Programmierung 1 - Repetitorium

Größe: px
Ab Seite anzeigen:

Download "Programmierung 1 - Repetitorium"

Transkript

1 WS 2002/2003 Programmierung 1 - Repetitorium Andreas Augustin und Marc Wagner Homepage:

2 Donnerstag, den Kapitel 7 Korrektheit

3 7.1 Abstrakte Prozeduren Abstrakte Prozedur = Vorschrift, die zu jedem Wert eines vorgegebenen Argumentbereichs eine Berechnung definiert, die, wenn sie terminiert, ein eindeutig bestimmtes Ergebnis in einem vorgegebenen Ergebnisbereich liefert. Typzusicherung : sum : Z N Argumentbereich Ergebnisbereich definierende Gleichung : sum (x) = if x < 1 then 0 else sum (x-1) + x Für abstrakte Prozeduren gilt : - keine Speicherbeschränkung - keine Größenbeschränkung für Zahlen - keine undefinierte Operations- und Funktionsanwendungen

4 7.1 Abstrakte Prozeduren Abstrakte Prozeduren divergieren oder terminieren. Eine Prozedur p ist eine Prozedur X : Y, wenn X : Y die Typzusicherung von p ist. Sei p eine Prozedur X : Y. Ein Paar (x,y) X 2 heißt Rekursionspaar von p, wenn für die Bestimmung von p(x) gemäß der definierenden Gleichung von p die rekursive Bestimmung von p(y) erforderlich ist. Die Rekursionsrelation von p ist die Menge aller Rekursionspaare von p. Rekursionsrelation von sum ist { (n,n-1) n N + } Die Rekursionsrelation einer Prozedur X : Y ist immer eine binäre Relation auf X. Sei r eine binäre Relation. Eine unendliche Kette in r ist eine unendliche Folge x 0, x 1, x 2,..., für die gilt : n N : ( x n, x n+1 ) r

5 7.1 Abstrakte Prozeduren Wir sagen, dass r für x terminiert, wenn es keine unendliche Kette in r gibt, die mit x beginnt. Wir sagen, dass r terminiert, wenn es keine unendliche Kette in r gibt. Sei p eine Prozedur X : Y. Wir sagen, dass p auf x X terminiert, wenn die Rekursionsrelation von p für x terminiert. Die Menge aller x X, für die p terminiert, bezeichnen wir mit Dom p (domain) und nenne sie den Definitionsbereich von p. Wenn p für ein Argument x X terminiert, bezeichnen wir das eindeutig bestimmte Ergebnis mit p(x). Die Funktion { ( x, p(x) ) x Dom p } bezeichnen wir als Ergebnisfunktion der Prozedur p. Eine Prozedur ist linear-rekursiv gdw. alle Rekursionsbäume linear sind. Eine Prozedur ist binär-rekursiv gdw. alle Rekursionsbäume binär sind.

6 7.1 Abstrakte Prozeduren Beispiel : Fibonacci - Funktion fib : N N fib(n) = if n<2 then n else fib(n-1) + fib(n-2) Die Rekursionsrelation von fib ist { ( n, n i ) n N n 2 i {1,2} } Offensichtlich terminiert diese Relation, also auch fib. Rekursionsbaum für fib mit Argument 4 : fib 4 fib 3 fib 2 fib 2 fib 1 fib 1 fib 0 Jede Kante entspricht einem Rekursionspaar! fib 1 fib 0

7 7.2 Beweis durch Nachrechnen (1) sum Z N (2) x Z : sum(x) = if x<1 then 0 else sum(x-1) + x Behauptung : sum (2) = 3 Beweis : sum (2) = sum(1) + 2 = ( sum(0) + 1 ) + 2 = ( ) + 2 = 3 Behauptung : x Z : x < 1 sum(x) = 0 Beweis : Sei x Z und x < 1. Dann folgt sum(x) = 0 gem. Def. von sum. Beweistechniken für A B ( A Prämisse, B Konklusion ) 1. Beweise B unter Verwendung der Gültigkeit von A. 2. Beweise, dass A gilt. ( A B ) ( A v B )

8 7.2 Beweis durch Nachrechnen Behauptung : Beweis : x Z : sum(x) = if x<1 then 0 else x / 2 * (x+1) f 1 (x) = if x < 1 then 0 else x / 2 * (x+1) f 2 (x) = if x < 1 then 0 else f 2 (x-1) + x Sei x < 1. f 1 (x) = 0 = f 2 (x) klar nach Def. Sei x 1. f 1 (x) = x / 2 * (x+1) = x-1 / 2 * (x-1+1) + x = f 1 (x-1) + x (IA) = if x < 1 then 0 else f 2 (x-1) + x = f 2 (x)

9 7.3 Ordnungsrelation Infixschreibweise einer binären Relation r : x r y = ( x, y ) r Sei eine binäre Relation. x y x kleiner gleich y x y y x x größer gleich y x < y x y x y x kleiner y x Vorgänger von y x > y y < x x größer y x Nachfolger von y Eine binäre Relation heißt... - reflexiv, wenn Dom ( ) = Ran ( ) und x Dom ( ) : x x - transitiv, wenn für alle x,y,z Dom ( ) gilt : ( x y y z ) x z. - antisymmetrisch, wenn für alle x,y Dom (J) gilt : ( x J y y J x ) x = y. - partielle Ordnung, wenn sie reflexiv, transitiv und antisymmetrisch ist. - linear, wenn für alle x,y Dom (J) gilt : x y v y x - wohlfundiert, wenn > terminiert.

