion: CLIQUE zu VERTEX-COVER. links: Clique V = {u, v, x, y}. rechts:der Graph Ḡ mit VC V \ V = {w, z} Definition 0.0.1 (Vertex Cover (VC)). Gegeben: Ein ungerichteter

Mehr

NP-Vollständigkeit einiger Zahlprobleme

NP-Vollständigkeit einiger Zahlprobleme NP-Vollständigkeit einiger Zahlprobleme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 22. Januar 2010 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Kochrezept für NP-Vollständigkeitsbeweise

Kochrezept für NP-Vollständigkeitsbeweise Kochrezept für NP-Vollständigkeitsbeweise Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 11. Januar 2010 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V7, 5.12.2011 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar

Mehr

Probleme aus NP und die polynomielle Reduktion

Probleme aus NP und die polynomielle Reduktion Probleme aus NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 15. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Satz 227 3SAT ist N P-vollständig. Info IV 2 N P-Vollständigkeit 375/388 c Ernst W. Mayr

Satz 227 3SAT ist N P-vollständig. Info IV 2 N P-Vollständigkeit 375/388 c Ernst W. Mayr Definition 6 3SAT ist die Menge der booleschen Formeln in konjunktiver Normalform, die in jeder Klausel höchstens drei Literale enthalten und die erfüllbar sind. Satz 7 3SAT ist N P-vollständig. Info IV

Mehr

Berechenbarkeit und Komplexität: Polynomielle Reduktion / NP-Vollständigkeit / Satz von Cook und Levin

Berechenbarkeit und Komplexität: Polynomielle Reduktion / NP-Vollständigkeit / Satz von Cook und Levin Berechenbarkeit und Komplexität: Polynomielle Reduktion / NP-Vollständigkeit / Satz von Cook und Levin Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität 11. Januar 2008 Wiederholung

Mehr

Die Klasse NP und die polynomielle Reduktion

Die Klasse NP und die polynomielle Reduktion Die Klasse NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Dezember 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Die Klasse NP und die polynomielle Reduktion. Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen

Die Klasse NP und die polynomielle Reduktion. Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Die Klasse NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 26 Optimierungsprobleme und ihre Entscheidungsvariante Beim Rucksackproblem

Mehr

Theoretische Grundlagen der Informatik. Vorlesung am 27. November INSTITUT FÜR THEORETISCHE INFORMATIK

Theoretische Grundlagen der Informatik. Vorlesung am 27. November INSTITUT FÜR THEORETISCHE INFORMATIK Theoretische Grundlagen der Informatik 0 27.11.2018 Torsten Ueckerdt - Theoretische Grundlagen der Informatik KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu Letzte Vorlesung Die

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Reduktion. Komplexitätsklassen.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Reduktion. Komplexitätsklassen. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 01. Dezember 2011 INSTITUT FÜR THEORETISCHE 0 KIT 01.12.2011 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 20. Vorlesung 12.01.2007 1 Komplexitätstheorie - Zeitklassen Die Komplexitätsklassen TIME DTIME, NTIME P NP Das Cook-Levin-Theorem Polynomial-Zeit-Reduktion

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 5. Dezember 2017 INSTITUT FÜR THEORETISCHE 0 05.12.2017 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 06. Dezember 2011 INSTITUT FÜR THEORETISCHE 0 KIT 06.12.2011 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Übung am 22.12.2011 INSTITUT FÜR THEORETISCHE 0 KIT 09.01.2012 Universität des Andrea Landes Schumm Baden-Württemberg - Theoretische und Grundlagen der Informatik

Mehr

VL-13: Polynomielle Reduktionen. (Berechenbarkeit und Komplexität, WS 2018) Gerhard Woeginger

VL-13: Polynomielle Reduktionen. (Berechenbarkeit und Komplexität, WS 2018) Gerhard Woeginger VL-13: Polynomielle Reduktionen (Berechenbarkeit und Komplexität, WS 2018) Gerhard Woeginger WS 2018, RWTH BuK/WS 2018 VL-13: Polynomielle Reduktionen 1/46 Organisatorisches Nächste Vorlesungen: Donnerstag,

