SPEKTRALANALYSE. Spezialgebiet aus Physik Christian Danecek 1999/2000

Größe: px
Ab Seite anzeigen:

Download "SPEKTRALANALYSE. Spezialgebiet aus Physik Christian Danecek 1999/2000"

Transkript

1 SPEKTRALANALYSE Spezialgebiet aus Physik Licht besteht aus unterschiedlichsten Wellen bzw. Strahlungen, von denen nur ein kleiner Teil der Bereich des sichtbaren weißen Lichtes ist. Nach Wellenlänge geordnet (längste Wellenlänge zuerst) wird das gesamte elektromagnetische Spektrum folgendermaßen unterteilt. Überschneidungen der einzelnen Bereiche sind möglich: technischer Wechselstrom tonfrequenter Wechselstrom Langwellen Mittelwellen Kurzwellen Ultrakurzwellen kosmische Radiowellen und Mikrowellen Infrarotstrahlung sichtbares Spektrum Ultraviolettstrahlung Röntgenstrahlung Gammastrahlung sekundäre Höhenstrahlung um 10 7 Meter um 10 5 Meter 30 Kilometer bis 600 Meter 600 bis 200 Meter 200 bis 10 Meter 10 bis 1 Meter 1 Meter bis 0,1 Millimeter 1,5 Millimeter bis 0,75 Mikrometer 0,8 bis 0,4 Mikrometer 400 bis 3 Nanometer 10 8 bis Meter bis Meter bis Meter Schickt man nun einen weißen Lichtstrahl des sichtbaren Lichtes (0,8 bis 0,4 Mikrometer) durch ein Glasprisma wird dieser 2 mal gebrochen und das sichtbare Licht wird in seine Spektralfarben aufgefächert. Die Zerlegung des Lichts in die Farben des Spektrums hatte bereits Newton entdeckt. Mit einem dreieckigen Prisma wird ein zuvor durch eine Sammellinse gebündelter Lichtstrahl in seine einzelnen Wellenlängen zerlegt. Das Ergebnis ist eine Abfolge von Farben von Rot und Orange am einen Ende über Gelb, Grün und Blau bis zu Indigo und Violett am anderen Ende. Joseph von Frauenhofer wollte feststellen ob sich in dem Regenbogenmuster, das die Lichtbrechung erzeugte, eventuelle Fehler seines Linsenglases zeigten. Zunächst hatte er mit künstlichem Licht gearbeitet (dem gelben Licht das bei der Erwärmung von Natrium entsteht). Dabei hatte er bemerkt, daß das Licht einer solchen Lampe bei der Brechung ein oder zwei rätselhafte Lücken zeigte dunkle Linien, an denen die kontinuierliche Ausbreitung der Farben jedesmal, wenn er das Lampenlicht zerlegte, an ganz bestimmten Stellen unterbrochen wurde. Allerdings erzeugte das Natriumlicht nur einen Teil des Spektrums, daher wollte Fraunhofer das ganze Spektrum prüfen, um herauszufinden ob die Linien auch im Sonnenspektrum auftreten. Unter den überaus sorgfältigen Bedingungen, für die er bei der Überprüfung seiner Linsen sorgte, konnte er nicht nur den Regenbogeneffekt sehen, den er durch die Lichtbrechung hervorrief, sondern er bemerkte auch eine große Anzahl deutlich erkennbarer Linien quer über das ganze Spektrum. Es gab einige tiefdunkle und einige andere, die heller und daher nicht ganz so gut sichtbar waren. Unter Fraunhofers Versuchsbedingungen waren sie zweifelsfrei sichtbar. Bald darauf erhitzte er andere chemische Stoffe und zerlegte das von ihnen erzeugte Licht. Abermals zeigten sich Linien oder Lücken, doch diesmal an anderen Stellen. Zwar wußte er nicht wie sie zustande kamen, aber jeder chemische Stoff produzierte ein charakteristisches Linienmuster, das sich von dem der anderen unterschied. Ein bißchen glichen sie den Strichcodes, die heute in Kaufhäusern für die Preisauszeichnung dienen; jedes Muster aus hellen und dunklen Streifen im Farbspektrum war eine Art Lichtfingerabdruck, - 1 -