10 7.3 Ordnungsrelation Eine partielle Ordnung J heißt... - partielle Ordnung für eine Menge X, wenn Dom ( ) = X ist. - lineare Ordnung, wenn sie linear ist. - wohlfundierte Ordnung, wenn sie wohlfundiert ist. - Wohlordnung, wenn sie linear und wohlfundiert ist. natürliche Ordnung NO(x) = { (x,y) X 2 x y } strukturelle Ordnung SO(x) = { (x,y) X 2 x Teilobjekt von y } Inklusionsordnung IO(x) = { (y,z) y z und z x } Identität Id(x) = { (x,x) x X }

11 7.4 Terminierungsbeweise Sei X eine nach unten beschränkte Teilmenge der ganzen Zahlen. Dann ist NO(X) eine terminierende Relation. Sei X eine Menge. Dann ist SO(X) eine terminierende Relation. Jede Teilmenge einer terminierenden Relation ist eine terminierende Relation. Eine Funktion f bettet eine binäre Relation r in eine binäre Relation r ein, wenn gilt : 1. ( Dom r Ran r ) Dom f 2. (x,y) r : ( f x, f y ) r Jede Relation, die in eine terminierende Relation einbettbar ist, terminiert.

12 7.4 Terminierungsbeweise Eine Prozedur p heißt... - natürlich rekursiv, wenn es eine nach unten beschränkte Teilmenge X der ganzen Zahlen gibt, sodass die Rekursionsrelation von p in NO(X) eingebettet werden kann. - strukturell rekursiv, wenn es eine Menge X gibt, sodass die Rekursionsrelation von p in SO(X) eingebettet werden kann. Jede natürlich oder strukturell rekursive Prozedur terminiert.

13 7.4 Terminierungsbeweise Beispiel : Größe von Bäumen size : T(x) N size ( x, [ t 1,..., t n ] ) = 1 + size(t 1 ) size(t n ) ( T(X) = X x L (T(X)) ) Rekursionsrelation { ( ( x, [ t 1,..., t n ], t i ) ( x, [ t 1,..., t n ] ) T(X) n 1 i { 1,..., n } } Dies ist eine Teilmenge von SO(T(X)). size ist strukturell rekursiv und terminiert. Beispiel : Potenzen power : R x N R power (x,n) = if n=0 then 1 else power (x,n-1) * x Rekursionsrelation { ( (x,n), (x,n-1) ) x R n N + } wird von (x,n) R x N. n in NO(N) eingebettet. power ist natürlich rekursiv und terminiert.

14 7.5 Induktion Eine Relation ist genau dann wohlfundiert, wenn jede nichtleere Menge ein minimales Element für enthält. Wohlfundierte Induktion : Sei eine wohlfundierte Relation, X eine Menge und A X. Dann gilt A = X, wenn gilt : x X : ( y X : y < x y A ) x A Grundmenge : X Aussagemenge : A X Zielbehauptung : x X : x A bzw. X A Induktionsrelation : wohlfundierte Ordnung ( z.b. NO(X) ) Induktionsbehauptung : x X : ( y X : y < x y A ) x A Induktionsannahme für x X : y X : y < x y A : Beweis unter Verwendung der Induktionsannahme

15 7.5 Induktion Von der Wahl der richtigen Induktionsrelation hängt der Erfolg des Induktionsbeweises ab. Wenn die Grundmenge eine nach unten beschränkte Menge von Zahlen ist, ist die natürliche Ordnung die naheliegende Wahl. Man spricht dann von natürlicher Induktion. Wenn die Elemente der Grundmenge dagegen zusammengesetzte Objekte sind (z.b. Listen oder Bäume), bietet sich die strukturelle Ordnung an. Man spricht dann von struktureller Induktion.

16 7.5 Induktion Beispiel : Summenfunktion sum Z N sum (x) = if x < 1 then 0 else sum (x-1) + x Behauptung : n N : sum (n) = n / 2 * (n+1) Beweis mit natürlicher Induktion : Grundmenge : N Aussagemenge : A := { n N sum(n) = n / 2 * (n+1) } N Zielbehauptung : N A Induktionsrelation : NO(N) Sei n=0. sum(n) = 0 = n / 2 * (n+1) klar nach Definition Sei n>0. sum(n) = sum(n-1) + n Definition von sum = n-1 / 2 * (n-1+1) + n (IA) = n / 2 * (n+1)

17 7.6 Strukturelle Induktion über Listen L (X) = { ( ) } ( X x L (X) ) L (X) x L (X) : L (X) ys = ys ( x :: xr ys = x :: ( ys ) Länge _ L (X) N nil = 0 x :: xr = 1 + xr Reversion rev L (X) L (X) rev ( nil ) = nil rev ( x :: xr ) = rev ( xr [ x ] Sei X eine Menge und seien xs,ys,zs L (X). Dann gilt : 1. nil = xs 2. ys = xs + ys 3. rev ( xs ) = xs 4. rev ( ys ) = rev ( ys rev ( xs ) 5. rev ( rev ( xs ) ) = xs

18 7.6 Strukturelle Induktion über Listen Behauptung : Beweis : Sei X eine Menge und seien xs,ys,zs L (X) Dann gilt : ( ys zs = ( zs ) Seien ys,zs L (X). Wir beweisen xs L (X) : ( ys zs = ( zs ) durch strukturelle Induktion über xs L (X) Sei xs = nil. ( ys zs = zs = ( zs ) Sei xs = x :: xr. ( ys zs = ( x :: ( ys ) zs = x :: ( ( ys zs ) = x :: ( ( zs ) ) (IA) = ( zs )

19 7.7 Größenverhältnisse in Bäumen T(X) = X x L (T(X)) Größe s T(X) : N s ( x, [ t 1,..., t n ] ) = 1 + s ( t 1 ) s ( t n ) Tiefe d T(X) : N d ( x, [ t 1,..., t n ] ) = 1 + max { -1, d ( t 1 ),..., d ( t n ) } Breite b T(X) : N + b ( x, [ t 1,..., t n ] ) = if n=0 then 1 else b ( t 1 ) b ( t n ) Die inneren Knoten eines Baumes sind die Knoten, die keine Blätter sind.