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Übung am 16.12.2010 INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

NP-Vollständigkeit des Erfüllbarkeitsproblems

NP-Vollständigkeit des Erfüllbarkeitsproblems NP-Vollständigkeit des Erfüllbarkeitsproblems Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 25 Def: NP-Härte Definition (NP-Härte) Ein Problem L heißt NP-hart,

Mehr

Härte von Hamilton-Kreis und TSP Überblick über die Komplexitätslandschaft

Härte von Hamilton-Kreis und TSP Überblick über die Komplexitätslandschaft Härte von Hamilton-Kreis und TSP Überblick über die Komplexitätslandschaft Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 5. Februar 2010 Berthold Vöcking, Informatik

Mehr

Informatik III - WS07/08

Informatik III - WS07/08 Informatik III - WS07/08 Kapitel 4 1 Informatik III - WS07/08 Prof. Dr. Dorothea Wagner dwagner@ira.uka.de Kapitel 4 : Komplexitätsklassen Informatik III - WS07/08 Kapitel 4 2 Sprachen, Probleme, Zeitkomplexität

Mehr

NP Vollständigkeit. Patryk Mazur

NP Vollständigkeit. Patryk Mazur NP Vollständigkeit Patryk Mazur 04.05.2010 0.Gliderung 1. Einführung 1. Definitionen P, NP, conp, EXP, NEXP 2. Bekannte Zusammenhänge zwischen dem Klassen 3. Hypothesen zu deren zusammenhängen und deren

Mehr

Algorithmen und Komplexität

Algorithmen und Komplexität Algorithmen und Komplexität Thema: NP-vollständige Probleme Erbschaftsproblem (Partition) von Jörg Winkler 17. Juli 2003 Inhaltsverzeichnis 1 GRUNDLEGENDES ZUM ERBSCHAFTSPROBLEM...3 1.1 PROBLEMVORSTELLUNG...

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Weitere NP-vollständige Probleme Wir betrachten nun folgende Reduktionskette und weisen dadurch nach, daß alle diese Probleme NP-hart sind (sie sind auch in NP und damit NP-vollständig). SAT p 3-SAT p

Mehr

Das Rucksackproblem. Definition Sprache Rucksack. Satz

Das Rucksackproblem. Definition Sprache Rucksack. Satz Das Rucksackproblem Definition Sprache Rucksack Gegeben sind n Gegenstände mit Gewichten W = {w 1,...,w n } N und Profiten P = {p 1,...,p n } N. Seien ferner b, k N. RUCKSACK:= {(W, P, b, k) I [n] : i

Mehr

Theorie der Informatik Übersicht. Theorie der Informatik SAT Graphenprobleme Routing-Probleme. 21.

Theorie der Informatik Übersicht. Theorie der Informatik SAT Graphenprobleme Routing-Probleme. 21. Theorie der Informatik 19. Mai 2014 21. einige NP-vollständige Probleme Theorie der Informatik 21. einige NP-vollständige Probleme 21.1 Übersicht 21.2 Malte Helmert Gabriele Röger 21.3 Graphenprobleme

Mehr

Statt Turingmaschinen anzugeben, genügt die Angabe eines C++ Programms oder die Angabe eines Pseudocodes.

Statt Turingmaschinen anzugeben, genügt die Angabe eines C++ Programms oder die Angabe eines Pseudocodes. Turingmaschinen Wir haben Turingmaschinen eingeführt. Bis auf einen polynomiellen Anstieg der Rechenzeit haben Turingmaschinen die Rechenkraft von parallelen Supercomputern! Statt Turingmaschinen anzugeben,

Mehr

Grundlagen der Informatik Kapitel 20. Harald Krottmaier Sven Havemann

Grundlagen der Informatik Kapitel 20. Harald Krottmaier Sven Havemann Grundlagen der Informatik Kapitel 20 Harald Krottmaier Sven Havemann Agenda Klassen von Problemen Einige Probleme... Approximationsalgorithmen WS2007 2 Klassen P NP NP-vollständig WS2007 3 Klasse P praktisch