2 durch den man das betreffende chemische Element bei Erwärmung identifizieren vermag was Fraunhofer allerdings noch nicht erkannte. Im Augenblick wußte er lediglich, daß er diese Linien gesehen hatte und daß er sie im Interesse der Wissenschaft veröffentlichen konnte. Heute wissen wir, daß es sich bei diesen Linien in der Tat um Stellen im Spektrum oder bestimmte Wellenlängen des Lichts handelt, bei denen jedes Element Licht absorbiert und dadurch Abwesenheit von Licht, also eine dunkle Linie erzeugt oder eine leuchtende Farbe, also eine zusätzliche Aufhellung produziert. Das hängt mit dem subatomaren der Elemente und der Art und Weise zusammen wie sie auf Energiezufuhr reagieren. Man kann diese Vorgänge am besten verstehen, wenn man die Emission ( aussenden ) und Absorption ( verschlucken ) von Licht an einem Modell des einfachsten Atoms, dem Wasserstoff, erklärt. Hier umkreist ein einzelnes elektrisch negativ geladenes Elektron den aus einem positiven Proton bestehenden Kern. Dem Elektron stehen zahlreiche, aber ganz bestimmte Bahnen offen, die ganz bestimmten Energiestufen entsprechen. Die innerste Bahn 1 (Grundzustand) ist die energieärmste. Soll eine äußere Bahn erreicht werden, so muß das Elektron dazu angeregt werden, das heißt es muß Energie von außen zugeführt werden. Für den Sprung von Bahn 1 auf Bahn 2 ist zum Beispiel ein Energiebetrag von 10,19 e.v. (Elektronenvolt) erforderlich. Wobei 1 e.v. die Energie ist, die ein Elektron gewinnt, wenn es ein Feld mit einer Spannungsdifferenz von 1 Volt durchläuft. Für einen Sprung von Bahn 1 auf die Bahn 3 sind 12,07 e.v. notwendig. Bei einer Zufuhr von 13,595 e.v. oder mehr wird das Elektron vom Atomkern völlig getrennt (Ionisation). Umgekehrt wird bei Elektronensprüngen von einer äußeren auf eine innere Bahn ein jeweils ganz bestimmter Energiebetrag in Form einer Strahlung bestimmter Wellenlänge frei. Es entsteht also eine Emissionslinie, also eine helle Linie im Spektrum. Wenn wir nun diese Linien identifizieren, können wir sagen, welche chemischen Elemente in einer Lichtquelle vorhanden sind. Sonnen und Sternspektren zeigen auf dem kontinuierlichen Farbenhintergrund (Kontinuum) eben auch dunkle (selten hellere) Linien. Die auffälligsten dunklen Linien wurden erstmals von W.H. Wollaston 1802 im Sonnenspektrum entdeckt und von J. Fraunhofer 1814 mit lateinischen Buchstaben bezeichnet. Ihre Bedeutung wurde erst klar, als R.W.Bunsen und G.R. Kirchhoff 1859 die Grundlagen der Spektralanalyse aus Laboratoriumasversuchen ermittelten: - Ein glühender, fester oder flüssiger Körper sowie Gase unter sehr hohem Druck und hoher Temperatur erzeugen ein zusammenhängendes, kontinuierliches Spektrum ohne Linien. - Leuchtende Gase unter geringerem Druck oder niedriger Temperatur zeigen einzelne helle Emissionslinien. Jedes chemische Element erzeugt seine eigenen Linienserien. Das Emissionsspektrum irgendwelcher leuchtender Gase verrät also deren chemische Zusammensetzung. - Durchläuft das Licht eines Körpers, das für sich allein genommen ein kontinuierliches Spektrum ergibt, ein (kühleres) Gas, so zeigen sich auf dem Kontinuum genau bei denjenigen Wellenlängen dunkle Linien (Absorptionslinien, Fraunhofer sche Linien), bei denen das durchstrahlte Gas im alleinigen Leuchtzustand Emissionslinien erzeugen würde. Dies gilt auch für die meisten Sterne und die Sonne, wo die von tieferen Zonen stammenden Lichtstrahlen äußere, kühle Randschichten durchlaufen und in dieser umkehrenden Schicht die Fraunhofer-Linien entstehen. Im übrigen war Fraunhofer nicht der einzige, dem die Bedeutung seiner Entdeckung zunächst verschlossen blieb. Erst um 1880 fand William Huggins heraus, daß die Fraunhofer schen - 2 -