20 7.7 Größenverhältnisse in Bäumen Behauptung : Für jeden balancierten Binärbaum t T (X) gilt : b ( t ) = 2 d ( t ) Beweis durch strukturelle Induktion : Sei t = ( x, [ ] ). b ( t ) = 1 = 2 d ( t ) nach Definition Sei t = ( x, [ t 1, t 2 ] ). b ( t ) = b ( t 1 ) + b ( t 2 ) Definition von b ( t ) = 2 d ( t1 ) + 2 d ( t2 ) (IA) = 2 * 2 d ( t1 ) t balanciert, also d ( t 1 ) = d ( t 2 ) = d ( t1 ) = max { d ( t1 ), d ( t2 ) } t balanciert, also d ( t 1 ) = d ( t 2 ) = 2 d ( t ) Definition von d ( t )

21 7.7 Größenverhältnisse in Bäumen Behauptung : Für jeden balancierten Binärbaum t T(X) gilt : s ( t ) = 2 d ( t ) Beweis durch strukturelle Induktion : Sei t = ( x, [ ] ). s ( t ) = 1 = 2 d ( t ) nach Definition Sei t = ( x, [ t 1, t 2 ] ). s ( t ) = 1 + s ( t 1 ) + s ( t 2 ) Definition von b ( t ) = d ( t1 ) d ( t2 ) (IA) = 2 * 2 d ( t1 ) t balanciert, also d ( t 1 ) = d ( t 2 ) = d ( t1 ) = max { d ( t1 ), d ( t2 ) } t balanciert, also d ( t 1 ) = d ( t 2 ) = 2 d ( t ) Definition von d ( t )

Strukturelle Rekursion und Induktion

Strukturelle Rekursion und Induktion Kapitel 2 Strukturelle Rekursion und Induktion Rekursion ist eine konstruktive Technik für die Beschreibung unendlicher Mengen (und damit insbesondere für die Beschreibung unendliche Funktionen). Induktion

Mehr

Programmierung 1 - Repetitorium

Programmierung 1 - Repetitorium WS 2002/2003 Programmierung 1 - Repetitorium Andreas Augustin und Marc Wagner Homepage: http://info1.marcwagner.info Dienstag, den 08.04.03 Kapitel 4 Laufzeit 4.1 Vorbemerkungen Im folgenden betrachten

Mehr

6. Induktives Beweisen - Themenübersicht

6. Induktives Beweisen - Themenübersicht 6. Induktives Beweisen - Themenübersicht Ordnungsrelationen Partielle Ordnungen Quasiordnungen Totale Ordnungen Striktordnungen Ordnungen und Teilstrukturen Noethersche Induktion Anwendung: Terminierungsbeweise

Mehr

Programmierung 1 (Wintersemester 2015/16) Lösungsblatt: Aufgaben für die Übungsgruppen: 8 (Kapitel 9)

Programmierung 1 (Wintersemester 2015/16) Lösungsblatt: Aufgaben für die Übungsgruppen: 8 (Kapitel 9) Fachrichtung 6. Informatik Universität des Saarlandes Tutorenteam der Vorlesung Programmierung Programmierung (Wintersemester 5/6) Lösungsblatt: Aufgaben für die Übungsgruppen: 8 (Kapitel 9) Hinweis: Dieses

Mehr

Klausur Programmierung WS 2002/03

Klausur Programmierung WS 2002/03 Klausur Programmierung WS 2002/03 Prof. Dr. Gert Smolka, Dipl. Inf. Thorsten Brunklaus 14. Dezember 2002 Leo Schlau 45 Vor- und Nachname Sitz-Nr. 4711 007 Matrikelnummer Code Bitte öffnen Sie das Klausurheft

Mehr

ALP I Induktion und Rekursion

ALP I Induktion und Rekursion ALP I Induktion und Rekursion WS 2012/2013 Vollständige Induktion (Mafi I) Die Vollständige Induktion ist eine mathematische Beweistechnik, die auf die Menge der natürlichen Zahlen spezialisiert ist. Vorgehensweise:

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 2. Induktion Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Induktion Zentrale Rolle Wesentliches Beweisprinzip in Mathematik

Mehr

In diesem Kapitel wiederholen wir Begriffe und Notationen für grundlegende mathematische

In diesem Kapitel wiederholen wir Begriffe und Notationen für grundlegende mathematische Kapitel 1 Mathematische Objekte In diesem Kapitel wiederholen wir Begriffe und Notationen für grundlegende mathematische Objekte wie Tupel, Mengen, Relationen und Funktionen. Außerdem erklären wir die

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 1. Grundlegende Beweisstrategien: Noethersche Induktion 23.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letzte Vorlesung 1. Grundlegende

Mehr

Mengen sind gedankliche Objekte, die wir durch die folgenden Axiome definieren:

Mengen sind gedankliche Objekte, die wir durch die folgenden Axiome definieren: Kapitel 6 Mengenlehre Eine wichtige Aufgabe der Informatik besteht in der Konstruktion präziser gedanklicher Modelle. Dabei kommen mathematische Datenstrukturen zum Einsatz, wie wir sie in diesem Kapitel

Mehr

Formale Methoden in der Informatik Wiederholung klassische Logik Konkrete Datentypen (algebraische Strukturen) Abstrakte Datentypen

Formale Methoden in der Informatik Wiederholung klassische Logik Konkrete Datentypen (algebraische Strukturen) Abstrakte Datentypen Was bisher geschah Formale Methoden in der Informatik Wiederholung klassische Logik Konkrete Datentypen (algebraische Strukturen) Abstrakte Datentypen Syntax: Signatur Semantik: Axiome (FOL-Formeln, meist

Mehr

Inhalt Kapitel 3: Induktion und Termination

Inhalt Kapitel 3: Induktion und Termination Inhalt Kapitel 3: Induktion und Termination 1 Wohlfundierte Relationen Ackermannfunktion 2 Untere Schranke für Türme von Hanoi Weitere Beispiele 52 Wohlfundierte Relationen Wohlfundierte Relationen Definition