Mehr

Arbeitsheft zur NP-Vollständigkeit

Arbeitsheft zur NP-Vollständigkeit Arbeitsheft zur NP-Vollständigkeit (BuK / WS 2017 / RWTH Aachen) Gerhard J. Woeginger Dieses Arbeitsheft enthält einige Übungsaufgaben zur NP-Vollständigkeit. Jede Aufgabe besteht im Wesentlichen aus einem

Mehr

Berechenbarkeitstheorie 24. Vorlesung

Berechenbarkeitstheorie 24. Vorlesung 1 Berechenbarkeitstheorie Dr. Institut für Mathematische Logik und Grundlagenforschung WWU Münster WS 15/16 Alle Folien unter Creatie Commons Attribution-NonCommercial 3.0 Unported Lizenz. DHC Eingabe:

Mehr

Übung Theoretische Grundlagen

Übung Theoretische Grundlagen Übung Theoretische Grundlagen Komplexitätstheorie Nico Döttling 8. Januar 2010 INSTITUT FÜR KRYPTOGRAPHIE UND SICHERHEIT KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in

Mehr

Kurt Mehlhorn und Adrian Neumann Max Planck Institute for Informatics and Saarland University 1. Dezember 2013

Kurt Mehlhorn und Adrian Neumann Max Planck Institute for Informatics and Saarland University 1. Dezember 2013 P versus NP Kurt Mehlhorn und Adrian Neumann Max Planck Institute for Informatics and Saarland University 1. Dezember 2013 Gliederung Informelle Formulierung des P = NP Problems Das Erfüllbarkeitsproblem

Mehr

Das P=NP-Problem. Besitzen (Entscheidungs-)Probleme mit einer Nichtdeterministischen. deterministische Polynomielle Lösung?

Das P=NP-Problem. Besitzen (Entscheidungs-)Probleme mit einer Nichtdeterministischen. deterministische Polynomielle Lösung? Das P=NP-Problem Besitzen (Entscheidungs-)Probleme mit einer Nichtdeterministischen Polynimiellen Lösung immer auch eine deterministische Polynomielle Lösung? Eines der bekanntesten offenen Probleme der

Mehr

Das Rucksackproblem: schwache NP-Härte und Approximation

Das Rucksackproblem: schwache NP-Härte und Approximation Das Rucksackproblem: schwache NP-Härte und Approximation Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1. Februar 2010 Berthold Vöcking, Informatik 1 () Vorlesung

Mehr

Einführung (1/3) Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (1) Vorlesungen zur Komplexitätstheorie.

Einführung (1/3) Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (1) Vorlesungen zur Komplexitätstheorie. Einführung (1/3) 3 Wir verfolgen nun das Ziel, Komplexitätsklassen mit Hilfe von charakteristischen Problemen zu beschreiben und zu strukturieren Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Komplexitätstheorie (VI) 20.07.2016 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 DTIME und NTIME / DSPACE und NSPACE DTIME(T(n)) ist die Klasse

Mehr

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme Theoretische Informatik Exkurs Rainer Schrader Exkurs: Komplexität von n Institut für Informatik 13. Mai 2009 1 / 34 2 / 34 Gliederung Entscheidungs- und Approximationen und Gütegarantien zwei Greedy-Strategien

Mehr

Einführung in Algorithmen und Komplexität

Einführung in Algorithmen und Komplexität Einführung in Algorithmen und Komplexität SS2004 w u v High Performance = Innovative Computer Systems + Efficient Algorithms Friedhelm Meyer auf der Heide 1 Was haben wir bisher gemacht? - Rechenmodell:

Mehr

Vorname Name Matrikelnummer 1. a) Benennen Sie die übrigen 6 Komponenten einer nicht-deterministischen Turingmaschine (TM): (3 Punkte)

Vorname Name Matrikelnummer 1. a) Benennen Sie die übrigen 6 Komponenten einer nicht-deterministischen Turingmaschine (TM): (3 Punkte) 1 Aufgabe 1 (19 Punkte) a) Benennen Sie die übrigen 6 Komponenten einer nicht-deterministischen Turingmaschine (TM): (3 Punkte) Q, die endliche Zustandsmenge b) Was besagt die Church-Turing-These? (1 Punkt)

Mehr

Lösungen zur 1. Klausur. Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie

Lösungen zur 1. Klausur. Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie Hochschuldozent Dr. Christian Schindelhauer Paderborn, den 21. 2. 2006 Lösungen zur 1. Klausur in Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie Name :................................