3 Linien die Fingerabdrücke der Elemente sind. Noch wichtiger: Ihm wurde klar, daß sich mit ihrer Hilfe herausfinden ließ, woraus Sonne und Sterne bestehen. Als er das Licht der Sonne zerlegte und es mit dem Licht eines Sterns verglich, erkannte er nicht nur, daß beide Lichter mit identischen Fingerabdrücken abstrahlten, sondern auch, daß in beiden die einander überlagernden Fingerabdrücke von Helium und Wasserstoff vorhanden sind. Daraus ergab sich unweigerlich der Schluß, daß die Sterne und die Sonne in ähnlicher Weise aus Wasserstoff und Helium aufgebaut sind und diese Stoffe durch einen Verbrennungsvorgang oder eine ähnliche Reaktion veranlassen, Wärme und Licht abzustrahlen wie Riesenversionen von Fraunhofers Lampen. Das war an sich schon eine Erkenntnis von hohem wissenschaftlichem Wert, aber ihre philosophische Bedeutung lag in dem Beweis, daß sich die Sonne und die Sterne nicht voneinander unterscheiden. Mit anderen Worten: Huggins hatte eine Tatsache entdeckt, die dem Rang des Menschen in der Natur einen viel größeren Abbruch tat als das Galileis Beobachtung, daß sich die Erde nicht im Mittelpunkt des Universums befindet. Die Sonne, die das Herz unseres Planetensystems bildet, ist beileibe nicht einzigartig, sonder ein Stern unter anderen, Milliarden an anderen, die alle aus den Elementen Wasserstoff und Helium bestehen. Absorptionsspektren Der größte Teil der Information über den Aufbau des Atoms stammt aus der Spektroskopie. Spektren von Molekülen sind ähnlich nützlich bei der Erforschung von Molekülen, was für die Chemie noch wichtiger ist als für die Physik. Die meisten Molekülspektren sind typische Bandenspektren, d. h., das Spektrum besteht aus einer Reihe von hellen Banden, von denen jede aussieht wie ein Stück des kontinuierlichen Spektrums. Diese Stücke sind durch dunkle Stellen getrennt. Diese Banden sind nicht kontinuierlich, sondern bestehen aus vielen dicht nebeneinander liegenden Linien, die mit hoch auflösenden Spektroskopen getrennt werden können. Die Trennungen der Linien in jeder Reihe hängen davon ab, ob es sich um ein Rotations- oder ein Vibrationsspektrum handelt. Weil die Rotationsenergieniveaus durch geringe Energiemengen angeregt werden können und daher dicht beisammen liegen, sind die Linien in einem Rotationsband dicht gepackt und besitzen kaum Zwischenräume. Die Vibrationsniveaus liegen jedoch viel weiter auseinander, daher weisen die Linien in einem Vibrationsband größere Zwischenräume auf. Die Energieniveaus der Elektronen eines Moleküls können auch angeregt werden, und die Übergänge von Elektronen zwischen solchen Niveaus verursachen weit voneinander getrennte Linien im Molekülspektrum. Neben den atomaren gibt es auch molekulare Absorptionsspektren. Man erhält sie, indem man kontinuierliche Strahlung durch eine aus Molekülen bestehende Flüssigkeit oder ein solches Gas leitet. Derartige Spektren werden bei der Erforschung von Molekülstrukturen am häufigsten verwendet. Geräte Prismenspektroskop Gustav Robert Kirchhoff und Robert Wilhelm Bunsen entwickelten die moderne Form des Prismenspektroskops und verwendeten es für die chemische Analyse. Dieses Instrument, das einen von zwei grundlegenden Typen von Spektroskopen darstellt, besteht aus einem Spalt, der Licht von einer externen Quelle durchlässt. Außerdem enthält ein - 3 -