Mehr

Logik für Informatiker. 1. Grundlegende Beweisstrategien. Viorica Sofronie-Stokkermans Universität Koblenz-Landau

Logik für Informatiker. 1. Grundlegende Beweisstrategien. Viorica Sofronie-Stokkermans Universität Koblenz-Landau Logik für Informatiker 1. Grundlegende Beweisstrategien Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Mathematisches Beweisen Mathematische ussagen - haben oft

Mehr

Ordnungsrelationen auf Mengen. Beispiel einer Ordnungsrelation. Spezielle Elemente von Ordnungen. Spezielle Elemente von Ordnungen

Ordnungsrelationen auf Mengen. Beispiel einer Ordnungsrelation. Spezielle Elemente von Ordnungen. Spezielle Elemente von Ordnungen Ordnungsrelationen auf Mengen! Eine (partielle) Ordnungsrelation oder kurz Ordnung O auf einer Menge M ist eine Relation, die reflexiv, antisymmetrisch und transitiv ist. Beispiel: M = { 1, 2, 3 }, O =

Mehr

Ordnungsrelationen auf Mengen

Ordnungsrelationen auf Mengen Ordnungsrelationen auf Mengen Eine (partielle) Ordnungsrelation oder kurz Ordnung O auf einer Menge M ist eine Relation, die reflexiv, antisymmetrisch und transitiv ist. Beispiel: M = { 1, 2, 3 }, O =

Mehr

Kapitel 2. Induktion und Rekursion. 2.1 Induktion. Seien X und A Mengen und eine terminierende Relation. dass x X : x A gilt.

Kapitel 2. Induktion und Rekursion. 2.1 Induktion. Seien X und A Mengen und eine terminierende Relation. dass x X : x A gilt. Kapitel 2 Induktion und Rekursion 2.1 Induktion Induktion ist eine wichtige technik. Leider wird Induktion oft so vermittelt, dass Anfänger zu dem Schluß kommen, Induktion wäre eine geheimnisvolle Angelegenheit.

Mehr

1 Übersicht Induktion

1 Übersicht Induktion Universität Koblenz-Landau FB 4 Informatik Prof. Dr. Viorica Sofronie-Stokkermans Dipl.-Inform. Markus Bender 0.11.01 (v1.3) 1 Übersicht Induktion 1.1 Allgemeines Unter einem induktiven Vorgehen versteht

Mehr

Lösungen zu Kapitel 2

Lösungen zu Kapitel 2 Lösungen zu Kapitel 2 Lösung zu Aufgabe 1: Wir zeigen die Behauptung durch vollständige Induktion über n. Die einzige Menge mit n = 0 Elementen ist die leere Menge. Sie besitzt nur sich selbst als Teilmenge,

Mehr

Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen

Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen Aufgabe 1: Es sei D die Menge aller rationalen Dedekind-Mengen, also D := { M 2 Q M is Dedekind-Menge }. Auf der Menge D definieren wir

Mehr

Lösung Probeklausur Informatik I

Lösung Probeklausur Informatik I Lösung Probeklausur Informatik I 1 Lösung Aufgabe 1 (5 Punkte) Algorithmen und Programme Was ist der Unterschied zwischen einem Algorithmus und einem Programm? Ein Algorithmus ist eine Vorschrift zur Durchführung

Mehr

Informatik I. 9. Nachweis von Programmeigenschaften. Jan-Georg Smaus. Albert-Ludwigs-Universität Freiburg. 2. Dezember 2010

Informatik I. 9. Nachweis von Programmeigenschaften. Jan-Georg Smaus. Albert-Ludwigs-Universität Freiburg. 2. Dezember 2010 Informatik I 9. Nachweis von Programmeigenschaften Jan-Georg Smaus Albert-Ludwigs-Universität Freiburg 2. Dezember 2010 Jan-Georg Smaus (Universität Freiburg) Informatik I 2. Dezember 2010 1 / 30 Informatik

Mehr

Kapitel 5. Fixpunktoperatoren

Kapitel 5. Fixpunktoperatoren Kapitel 5 Fixpunktoperatoren Rekursion ist eine wichtige Definitionstechnik. Im Rahmen dieser Vorlesung haben wir bereits eine Vielzahl von rekursiven Definitionen gesehen. Dabei wurden überwiegend strukturelle

Mehr

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen)

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen) WS 2015/16 Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Teil 7: Rekursion; Imperative Programme

Teil 7: Rekursion; Imperative Programme 1 Teil 7: Rekursion; Imperative Programme Terminierend rekursive Funktionen Im Tutorial: Kap. 3.5 / 9.2 Definition mit recdef, Nachweis der Terminierung Beweise über rekursive Funktionen Imperative Programme

Mehr

Induktive Definitionen

Induktive Definitionen Induktive Definitionen Induktive Definition: Konstruktive Methode zur Definition einer Menge M von Objekten aus Basisobjekten mittels (Erzeugungs-) Regeln Slide 1 Rekursion über den Aufbau: Konstruktive

Mehr

Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3)

Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Technische Universität München Motivation: IT gestützte Steuerung, Überwachung, Fertigung, Produktion,. : erfordert effiziente Berechnungsvorschriften

Mehr

Ordnungsrelationen auf Mengen

Ordnungsrelationen auf Mengen Ordnungsrelationen auf Mengen Eine (partielle) Ordnungsrelation oder kurz Ordnung O auf einer Menge M ist eine Relation, die reflexiv, antisymmetrisch und transitiv ist. Beispiel: M = { 1, 2, 3 }, O =

Mehr

Programmieren für Fortgeschrittene

Programmieren für Fortgeschrittene Technische Universität Braunschweig Dr. Werner Struckmann Institut für Programmierung und Reaktive Systeme Wintersemester 2011/12 Programmieren für Fortgeschrittene Rekursive Spezifikationen Die folgende