Mehr

Welche Probleme können Rechner (effizient) lösen? Die P = NP Frage. Ideen der Informatik Kurt Mehlhorn

Welche Probleme können Rechner (effizient) lösen? Die P = NP Frage. Ideen der Informatik Kurt Mehlhorn Welche Probleme können Rechner (effizient) lösen? Die P = NP Frage Ideen der Informatik Kurt Mehlhorn Gliederung Ziele von Theorie Gibt es Probleme, die man prinzipiell nicht mit einem Rechner lösen kann?

Mehr

Komplexitätstheorie NP-Vollständigkeit: Reduktionen (2) Der Satz von Cook/Levin

Komplexitätstheorie NP-Vollständigkeit: Reduktionen (2) Der Satz von Cook/Levin Komplexitätstheorie NP-Vollständigkeit: Reduktionen (2) Der Satz von Cook/Levin Helmut Veith Technische Universität München Organisatorisches Anmeldung zur Lehrveranstaltung: complexity@tiki.informatik.tu-muenchen.de

Mehr

Approximationsalgorithmen für NP-harte Optimierungsprobleme

Approximationsalgorithmen für NP-harte Optimierungsprobleme Approximationsalgorithmen für NP-harte Optimierungsprobleme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 18 Was tun mit NP-harten Problemen? Viele praxisrelevante

Mehr

Lösungen zur Vorlesung Berechenbarkeit und Komplexität

Lösungen zur Vorlesung Berechenbarkeit und Komplexität Lehrstuhl für Informatik 1 WS 009/10 Prof. Dr. Berthold Vöcking 0.0.010 Alexander Skopalik Thomas Kesselheim Lösungen zur Vorlesung Berechenbarkeit und Komplexität. Zulassungsklausur Aufgabe 1: (a) Worin

Mehr

14. Die polynomiell beschränkten Komplexitätsklassen. Die Grenzen der tatsächlichen Berechenbarkeit

14. Die polynomiell beschränkten Komplexitätsklassen. Die Grenzen der tatsächlichen Berechenbarkeit 14. Die polynomiell beschränkten Komplexitätsklassen Die Grenzen der tatsächlichen Berechenbarkeit PRINZIPIELLE VS. TATSÄCHLICHE BERECHENBARKEIT Prinzipielle (theoretische) Berechenbarkeit: Eine Funktion

Mehr

Wie komme ich von hier zum Hauptbahnhof?

Wie komme ich von hier zum Hauptbahnhof? NP-Vollständigkeit Wie komme ich von hier zum Hauptbahnhof? P Wie komme ich von hier zum Hauptbahnhof? kann ich verwende für reduzieren auf Finde jemand, der den Weg kennt! Alternativ: Finde eine Stadtkarte!

Mehr

Approximationsalgorithmen für NP-harte Optimierungsprobleme

Approximationsalgorithmen für NP-harte Optimierungsprobleme Approximationsalgorithmen für NP-harte Optimierungsprobleme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 4. Januar 2011 Berthold Vöcking, Informatik 1 () Vorlesung

Mehr

Wie man das Poissonsche Problem löst

Wie man das Poissonsche Problem löst Komplexitätstheorie 27.10.2004 Theorem 6 : Falls P = NP ist, dann ist auch E = NE. Padding : Technik zum übertragen von Kollapsresultaten nach oben Sei # є Σ ein neues Symbol. Für w є Σ* ist pad (w) :

Mehr

Formale Grundlagen der Informatik 1 Kapitel 23 NP-Vollständigkeit (Teil 2)