4 Prismenspektroskop eine Gruppe von Linsen, ein Prisma sowie ein Okular. Das zu analysierende Licht läuft durch eine Linse, die die Strahlen parallel ausrichtet, und anschließend durch das Prisma. Dann wird das Bild auf das Okular fokussiert. Man kann dabei eine Reihe von Abbildungen sehen. Jede erscheint in einer anderen Farbe, da das Licht durch das Prisma in seine Komponenten zerlegt wurde. Bunsen und Kirchhoff erkannten als Erste, dass charakteristische Farben des Lichtes von jedem Element abgestrahlt und absorbiert werden. Spektrograph In einem Spektrograph ist das Okular durch eine Kamera ersetzt. Farbphotographie ist für die Identifikation der Abbilder (Spektrallinien) nicht nötig. Ihre Wellenlängen können aus ihrer Position auf dem Film berechnet werden. Spektrographen setzt man im gesamten ultravioletten, im sichtbaren und darüber hinaus auch im infraroten Bereich bis Nanometer ein. Das Verfahren in den extrem ultravioletten und infraroten Bereichen ist der Methode im Bereich des sichtbaren Lichtes ähnlich. Zwischen ihnen besteht lediglich der Unterschied, dass normales Glas für diese Strahlung nicht durchlässig ist. Bei der Ultraviolett- und Infrarot-Spektroskopie verwendet man deshalb Linsen und Prismen z. B. aus Quarz, Fluorit, Sylvin oder Steinsalz. Auch konkave Spiegel können Linsen ersetzen. Spezielle photographische Emulsionen finden Verwendung. Auf diese Weise kann das ultraviolette Spektrum bis zu Wellenlängen von weniger als 60 Nanometer und das infrarote Spektrum bis in Bereiche über 0,1 Millimeter untersucht werden. Spektralphotometer Mit einem Spektralphotometer misst man die Intensität eines besonderen Spektrums und vergleicht diese mit der Lichtintensität einer Standardstrahlungsquelle. Durch diesen Vergleich kann die Konzentration der Substanz ermittelt werden, die das Spektrum aussendet oder absorbiert. Spektralphotometer sind auch zur Untersuchung von Spektren im nicht sichtbaren Bereich geeignet. So genannte Bolometer sind besonders für Untersuchungen im Infrarotbereich geeignet. Bolometer werden als Messgerät für kleinste Strahlungsmengen im Bereich von Lichtwellen bis Mikrowellen verwendet. Für den ultravioletten Bereich verwendet man Photometer, in denen Photozellen als Sensoren dienen. Beugungsgitter Für spektroskopische Untersuchungen sehr gebräuchliche Geräte sind Gitterspektrometer. In diesen Apparaten wird das Licht nicht durch ein Prisma, sondern mit Hilfe eines Beugungsgitters gestreut. Das Beugungsgitter wurde von dem deutschen Physiker Joseph von Fraunhofer zu Beginn des 19. Jahrhunderts erfunden. Fraunhofer setzte seine Erfindung in selbst konstruierten Gitterspektralapparaten ein. In den heute üblichen Geräten besteht das Gitter häufig aus einer spiegelnden Metall- oder Glasoberfläche, auf der mit einem Diamant eine große Zahl paralleler Rillen eingeritzt worden sind. Ein gutes Gitter hat eine sehr hohe Streukraft und ermöglicht daher eine detailliertere Darstellung. Die Linien des Beugungsgitters können auf einem konkaven Spiegel abgebildet werden, so dass das Gitter auch der Fokussierung des Lichtes dient. Linsen sind daher in einem Gitterspektrometer überflüssig. Das Licht muss keine transparenten Substanzen durchlaufen. Deshalb eignet sich ein Beugungsgitter auch für Apparate, mit denen man den gesamten ultravioletten Bereich bis hinein in den Röntgenbereich spektroskopisch untersucht

5 - 5 - Spezialgebiet aus Physik

SPEKTRALANALYSE. entwickelt um 1860 von: GUSTAV ROBERT KIRCHHOFF ( ; dt. Physiker) + ROBERT WILHELM BUNSEN ( ; dt.

SPEKTRALANALYSE. entwickelt um 1860 von: GUSTAV ROBERT KIRCHHOFF ( ; dt. Physiker) + ROBERT WILHELM BUNSEN ( ; dt. SPEKTRALANALYSE = Gruppe von Untersuchungsmethoden, bei denen das Energiespektrum einer Probe untersucht wird. Man kann daraus schließen, welche Stoffe am Zustandekommen des Spektrums beteiligt waren.

Mehr

Grundbausteine des Mikrokosmos (5) Die Entdeckung des Wirkungsquantums

Grundbausteine des Mikrokosmos (5) Die Entdeckung des Wirkungsquantums Grundbausteine des Mikrokosmos (5) Die Entdeckung des Wirkungsquantums Ein weiterer Zugang zur Physik der Atome, der sich als fundamental erweisen sollte, ergab sich aus der Analyse der elektromagnetischen

Mehr

Gymnasium / Realschule. Atomphysik 2. Klasse / G8. Aufnahme und Abgabe von Energie (Licht)

Gymnasium / Realschule. Atomphysik 2. Klasse / G8. Aufnahme und Abgabe von Energie (Licht) Aufnahme und Abgabe von Energie (Licht) 1. Was versteht man unter einem Elektronenvolt (ev)? 2. Welche physikalische Größe wird in Elektronenvolt gemessen? Definiere diese Größe und gib weitere Einheiten

Mehr

Die Natriumlinie. und Absorption, Emission, Dispersion, Spektren, Resonanz Fluoreszenz, Lumineszenz

Die Natriumlinie. und Absorption, Emission, Dispersion, Spektren, Resonanz Fluoreszenz, Lumineszenz Die Natriumlinie und Absorption, Emission, Dispersion, Spektren, Resonanz Fluoreszenz, Lumineszenz Absorption & Emissionsarten Absorption (Aufnahme von Energie) Atome absorbieren Energien, z.b. Wellenlängen,

Mehr

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom phys4.08 Page 1 7. Das Bohrsche Modell des Wasserstoff-Atoms 7.1 Stabile Elektronbahnen im Atom Atommodell: positiv geladene Protonen (p + ) und Neutronen (n) im Kern negative geladene Elektronen (e -