Mehr

Übungen zu Grundlagen der Theoretischen Informatik

Übungen zu Grundlagen der Theoretischen Informatik Übungen zu Grundlagen der Theoretischen Informatik INSTITUT FÜR INFORMATIK UNIVERSITÄT KOBLENZ-LANDAU SS 2013 Lösungen 02 Aufgabe 1 Geben Sie einen regulären Ausdruck für die Sprache aller Wörter über

Mehr

Software Entwicklung 1

Software Entwicklung 1 Software Entwicklung 1 Annette Bieniusa AG Softech FB Informatik TU Kaiserslautern Lernziele Rekursive Prozeduren zu charakterisieren. Terminierung von rekursiven Prozeduren mit Hilfe von geeigneten Abstiegsfunktionen

Mehr

Die Korrektheit von Mergesort

Die Korrektheit von Mergesort Die Korrektheit von Mergesort Christoph Lüth 11. November 2002 Definition von Mergesort Die Funktion Mergesort ist wie folgt definiert: msort :: [Int]-> [Int] msort xs length xs

Mehr

( )= c+t(n-1) n>1. Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3)

( )= c+t(n-1) n>1. Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Motivation: IT gestützte Steuerung, Überwachung, Fertigung, Produktion,. : erfordert effiziente Berechnungsvorschriften Ziel: Methoden kennen

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 Mengen und Abbildungen 3.2 Induktion und Rekursion 3.3 Ausdrücke 3 Mathematische Grundlagen Einf. Progr. (WS 08/09) 102 Überblick 3.

Mehr

Eine Relation R in einer Menge M ist eine Teilmenge von M x M. Statt (a,b) R schreibt man auch arb.

Eine Relation R in einer Menge M ist eine Teilmenge von M x M. Statt (a,b) R schreibt man auch arb. 4. Relationen 4.1 Grundlegende Definitionen Relation R in einer Menge M: Beziehung zwischen je 2 Elementen von M. Beispiel

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 3.2 Induktion und Rekursion 3.3 Boolsche Algebra Peer Kröger (LMU München) Einführung in die Programmierung WS 14/15 48 / 155 Überblick

Mehr

4 Einige Grundstrukturen. Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper

4 Einige Grundstrukturen. Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper 4 Einige Grundstrukturen Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper Abbildungen Seien X und Y Mengen. Eine (einstellige) Abbildung f : X Y ordnet jedem x X genau ein Element

Mehr

2. Algorithmische Methoden 2.1 Rekursion. 18. April 2017

2. Algorithmische Methoden 2.1 Rekursion. 18. April 2017 2. Algorithmische Methoden 2.1 Rekursion 18. April 2017 Rekursiver Algorithmus Ein rekursiver Algorithmus löst ein Problem, indem er eine oder mehrere kleinere Instanzen des gleichen Problems löst. Beispiel

Mehr

Rekursive Funktionen

Rekursive Funktionen Rekursive Funktionen Man kann eine Funktion f : A B durch einen Term definieren, der selbst Aufrufe von f enthält. Beispiel: fakultät = function(n)if n = 0 then 1 else n fakultät(n 1) Dies bezeichnet man

Mehr

Kapitel 08: Rekursion und Terminierung Software Entwicklung 1

Kapitel 08: Rekursion und Terminierung Software Entwicklung 1 Kapitel 08: Rekursion und Terminierung Software Entwicklung 1 Annette Bieniusa, Mathias Weber, Peter Zeller Rekursion ist eine elegante Strategie zur Problemlösung, die es erlaubt eine Problemstellung

Mehr

Kapitel 2. Mathematische Grundlagen. Skript zur Vorlesung Einführung in die Programmierung

Kapitel 2. Mathematische Grundlagen. Skript zur Vorlesung Einführung in die Programmierung LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Kapitel 2 Mathematische Grundlagen Skript zur Vorlesung Einführung in die Programmierung im Wintersemester 2012/13 Ludwig-Maximilians-Universität

Mehr

Natürliche Zahlen sind interessant

Natürliche Zahlen sind interessant Natürliche Zahlen sind interessant N. N. Technische Universität München 16. September 2008 1 Interessante Zahlen Vorbemerkungen Der Zentrale Satz 2 Anwendungen Pädagogik Übersicht 1 Interessante Zahlen

Mehr

6. Rekursive Funktionen und Induktion

6. Rekursive Funktionen und Induktion 6. Rekursive Funktionen und Induktion 6.1 Rekursive Funktionen Definition rekursiver Funktionen Terminierung 6.2 Beweisen durch Induktion 6.3 Fundierte Relationen Maschinelles Beweisen mit PVS 6 1 6.1

Mehr

KAPITEL 4. Posets Hasse Diagramm

KAPITEL 4. Posets Hasse Diagramm KAPITEL 4 Posets Im Abschnitt über Relationen (1.4) wurde Eigenschaften von Relationen über einer einzigen Grundmenge X definiert. Mithilfe dieser Eigenschaften wurden z.b. Äquivalenzrelationen definiert.

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik 1 Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Wintersemester 2014/15 2 Notation für Wörter w a is die Anzahl der Vorkommen von

Mehr

Beweistechnik: Beweise in Bezug auf Mengen. Formale Methoden 2 LVA , Beweistechnik: Widerspruchsbeweise. Satz R (S T ) = (R S) (R T )

Beweistechnik: Beweise in Bezug auf Mengen. Formale Methoden 2 LVA , Beweistechnik: Widerspruchsbeweise. Satz R (S T ) = (R S) (R T ) Formale Methoden 2 LVA 703019, 703020 (http://clinformatik.uibk.ac.at/teaching/ss06/fmii/) Georg Moser (VO) 1 Martin Korp (UE) 2 Friedrich Neurauter (UE) 3 Christian Vogt (UE) 4 1 georg.moser@uibk.ac.at

Mehr

Vorkurs Mathematik für Informatiker

Vorkurs Mathematik für Informatiker Vorkurs Mathematik für Informatiker 6. Ordnungsrelationen Thomas Huckle, Kilian Röhner Technische Universität München 9.10.2017 Graphen Graph besteht aus Knoten (Ecken) und Kanten (Verbindungen zwischen