Formale Grundlagen der Informatik 1 Kapitel 23 NP-Vollständigkeit (Teil 2) Formale Grundlagen der Informatik 1 Kapitel 23 (Teil 2) Frank Heitmann heitmann@informatik.uni-hamburg.de 5. Juli 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/37 Die Klassen P und NP P := {L

Mehr

NP-Vollständigkeit und der Satz von Cook und Levin

NP-Vollständigkeit und der Satz von Cook und Levin NP-Vollständigkeit und der Satz von Cook und Levin Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 17. Dezember 2010 Berthold Vöcking, Informatik 1 () Vorlesung

Mehr

Übungsblatt 4. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18

Übungsblatt 4. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 4 Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Ausgabe 6. Dezember 2017 Abgabe 19. Dezember 2017, 11:00 Uhr

Mehr

Komplexitätstheorie P versus NP

Komplexitätstheorie P versus NP Komplexitätstheorie P versus NP Kurt Mehlhorn und Adrian Neumann Max Planck Institute for Informatics and Saarland University 6. Januar 2014 Gliederung Komplexitätstheorie und die Komplexitätslandschaft

Mehr

Formale Grundlagen der Informatik 1 Kapitel 21 P und NP

Formale Grundlagen der Informatik 1 Kapitel 21 P und NP Formale Grundlagen der Informatik 1 Kapitel 21 Frank Heitmann heitmann@informatik.uni-hamburg.de 28. Juni Frank Heitmann heitmann@informatik.uni-hamburg.de 1/41 Die Klassen Probleme in P := {L es gibt

Mehr

Einführung Erfüllbarkeitsproblem NP-Vollständigkeit Definition von NP Was wäre, wenn Was tun? Ideen und Konzepte der Informatik.

Einführung Erfüllbarkeitsproblem NP-Vollständigkeit Definition von NP Was wäre, wenn Was tun? Ideen und Konzepte der Informatik. Ideen und Konzepte der Informatik P versus NP Die Grenzen der (effizienter) Berechnung? Antonios Antoniadis Basiert auf Folien von Kurt Mehlhorn 8. Jan. 2018 8. Jan. 2018 1/24 Gliederung Ziele von Theorie/Grundlagenforschung

Mehr

Komplexitätstheorie WiSe 2011/12 in Trier. Henning Fernau Universität Trier

Komplexitätstheorie WiSe 2011/12 in Trier. Henning Fernau Universität Trier Komplexitätstheorie WiSe 2011/12 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Komplexitätstheorie Gesamtübersicht Organisatorisches / Einführung Motivation / Erinnerung / Fragestellungen

Mehr

Knoten-Partitionierung in feste Eigenschaften ist NP-schwer

Knoten-Partitionierung in feste Eigenschaften ist NP-schwer Knoten-Partitionierung in feste Eigenschaften ist NP-schwer Seminar: Ausgewählte Kapitel der Informatik bei Prof. Dr. R. Schrader Seminarvortrag von Nils Rosjat Wintersemester 09 / 10 1 Einleitung Dieser

Mehr

Übungsblatt 4. Vorlesung Theoretische Grundlagen der Informatik im WS 18/19

Übungsblatt 4. Vorlesung Theoretische Grundlagen der Informatik im WS 18/19 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 4 Vorlesung Theoretische Grundlagen der Informatik im WS 18/19 Ausgabe 4. Dezember 2018 Abgabe 18. Dezember 2018, 11:00 Uhr

Mehr

durch Einfügen von Knoten konstruiert werden kann.

durch Einfügen von Knoten konstruiert werden kann. Satz von Kuratowski Definition Unterteilung eines Graphen Sei G = (V, E) und e = {u, v} E. 1 Das Einfügen eines neuen Knoten w in die Kante e führt zum Graphen G = (V {w}, E \ e {{u, w}, {w, v}}). 2 Der

Mehr

Konjunktive Normalform

Konjunktive Normalform Konjunktive Normalform Eine Formel α in konjunktiver Normalform hat die Form α k 1 k 2... k r. Die Klauseln k 1,..., k r sind Disjunktionen von Literalen, also Disjunktionen von Variablen oder negierten