Mehr

Wie das unsichtbare Infrarotweltall seine Geheimnisse Preis gibt Cecilia Scorza

Wie das unsichtbare Infrarotweltall seine Geheimnisse Preis gibt Cecilia Scorza Wie das unsichtbare Infrarotweltall seine Geheimnisse Preis gibt Cecilia Scorza Einen großen Teil ihrer Information über die kosmischen Objekte erhalten die Astronomen im Infrarotbereich, einem Bereich

Mehr

KAISERSLAUTERN. Untersuchung von Lichtspektren. Lampen mit eigenem Versuchsaufbau. ZfP-Sonderpreis der DGZfP beim Regionalwettbewerb Jugend forscht

KAISERSLAUTERN. Untersuchung von Lichtspektren. Lampen mit eigenem Versuchsaufbau. ZfP-Sonderpreis der DGZfP beim Regionalwettbewerb Jugend forscht ZfP-Sonderpreis der DGZfP beim Regionalwettbewerb Jugend forscht KAISERSLAUTERN Untersuchung von Lichtspektren bei verschiedenen Lampen mit eigenem Versuchsaufbau Johannes Kührt Schule: Burggymnasium Burgstraße

Mehr

Abiturprüfung Physik, Grundkurs

Abiturprüfung Physik, Grundkurs Seite 1 von 5 Abiturprüfung 2012 Physik, Grundkurs Aufgabenstellung: Aufgabe: Farbstoffmoleküle In der Spektroskopie unterscheidet man zwei grundsätzliche Typen von Spektren: Emissionsspektren, wie sie

Mehr

9. GV: Atom- und Molekülspektren

9. GV: Atom- und Molekülspektren Physik Praktikum I: WS 2005/06 Protokoll zum Praktikum Dienstag, 25.10.05 9. GV: Atom- und Molekülspektren Protokollanten Jörg Mönnich Anton Friesen - Veranstalter Andreas Branding - 1 - Theorie Während

Mehr

Licht als Teilchenstrahlung

Licht als Teilchenstrahlung Der Photoeffekt: die auf die Materie einfallende Strahlung löst ein Elektron aus. Es gibt eine Grenzfrequenz, welche die Strahlung haben muss, um das Atom gerade zu ionisieren. Licht als Teilchenstrahlung

Mehr

Übungsfragen zu den Diagrammen

Übungsfragen zu den Diagrammen Übungsfragen zu den Diagrammen 1. SONNENSPEKTRUM 2500 2000 1500 1000 idealer Schwarzer Körper (Temperatur 5900 K) extraterrestrische Sonnenstrahlung (Luftmasse AM0) terrestrische Sonnenstrahlung (Luftmasse

Mehr

Kontrollaufgaben zur Optik

Kontrollaufgaben zur Optik Kontrollaufgaben zur Optik 1. Wie schnell bewegt sich Licht im Vakuum? 2. Warum hat die Lichtgeschwindigkeit gemäss moderner Physik eine spezielle Bedeutung? 3. Wie nennt man die elektromagnetische Strahlung,

Mehr

(21. Vorlesung: III) Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen )

(21. Vorlesung: III) Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen ) . Vorlesung EP (. Vorlesung: III) Elektrizität und Magnetismus. Wechselstrom. Elektromagnetische Wellen ) IV) Optik = Lehre vom Licht. Licht = sichtbare elektromagnetische Wellen 3. Geometrische Optik

Mehr

Die Farben des Lichts oder Das Geheimnis des Regenbogens

Die Farben des Lichts oder Das Geheimnis des Regenbogens Kurzinformation Lehrkräfte (Sachanalyse) Sachanalyse Das sichtbare Licht, das die Farben unserer Welt erzeugt, hat eine bestimmte Wellenlänge, sodass es unser menschliches Auge sehen kann. Es ist jedoch

Mehr

2 Einführung in Licht und Farbe

2 Einführung in Licht und Farbe 2.1 Lernziele 1. Sie wissen, dass Farbe im Gehirn erzeugt wird. 2. Sie sind mit den drei Prinzipien vertraut, die einen Gegenstand farbig machen können. 3. Sie kennen den Zusammenhang zwischen Farbe und

Mehr

Quantenphysik in der Sekundarstufe I

Quantenphysik in der Sekundarstufe I Quantenphysik in der Sekundarstufe I Atome und Atomhülle Quantenphysik in der Sek I, Folie 1 Inhalt Voraussetzungen 1. Der Aufbau der Atome 2. Größe und Dichte der Atomhülle 3. Die verschiedenen Zustände

Mehr

Feldbegriff und Feldlinienbilder. Elektrisches Feld. Magnetisches Feld. Kraft auf Ladungsträger im elektrischen Feld