Mehr

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

Funktionale Programmierung Teil 2 Methodik: Spezifikation, Implementierung, Verifikation

Funktionale Programmierung Teil 2 Methodik: Spezifikation, Implementierung, Verifikation Grundlagen der Programm- und Systementwicklung Funktionale Programmierung Teil 2 Methodik: Spezifikation, Implementierung, Verifikation Technische Universität München Institut für Informatik Software &

Mehr

Modellbildung Modelle

Modellbildung Modelle Kapitel 2 Mengenlehre Informatiker bauen Systeme, die Dienste zur Verfügung stellen, die von Einzelpersonen, Firmen oder Institutionen gewünscht oder benötigt werden. Die Analyse der gewünschten Dienste

Mehr

Analysis I - Notizen 1. Daniel Lenz Jena - Wintersemester 2016

Analysis I - Notizen 1. Daniel Lenz Jena - Wintersemester 2016 Analysis I - Notizen 1 Daniel Lenz Jena - Wintersemester 2016 1 Es handelt sich nicht um ein Skriptum zur Vorlesung. Besten Dank an alle, die zu Verbesserungen früherer Notizen zur Analysis I beigetragen

Mehr

5. Ordinalzahlen (Vorlesung 11)

5. Ordinalzahlen (Vorlesung 11) EINFÜHRUNG IN DIE LOGIK UND MENGENLEHRE 29 5.. Grundlegende Eigenschaften. 5. Ordinalzahlen (Vorlesung ) Definition 5. (Wohlordnung). Eine lineare Ordnung < auf einer Menge a heißt Wohlordnung, wenn jede

Mehr

Ordnungsrelationen auf Mengen. Beispiel einer Ordnungsrelation. Spezielle Elemente von Ordnungen. Spezielle Elemente von Ordnungen

Ordnungsrelationen auf Mengen. Beispiel einer Ordnungsrelation. Spezielle Elemente von Ordnungen. Spezielle Elemente von Ordnungen Ordnungsrelationen auf Mengen Eine (partielle) Ordnungsrelation oder kurz Ordnung O auf einer Menge M ist eine Relation, die reflexiv, antisymmetrisch und transitiv ist. Beispiel: M = { 1, 2, 3 }, O =

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen 5. Zwei spieltheoretische Aspekte Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2015/2016 1 / 36 Überblick

Mehr

Lösung: InfA - Übungsblatt 07

Lösung: InfA - Übungsblatt 07 Lösung: InfA - Übungsblatt 07 Michele Ritschel & Marcel Schilling 23. Dezember 2008 Verwendete Abkürzungen: Beweis, vollständige Induktion, IA: Induktionsanfang/Induktionsanker, IS: Induktionsschritt/Induktionssprung,

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik Strukturelle Induktion Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 0 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 1:30-14:00 Uhr, o.n.v.

Mehr

Wiederholung

Wiederholung Wiederholung Knotenfärbung von Graphen Chromatische Zahl χ(g) Beweis: Jeder planare Graph ist 5-färbbar Vierfarbensatz: Jeder planare Graph ist 4-färbbar. Kantenfärbung: χ (G) = (G) oder (G)+1 Matchings

Mehr

Zahlen in Haskell Kapitel 3

Zahlen in Haskell Kapitel 3 Einführung in die Funktionale Programmiersprache Haskell Zahlen in Haskell Kapitel 3 FH Wedel IT-Seminar: WS 2003/04 Dozent: Prof. Dr. Schmidt Autor: Timo Wlecke (wi3309) Vortrag am: 04.11.2003 - Kapitel

Mehr

Programmierung und Modellierung mit Haskell

Programmierung und Modellierung mit Haskell Rekursion Terminierung Rekursionsarten Induktion Programmierung und Modellierung mit Haskell Rekursion, Terminierung, Induktion Martin Hofmann Steffen Jost LFE Theoretische Informatik, Institut für Informatik,

Mehr

4 Elementare Mengentheorie

4 Elementare Mengentheorie 4 Elementare Mengentheorie 4 Elementare Mengentheorie 4.1 Mengen [ Partee 3-11, McCawley 135-140, Chierchia 529-531 ] Die Mengentheorie ist entwickelt worden, um eine asis für den ufbau der gesamten Mathematik

Mehr

Induktive Definitionen

Induktive Definitionen Priv.-Doz. Dr.rer.nat.habil. Karl-Heinz Niggl Technische Universität Ilmenau Fakultät IA, Institut für Theoretische Informatik Fachgebiet Komplexitätstheorie und Effiziente Algorithmen J Induktive Definitionen

Mehr

2 Mengen, Abbildungen und Relationen

2 Mengen, Abbildungen und Relationen Vorlesung WS 08 09 Analysis 1 Dr. Siegfried Echterhoff 2 Mengen, Abbildungen und Relationen Definition 2.1 (Mengen von Cantor, 1845 1918) Eine Menge M ist eine Zusammenfassung von wohlbestimmten und wohl

Mehr

Zusammenfassung der letzten LVA. Diskrete Mathematik

Zusammenfassung der letzten LVA. Diskrete Mathematik Zusammenfassung Zusammenfassung der letzten LVA Diskrete Mathematik Christina Kohl Georg Moser Oleksandra Panasiuk Christian Sternagel Vincent van Oostrom (Beweisformen) Beweisformen sind etwa (i) deduktive

Mehr

Inhalt Kapitel 2: Rekursion

Inhalt Kapitel 2: Rekursion Inhalt Kapitel 2: Rekursion 1 Beispiele und Definition 2 Partialität und Terminierung 3 Formen der Rekursion Endständige Rekursion 4 Einbettung 29 Beispiele und Definition Rekursion 30 Man kann eine Funktion

Mehr

Programmieren in Haskell. Stefan Janssen. Strukturelle Rekursion. Universität Bielefeld AG Praktische Informatik. 10.