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik 1 Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Wintersemester 2014/15 2 4 Komplexitätstheorie Zeitkomplexität 3 Definition: Sei

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 NP-Vollständigkeit Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz http://www.inf.uni-konstanz.de/algo/lehre/ss08/info2 Sommersemester 2008 Sven

Mehr

Theoretische Informatik II

Theoretische Informatik II Theoretische Informatik II Einheit 5.2 Das P N P Problem 1. Nichtdeterministische Lösbarkeit 2. Sind N P-Probleme handhabbar? 3. N P-Vollständigkeit Bei vielen schweren Problemen ist Erfolg leicht zu testen

Mehr

3-Färbbarkeit. Korollar: Zu Entscheiden, ob ein Graph k-färbbar ist mit k 3, ist NP-vollständig.

3-Färbbarkeit. Korollar: Zu Entscheiden, ob ein Graph k-färbbar ist mit k 3, ist NP-vollständig. 3-Färbbarkeit Wir wissen bereits, dass in polynomieller Zeit entschieden werden kann, ob ein Graph 2-färbbar ist. Satz: Zu Entscheiden, ob ein Graph 3-färbbar ist, ist NPvollständig. Beweis: Reduktion

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 NP-Vollständigkeit Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr, o.n.v.

Mehr

Einführung in Berechenbarkeit, Komplexität und Formale Sprachen

Einführung in Berechenbarkeit, Komplexität und Formale Sprachen Einführung in Berechenbarkeit, Komplexität und Formale Sprachen V17, 10.12.09 Willkommen zur Vorlesung Einführung in Berechenbarkeit, Komplexität und Formale Sprachen Friedhelm Meyer auf der Heide 1 Rückblick:

Mehr

Wissenschaftliche Arbeitstechniken und Präsentation. NP-Vollständigkeit

Wissenschaftliche Arbeitstechniken und Präsentation. NP-Vollständigkeit Wissenschaftliche Arbeitstechniken und Präsentation Dominik Fakner, Richard Hentschel, Hamid Tabibian, den 20.01.2012 Inhalt Definitionen Definition Nachweis Beispiel Reduktion Komplexitätsklasse Befasst

Mehr

THEORETISCHE INFORMATIK UND LOGIK

THEORETISCHE INFORMATIK UND LOGIK THEORETISCHE INFORMATIK UND LOGIK 9. Vorlesung: NP und NP-Vollständigkeit Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 10. Mai 2017 Rückblick PTime und LogSpace als mathematische Modelle

Mehr

Vorlesung Theoretische Informatik (Info III)

Vorlesung Theoretische Informatik (Info III) 1 Vorlesung Theoretische Informatik (Info III) Prof. Dr. Dorothea Wagner Dipl.-Math. Martin Holzer 6. Dezember 2007 Einleitung Motivation 2 Thema heute N P-Vollständigkeit weitere Reduktionen Einleitung

Mehr

Rucksackproblem und Verifizierbarkeit

Rucksackproblem und Verifizierbarkeit Rucksackproblem und Verifizierbarkeit Gegeben: n Gegenstände mit Gewichten G={g 1,g 2,,g n } und Werten W={w 1,w 2,,w n } sowie zulässiges Gesamtgewicht g. Gesucht: Teilmenge S {1,,n} mit i i S unter der

Mehr

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V5, 21.11.2011 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am..03 Randomisierte Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Komplexitätstheorie WiSe 2011/12 in Trier. Henning Fernau Universität Trier

Komplexitätstheorie WiSe 2011/12 in Trier. Henning Fernau Universität Trier Komplexitätstheorie WiSe 2011/12 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Komplexitätstheorie Gesamtübersicht Organisatorisches / Einführung Motivation / Erinnerung / Fragestellungen

Mehr

Gliederung. 1. Einführung. 2. Polynominal Reduktion und NP-Vollständigkeit. 3. Geschichte. 4. Reale Probleme und Lösungsansetze 5.