Feldbegriff und Feldlinienbilder. Elektrisches Feld. Magnetisches Feld. Kraft auf Ladungsträger im elektrischen Feld Feldbegriff und Feldlinienbilder Elektrisches Feld Als Feld bezeichnet man den Bereich um einen Körper, in dem ohne Berührung eine Kraft wirkt beim elektrischen Feld wirkt die elektrische Kraft. Ein Feld

Mehr

Entstehung des Lichtes und Emissionsspektroskopie

Entstehung des Lichtes und Emissionsspektroskopie Entstehung des Lichtes und Emissionsspektroskopie Entstehung des Lichtes Abb. 1 Entstehung des Lichtes Durch Energiezufuhr von Aussen (z.b. Erhitzen) kann die Lage der Elektronen in einem Atom verändert,

Mehr

Periodensystem, elektromagnetische Spektren, Atombau, Orbitale

Periodensystem, elektromagnetische Spektren, Atombau, Orbitale Periodensystem, elektromagnetische Spektren, Atombau, Orbitale Als Mendelejew sein Periodensystem aufstellte waren die Edelgase sowie einige andere Elemente noch nicht entdeck (gelb unterlegt). Trotzdem

Mehr

Große Teleskope für kleine Wellen

Große Teleskope für kleine Wellen Große Teleskope für kleine Wellen Deutsche Zusammenfassung der Antrittsvorlesung von Dr. Floris van der Tak, zur Gelegenheit seiner Ernennung als Professor der Submillimeter-Astronomie an der Universität

Mehr

Broschüre-Licht und Farbe

Broschüre-Licht und Farbe Broschüre-Licht und Farbe Juliane Banach Juni 2008 bearbeitet mit: FreeHand 2007 Inhaltsverzeichnis Kapitel Seite Was ist Licht? 4 Das Auge 5 Stäbchen und Zapfen 6 Dispersion 7 Farbspektrum 8 Absorption

Mehr

Quasare Hendrik Gross

Quasare Hendrik Gross Quasare Hendrik Gross Gliederungspunkte 1. Entdeckung und Herkunft 2. Charakteristik eines Quasars 3. Spektroskopie und Rotverschiebung 4. Wie wird ein Quasar erfasst? 5. Funktionsweise eines Radioteleskopes

Mehr

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen Physik für Maschinenbau Prof. Dr. Stefan Schael RWTH Aachen Vorlesung 11 Brechung b α a 1 d 1 x α b x β d 2 a 2 β Totalreflexion Glasfaserkabel sin 1 n 2 sin 2 n 1 c arcsin n 2 n 1 1.0 arcsin

Mehr

9. GV: Atom- und Molekülspektren

9. GV: Atom- und Molekülspektren Physik Praktikum I: WS 2005/06 Protokoll zum Praktikum Dienstag, 25.10.05 9. GV: Atom- und Molekülspektren Protokollanten Jörg Mönnich Anton Friesen - Betreuer Andreas Branding - 1 - Theorie Zur Erläuterung

Mehr

Das Wasserstoffatom Energiestufen im Atom

Das Wasserstoffatom Energiestufen im Atom 11. 3. Das Wasserstoffatom 11.3.1 Energiestufen im Atom Vorwissen: Hg und Na-Dampflampe liefern ein charakteristisches Spektrum, das entweder mit einem Gitter- oder einem Prismenspektralapparat betrachtet

Mehr

Die Farbstofflösung in einer Küvette absorbiert 90% des einfallenden Lichtes. Welche Extinktion hat diese Lösung? 0 0,9 1,9 keine der Aussagen ist richtig Eine Küvette mit einer wässrigen Farbstofflösung

Mehr

Die Grundlagen der Spektroskopie: Theorie FÜR EINE BESSERE WISSENSCHAFT AGILENT AND YOU

Die Grundlagen der Spektroskopie: Theorie FÜR EINE BESSERE WISSENSCHAFT AGILENT AND YOU Die Grundlagen der Spektroskopie: Theorie FÜR EINE BESSERE WISSENSCHAFT AGILENT AND YOU 1 Agilent engagiert sich für Ausbildung und Lehre und möchte den Zugang zu firmeneigenem Material ermöglichen. Diese

Mehr

Quantenphysik in der Sekundarstufe I

Quantenphysik in der Sekundarstufe I Quantenphysik in der Sekundarstufe I Atomphysik Dr. Holger Hauptmann Europa-Gymnasium Wörth holger.hauptmann@gmx.de Quantenphysik in der Sek I, Folie 1 Inhalt 1. Der Aufbau der Atome 2. Größe und Dichte