Programmieren in Haskell. Stefan Janssen. Strukturelle Rekursion. Universität Bielefeld AG Praktische Informatik. 10. Universität Bielefeld AG Praktische Informatik 10. Dezember 2014 Wiederholung: Schema: f :: [σ] -> τ f [] = e 1 f (a : as) = e 2 where s = f as wobei e 1 und e 2 Ausdrücke vom Typ τ sind und e 2 die Variablen

Mehr

Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 10 (Kapitel 11)

Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 10 (Kapitel 11) Fachrichtung 6.2 Informatik Universität des Saarlandes Tutorenteam der Vorlesung Programmierung 1 Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 10 (Kapitel 11) Hinweis: Dieses Übungsblatt enthält

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws13/14

Mehr

WS 2011/2012. Robert Giegerich Dezember 2013

WS 2011/2012. Robert Giegerich Dezember 2013 WS 2011/2012 Robert 1 AG Praktische Informatik 11. Dezember 2013 1 robert@techfak.uni-bielefeld.de Vorschau Themen heute: Funktionen höherer Ordnung (Fortsetzung) künstliche Striktheit mehr zu fold für

Mehr

Einführung in die Mengenlehre

Einführung in die Mengenlehre Einführung in die Mengenlehre D (Menge von Georg Cantor 845-98) Eine Menge ist eine Zusammenfassung bestimmter wohlunterschiedener Objekte unseres Denkens oder unserer Anschauung zu einem Ganzen wobei

Mehr

Überblick. 3. Mathematische Grundlagen 3.1 Mengen und Abbildungen 3.2 Induktion und Rekursion 3.3 Boolsche Algebra

Überblick. 3. Mathematische Grundlagen 3.1 Mengen und Abbildungen 3.2 Induktion und Rekursion 3.3 Boolsche Algebra Überblick 3. Mathematische Grundlagen 3.1 Mengen und Abbildungen 3.2 3.3 Boolsche Algebra Peer Kröger (LMU München) Einführung in die Programmierung WS 14/15 72 / 179 Beweisprinzip der vollständigen Induktion

Mehr

8. Einfache Fixpunkttheorie

8. Einfache Fixpunkttheorie 8. Einfache Fixpunkttheorie Fragestellung: was unter einem (kleinsten) Fixpunkt zu verstehen ist t(x) = x y : D. t(y) = y x y wann ein Fixpunkt existiert monotone Funktionen über CPOs haben einen kleinsten

Mehr

Semantik von Programmiersprachen

Semantik von Programmiersprachen Semantik von Programmiersprachen Markus Lohrey Universität Siegen Sommersemester 2015 Markus Lohrey (Universität Siegen) Semantik Sommersem. 2015 1 / 180 Literatur J. Loeckx, K. Sieber: The Foundations

Mehr

Diskrete Strukturen. Vorlesung 15: Arithmetik. 5. Februar 2019

Diskrete Strukturen. Vorlesung 15: Arithmetik. 5. Februar 2019 1 Diskrete Strukturen Vorlesung 15: Arithmetik 5. Februar 2019 Nächste Termine Modul Diskrete Strukturen Hörsaalübung (Mo. 9:15) Vorlesung (Di. 17:15) 4.2. Tutorium (Klausurvorbereitung) 11.2. 12.2. 5.2.

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 3.2 Boolsche Algebra 3.3 Induktion und Rekursion Peer Kröger (LMU München) Einführung in die Programmierung WS 16/17 46 / 708 Überblick

Mehr

4. Funktionen und Relationen

4. Funktionen und Relationen Bestimmung der Umkehrfunktionen c) bei reellen Funktionen geometrisch durch Spiegelung des Funktionsgraphen an der Winkelhalbierenden y = x. y = x 3 y = x y = x y = (x+1)/2 y = x 1/3 y = 2x 1 Seite 27

Mehr

Ordinalzahlen. Sei (X, ) eine total geordnete Menge und a X. Dann

Ordinalzahlen. Sei (X, ) eine total geordnete Menge und a X. Dann Ordinalzahlen Im Rahmen der Ordnungsrelationen wurden bisher die Begriffe Partialordnung und Totalordnung (lineare Ordnung) erwähnt. Ein weiterer wichtiger Ordnungsbegriff ist die Wohlordnung. Wohlgeordnete

Mehr

Einführung in die Semantik, 2./3. Sitzung Mengen / Relatione

Einführung in die Semantik, 2./3. Sitzung Mengen / Relatione Eigenschaften von Einführung in die Semantik, 2./3. Sitzung Mengen / / Göttingen 2. November 2006 Eigenschaften von Mengenlehre Eigenschaften von Eigenschaften von Das Konzept Menge Eine Menge ist eine

Mehr

Grundlagen der Programmierung 2. Operationale Semantik

Grundlagen der Programmierung 2. Operationale Semantik Grundlagen der Programmierung 2 Operationale Semantik Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 29. April 2009 Semantik von Programmiersprachen Semantik = Bedeutung

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK

TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK WS 11/12 Einführung in die Informatik II Übungsblatt 2 Univ.-Prof. Dr. Andrey Rybalchenko, M.Sc. Ruslán Ledesma Garza 8.11.2011 Dieses Blatt behandelt

Mehr

Teil 4. Mengen und Relationen

Teil 4. Mengen und Relationen Teil 4 Mengen und Relationen KAPITEL 10 Äquivalenzrelationen und Faktormengen 1. Äquivalenzrelationen Wir nennen eine Relation von A nach A auch eine Relation auf A. DEFINITION 10.1. SeiΡeine Relation

Mehr

Formale Grundlagen. Franz Binder. Institut für Algebra Johannes Kepler Universität Linz

Formale Grundlagen. Franz Binder. Institut für Algebra Johannes Kepler Universität Linz Formale Grundlagen Franz Binder Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2009S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Grundbegriffe Relationenprodukt Äquivalenzrelationen

Mehr

Programmierung und Modellierung

Programmierung und Modellierung Programmierung und Modellierung Martin Wirsing in Zusammenarbeit mit Moritz Hammer SS 2009 2 2. Rekursive Funktionen und Induktion 1. Dateien laden, Kommentare und Fallunterscheidungen 2. Rekursive Funktionen

Mehr

Hausaufgaben. zur Vorlesung. Vollständige Induktion. 1. Beweist folgende Formeln (zu beweisen ist nur die Gleichheit mit dem. i=1 (4 + i)!