Gliederung. 1. Einführung. 2. Polynominal Reduktion und NP-Vollständigkeit. 3. Geschichte. 4. Reale Probleme und Lösungsansetze 5. Gliederung 1. Einführung 1. Definitionen P, NP, conp, EXP, NEXP 2. Bekannte Zusammenhänge zwischen dem Klassen 3. Hypothesen zu deren zusammenhängen und deren Konsequenzen 2. Polynominal Reduktion und

Mehr

Einige Grundlagen der Komplexitätstheorie

Einige Grundlagen der Komplexitätstheorie Deterministische Polynomialzeit Einige Grundlagen der Komplexitätstheorie Ziel: NP-Vollständigkeit als ressourcenbeschränktes Analagon zur RE-Vollständigkeit. Komplexitätstheorie untersucht den Ressourcenbedarf

Mehr

Theoretische Informatik SS 03 Übung 11

Theoretische Informatik SS 03 Übung 11 Theoretische Informatik SS 03 Übung 11 Aufgabe 1 Zeigen Sie, dass es eine einfachere Reduktion (als die in der Vorlesung durchgeführte) von SAT auf 3KNF-SAT gibt, wenn man annimmt, dass die Formel des

Mehr

Lösungen zur Ergänzung 12

Lösungen zur Ergänzung 12 Theoretische Informati II SS 018 Carlos Camino Lösungen zur Ergänzung 1 Hinweise: In der Literatur sind zwei verschiedene Definitionen der natürlichen Zahlen gängig: N = {0, 1,,...} und N = {1,, 3,...}.

Mehr

Kapitel L:II. II. Aussagenlogik

Kapitel L:II. II. Aussagenlogik Kapitel L:II II. Aussagenlogik Syntax der Aussagenlogik Semantik der Aussagenlogik Eigenschaften des Folgerungsbegriffs Äquivalenz Formeltransformation Normalformen Bedeutung der Folgerung Erfüllbarkeitsalgorithmen

Mehr

Randomisierte Algorithmen Algorithmen, die Zufallsbits benutzen können. Fehlerfreie Algorithmen (Las-Vegas-Alg)

Randomisierte Algorithmen Algorithmen, die Zufallsbits benutzen können. Fehlerfreie Algorithmen (Las-Vegas-Alg) Wiederholung Randomisierte Algorithmen Algorithmen, die Zufallsbits benutzen können. Fehlerfreie Algorithmen (Las-Vegas-Alg) Komplexitätsklassen: EP=ZPP Algorithmen mit Fehlern (Monte-Carlo-Alg) Zweiseitiger

Mehr

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V11, 16.1.2012 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar

Mehr

Komplexitätsklasse P. Manchmal wird mit P auch nur die Menge der Entscheidungsprobleme mit Polynomialzeitalgorithmen bezeichnet.

Komplexitätsklasse P. Manchmal wird mit P auch nur die Menge der Entscheidungsprobleme mit Polynomialzeitalgorithmen bezeichnet. Komplexitätsklasse P Definition K3.1.1: Ein Problem L gehört zur Komplexitätsklasse P, wenn es einen deterministischen Algorithmus mit polynomieller Rechenzeit für L gibt. Manchmal wird mit P auch nur

Mehr

Zeitkomplexität (1) Proseminar Theoretische Informatik. Proseminar Theoretische Informatik: Lisa Dohrmann 1

Zeitkomplexität (1) Proseminar Theoretische Informatik. Proseminar Theoretische Informatik: Lisa Dohrmann 1 Zeitkomplexität (1) Proseminar Theoretische Informatik Proseminar Theoretische Informatik: Lisa Dohrmann 1 Warum Komplexitätsbetrachtung? Ein im Prinzip entscheidbares und berechenbares Problem kann in

Mehr

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK Prof. Dr. Klaus Ambos-Spies Sommersemester 2011 15. DIE POLYNOMIELL BESCHRÄNKTEN KOMPLEXITÄTSKLASSEN Theoretische Informatik (SoSe 2011) 15. Polynomiell beschränkte