Mehr

18.Elektromagnetische Wellen 19.Geometrische Optik. Spektrum elektromagnetischer Wellen Licht. EPI WS 2006/7 Dünnweber/Faessler

18.Elektromagnetische Wellen 19.Geometrische Optik. Spektrum elektromagnetischer Wellen Licht. EPI WS 2006/7 Dünnweber/Faessler Spektrum elektromagnetischer Wellen Licht Ausbreitung von Licht Verschiedene Beschreibungen je nach Größe des leuchtenden (oder beleuchteten) Objekts relativ zur Wellenlänge a) Geometrische Optik: Querdimension

Mehr

Optische Eigenschaften fester Stoffe. Licht im neuen Licht Dez 2015

Optische Eigenschaften fester Stoffe. Licht im neuen Licht Dez 2015 Licht und Materie Optische Eigenschaften fester Stoffe Matthias Laukenmann Den Lernenden muss bereits bekannt sein: Zahlreiche Phänomene lassen sich erklären, wenn man annimmt, dass die von Atomen quantisiert

Mehr

Weißes Licht wird farbig

Weißes Licht wird farbig B1 Experiment Weißes Licht wird farbig Das Licht, dass die Sonne oder eine Glühlampe aussendet, bezeichnet man als weißes Licht. Lässt man es auf ein Glasprisma fallen, so entstehen auf einem Schirm hinter

Mehr

c = Ausbreitungsgeschwindigkeit (2, m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 )

c = Ausbreitungsgeschwindigkeit (2, m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 ) 2.3 Struktur der Elektronenhülle Elektromagnetische Strahlung c = λ ν c = Ausbreitungsgeschwindigkeit (2,9979 10 8 m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 ) Quantentheorie (Max Planck, 1900) Die

Mehr

Spektren von Himmelskörpern

Spektren von Himmelskörpern Spektren von Himmelskörpern Inkohärente Lichtquellen (Prof. Dr. Thomas Jüstel) Anja Strube, 04.06.2014 Inhalt Einführung o Messung von Sternspektren o Spektralklassen der Sterne o Leuchtkraftklassen o

Mehr

Einfaches Spektroskop aus alltäglichen Gegenständen

Einfaches Spektroskop aus alltäglichen Gegenständen Illumina-Chemie.de - Artikel Physik aus alltäglichen Gegenständen Im Folgenden wird der Bau eines sehr einfachen Spektroskops aus alltäglichen Dingen erläutert. Es dient zur Untersuchung von Licht im sichtbaren

Mehr

Physik für Naturwissenschaften. Dr. Andreas Reichert

Physik für Naturwissenschaften. Dr. Andreas Reichert Physik für Naturwissenschaften Dr. Andreas Reichert Modulhandbuch Modulhandbuch Modulhandbuch Modulhandbuch Modulhandbuch Modulhandbuch Modulhandbuch Modulhandbuch Termine Klausur: 5. Februar?, 12-14 Uhr,

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum MI2AB Prof. Ruckelshausen Versuch 3.6: Beugung am Gitter Inhaltsverzeichnis 1. Theorie Seite 1 2. Versuchsdurchführung Seite 2 2.1 Bestimmung des Gitters mit der kleinsten Gitterkonstanten

Mehr

6 Farben und Entstehung von Licht

6 Farben und Entstehung von Licht 6 Farben und Entstehung von Licht 6.1 Die Grenzen der Strahlenoptik Bisher haben wir uns mit geometrischer Optik oder Strahlenoptik befasst. Sie beruht auf der Voraussetzung der geradlinigen Ausbreitung

Mehr

Die Sonne. Ein Energieversorger

Die Sonne. Ein Energieversorger 2 Die Sonne Ein Energieversorger Die Sonne ist - direkt oder indirekt - der Motor fast aller Abläufe in der Atmosphäre. Obwohl nur der zweimilliardste Teil der gesamten von der Sonne ausgehenden Strahlung

Mehr

Das CD-Spektroskop. 15 min

Das CD-Spektroskop. 15 min 50 Experimente- Physik / 9.-13. Schulstufe Das CD-Spektroskop 15 min Welche Beleuchtung eignet sich für Innenräume am besten? Seit die Glühlampe aus den Wohnungen verbannt wurde, wird in den Medien über

Mehr

Physikalisches Praktikum

Physikalisches Praktikum MI2AB Prof. Ruckelshausen Versuch 3.3: Bestimmung von Brechzahlen Gruppe 2, Mittwoch: Patrick Lipinski, Sebastian Schneider Patrick Lipinski, Sebastian Schneider Seite 1 von 4 Inhaltsverzeichnis 1. Versuchsbeschreibung