Hausaufgaben. zur Vorlesung. Vollständige Induktion. 1. Beweist folgende Formeln (zu beweisen ist nur die Gleichheit mit dem. i=1 (4 + i)! WS 015/1 Hausaufgaben zur Vorlesung Vollständige Induktion 1. Beweist folgende Formeln zu beweisen ist nur die Gleichheit mit dem! -Zeichen : a 5 + + 7 + 8 + + 4 + n n 4 + i! nn+9 b 1 + + 9 + + n 1 n 1

Mehr

Einführung in die Programmierung

Einführung in die Programmierung Einführung in die Programmierung Teil 2: Mathematische Grundlagen Prof. Dr. Peer Kröger, Florian Richter, Michael Fromm Wintersemester 2018/2019 Übersicht 1. Mengen 2. Relationen und Abbildungen 3. Boolsche

Mehr

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9 Chr.Nelius: Zahlentheorie (SS 2007) 9 4. ggt und kgv (4.1) DEF: Eine ganze Zahl g heißt größter gemeinsamer Teiler (ggt) zweier ganzer Zahlen a und b, wenn gilt: GGT 0 ) g 0 GGT 1 ) g a und g b GGT 2 )

Mehr

Programmieren in C. Rekursive Funktionen. Prof. Dr. Nikolaus Wulff

Programmieren in C. Rekursive Funktionen. Prof. Dr. Nikolaus Wulff Programmieren in C Rekursive Funktionen Prof. Dr. Nikolaus Wulff Rekursive Funktionen Jede C Funktion besitzt ihren eigenen lokalen Satz an Variablen. Dies bietet ganze neue Möglichkeiten Funktionen zu

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 reelle Es gibt Mathematik mit Grenzwert (Analysis) und Mathematik ohne Grenzwert (z.b Algebra). Grenzwerte existieren sicher nur dann, wenn der Zahlbereich vollständig ist, also keine Lücken aufweist

Mehr

BA-INF 011 Logik und Diskrete Strukturen WS 2013/14 Mögliche Klausuraufgaben Stand vom

BA-INF 011 Logik und Diskrete Strukturen WS 2013/14 Mögliche Klausuraufgaben Stand vom Prof. Dr. Norbert Blum Elena Trunz Informatik V BA-INF 011 Logik und Diskrete Strukturen WS 2013/14 Mögliche Klausuraufgaben Stand vom 5.2.2014 Bitte beachten Sie, dass die tatsächlichen Klausuraufgaben

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2013/14 Relationalstrukturen 59 Definition Sei A eine nichtleere Menge, R ist eine k-stellige

Mehr

Kapitel 6. Programme mit Schleifen. Wir betrachten jetzt eine einfache imperative Programmiersprache IMP. IMP verfügt

Kapitel 6. Programme mit Schleifen. Wir betrachten jetzt eine einfache imperative Programmiersprache IMP. IMP verfügt Kapitel 6 Programme mit Schleifen Wir betrachten jetzt eine einfache imperative Programmiersprache IMP. IMP verfügt über zuweisbare Variablen, Konditionale und Schleifen, hat aber keine Prozeduren. IMP

Mehr

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg Universität Freiburg 26.10.2011 Vollständige Induktion Wir unterbrechen jetzt die Diskussion der Axiome der reellen Zahlen, um das Beweisverfahren der vollständigen Induktion kennenzulernen. Wir setzen

Mehr

Kapitel 1. Mengen und Abbildungen. 1.1 Mengen

Kapitel 1. Mengen und Abbildungen. 1.1 Mengen Kapitel 1 Mengen und Abbildungen 1.1 Mengen Die Objekte der modernen Mathematik sind die Mengen. Obwohl die Logik einen axiomatischen Zugang zur Mengenlehre bietet, wollen wir uns in dieser Vorlesung auf

Mehr

Semantik von Programmiersprachen SS 2017

Semantik von Programmiersprachen SS 2017 Lehrstuhl für Programmierparadigmen Denis Lohner Sebastian Ullrich denis.lohner@kit.edu sebastian.ullrich@kit.edu Semantik von Programmiersprachen SS 2017 http://pp.ipd.kit.edu/lehre/ss2017/semantik Lösungen

Mehr

Induktion und Rekursion

Induktion und Rekursion Mathematische Beweistechniken Vorkurs Informatik SoSe13 10. April 013 Mathematische Beweistechniken Ziel Mathematische Beweistechniken Ziel beweise, dass eine Aussage A(n) für alle n N gilt. Beispiel Für

Mehr

Logik für Informatiker

Logik für Informatiker Dr. Christian Săcărea Babeş Bolyai Universität, Cluj-Napoca Fachbereich Mathematik und Informatik Wintersemester 2017/2018 Lösungshinweise zur 1. Übung Logik für Informatiker Gruppenübungen: (G 1)Induktion

Mehr

Logik und Künstliche Intelligenz

Logik und Künstliche Intelligenz Logik und Künstliche Intelligenz Kurze Zusammenfassung (Stand: 14. Januar 2010) Prof. Dr. V. Stahl Copyright 2007 by Volker Stahl. All rights reserved. V. Stahl Logik und Künstliche Intelligenz Zusammenfassung

Mehr

4. Funktionen und Relationen

4. Funktionen und Relationen 4. Funktionen und Relationen Nikolaus von Oresmes Richard Dedekind (1831-1916) René Descartes 1596-1650 Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 4: Funktionen und Relationen 4.1 Funktionen:

Mehr