Mehr

Algorithmische Spieltheorie

Algorithmische Spieltheorie Algorithmische Spieltheorie Grundlagen der Komplexitätstheorie Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00

Mehr

VL-18: Jenseits von P und NP. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger

VL-18: Jenseits von P und NP. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger VL-18: Jenseits von P und NP (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger WS 2017, RWTH BuK/WS 2017 VL-18: Jenseits von P und NP 1/43 Organisatorisches Nächste (letzte) Vorlesung: Mittwoch,

Mehr

Die Klassen P und NP. Formale Grundlagen der Informatik 1 Kapitel 11. Die Klassen P und NP. Die Klasse P

Die Klassen P und NP. Formale Grundlagen der Informatik 1 Kapitel 11. Die Klassen P und NP. Die Klasse P Die Klassen Formale Grundlagen der Informatik 1 Kapitel 11 Frank Heitmann heitmann@informatik.uni-hamburg.de P := {L es gibt ein Polynom p und eine p(n)-zeitbeschränkte DTM A mit L(A) = L} = i 1 DTIME(n

Mehr

Sudoku ist NP-vollständig

Sudoku ist NP-vollständig Sudoku ist NP-vollständig Seminar über Algorithmen und Komplexität Freie Universität Berlin Institut für Informatik SS 007 Sarah Will 8.07.007 Einführung Sudoku ist ein japanisches Logikrätsel und hat

Mehr

Registermaschine. c(1) c(2) c(3) c(4) Speicher. Programm

Registermaschine. c(1) c(2) c(3) c(4) Speicher. Programm Registermaschine Speicher c(1) c(2) c(3) c(4) PC Akku Programm 1 Befehle einer Registermaschine LOAD i STORE i CLOAD i ILOAD i ISTORE i ADD i SUB i, MUL i, DIV i GOTO i IF (Akku? L) GOTO j END Lade c(i)

Mehr

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V8, 12.12.2011 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar

Mehr

Übungsblatt 5. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17

Übungsblatt 5. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 5 Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Ausgabe 9. Dezember 2016 Abgabe 20. Dezember 2016, 11:00 Uhr

Mehr

Übung zur Vorlesung Diskrete Strukturen I

Übung zur Vorlesung Diskrete Strukturen I Technische Universität München WS 00/03 Institut für Informatik Aufgabenblatt 6 Prof. Dr. J. Csirik 18. November 00 Brandt & Stein Übung zur Vorlesung Diskrete Strukturen I Abgabetermin: Tutorübungen am

Mehr

Das große O. Aufwandsklasse O(g) für g : N R + enthält alle Funktionen f : N R + mit. f(n) c g(n) für alle n n 0

Das große O. Aufwandsklasse O(g) für g : N R + enthält alle Funktionen f : N R + mit. f(n) c g(n) für alle n n 0 1 Das große O Aufwandsklasse O(g) für g : N R + enthält alle Funktionen f : N R + mit f(n) c g(n) für alle n n 0 c, n 0 : konstant und größer als 0 O(g) beschreibt alle Probleme, die eine algorithmische

Mehr

Komplexität von Algorithmen Musterlösungen zu ausgewählten Übungsaufgaben

Komplexität von Algorithmen Musterlösungen zu ausgewählten Übungsaufgaben Dieses Dokument soll mehr dazu dienen, Beispiele für die formal korrekte mathematische Bearbeitung von Aufgaben zu liefern, als konkrete Hinweise auf typische Klausuraufgaben zu liefern. Die hier gezeigten

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl-Math. A. Würfl, Dipl-Math. S. König Weihnachtsblatt Aufgabe W.1 Untersuchen Sie nachstehenden

Mehr

Komplexitätstheorie. Kapitel 3: P vs NP

Komplexitätstheorie. Kapitel 3: P vs NP Komplexitätstheorie Kapitel 3: P vs NP Einleitung Wir definieren die wichtigen Komplexitätsklassen P und NP und studieren deren Zusammenhang: Definitionen der Klassen Zusammenhang zwischen NP und Nichtdeterminismus

Mehr