Mehr

Lösung: a) b = 3, 08 m c) nein

Lösung: a) b = 3, 08 m c) nein Phy GK13 Physik, BGL Aufgabe 1, Gitter 1 Senkrecht auf ein optisches Strichgitter mit 100 äquidistanten Spalten je 1 cm Gitterbreite fällt grünes monochromatisches Licht der Wellenlänge λ = 544 nm. Unter

Mehr

Spektroskopie im sichtbaren und UV-Bereich

Spektroskopie im sichtbaren und UV-Bereich Spektroskopie im sichtbaren und UV-Bereich Theoretische Grundlagen Manche Verbindungen (z.b. Chlorophyll oder Indigo) sind farbig. Dies bedeutet, dass ihre Moleküle sichtbares Licht absorbieren. Durch

Mehr

Lernfeld 4 - Seite 1. Welle-Teilchen Dualismus

Lernfeld 4 - Seite 1. Welle-Teilchen Dualismus Lernfeld 4 - Seite 1 Was ist Licht? Licht ist derjenige Anteil der elektromagnetischen Wellen, die für das Auge sichtbar sind. Das ist der Bereich von Wellenlängen zwischen 400 und 800 Nanometern. Jeder

Mehr

Quantenphysik. Teil 3: PRAKTISCHE AKTIVITÄTEN

Quantenphysik. Teil 3: PRAKTISCHE AKTIVITÄTEN Praktische Aktivität: Diskrete Emissionsspektren 1 Quantenphysik Die Physik der sehr kleinen Teilchen mit großartigen Anwendungsmöglichkeiten Teil 3: PRAKTISCHE AKTIVITÄTEN Diskrete Emissionsspektren ÜBERSETZT

Mehr

Julia Wahl FOS

Julia Wahl FOS Hosentaschenspektroskop Ein Hosentaschenspektroskop haben Schüler des Christian-von-Dohm-Gymnasiums in Goslar erfunden. In Zusammenarbeit mit dem Energieforschungszentrum Niedersachsen war für Jugend Forscht

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum MI2AB Prof. Ruckelshausen Versuch 3.2: Wellenlängenbestimmung mit dem Gitter- und Prismenspektrometer Inhaltsverzeichnis 1. Theorie Seite 1 2. Versuchsdurchführung Seite 2 2.1

Mehr

UNIVERSITÄT BIELEFELD

UNIVERSITÄT BIELEFELD UNIVERSITÄT BIELEFELD 6. Atom- und Molekülphysik 6.1 - GV Atom- und Molekülspektren Durchgeführt am 22.11.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Sarah Dirk Marius Schirmer

Mehr

SS 2015 Supplement to Experimental Physics 2 (LB-Technik) Prof. E. Resconi

SS 2015 Supplement to Experimental Physics 2 (LB-Technik) Prof. E. Resconi Quantenmechanik des Wasserstoff-Atoms [Kap. 8-10 Haken-Wolf Atom- und Quantenphysik ] - Der Aufbau der Atome Quantenmechanik ==> Atomphysik Niels Bohr, 1913: kritische Entwicklung, die schließlich Plancks

Mehr

Einführung in die Astronomie und Astrophysik I

Einführung in die Astronomie und Astrophysik I Einführung in die Astronomie und Astrophysik I Teil 8 Jochen Liske Fachbereich Physik Hamburger Sternwarte jochen.liske@uni-hamburg.de Astronomische Nachricht der Woche Astronomische Nachricht der Woche

Mehr

Technische Raytracer

Technische Raytracer University of Applied Sciences 05. Oktober 2016 Technische Raytracer 2 s 2 (1 (n u) 2 ) 3 u 0 = n 1 n 2 u n 4 n 1 n 2 n u 1 n1 n 2 5 Licht und Spektrum 19.23 MM Double Gauss - U.S. Patent 2,532,751 Scale:

Mehr

PS4. Grundlagen-Vertiefung Version vom 2. März 2012

PS4. Grundlagen-Vertiefung Version vom 2. März 2012 PS4 Grundlagen-Vertiefung Version vom 2. März 2012 Inhaltsverzeichnis 1 Vertiefende Grundlagen zu Auösungsvermögen eines Gitters. 2 3 2.1 Entstehung optischer Spektren......................... 3 2.2 Einteilung

Mehr

Klausurtermin: Nächster Klausurtermin: September :15-11:15

Klausurtermin: Nächster Klausurtermin: September :15-11:15 Klausurtermin: 10.02.2017 Gruppe 1: 9:15 11:15 Uhr Gruppe 2: 11:45-13:45 Uhr Nächster Klausurtermin: September 2017 9:15-11:15 Fragen bitte an: Antworten: t.giesen@uni-kassel.de direkt oder im Tutorium

Mehr

PHY. Brechzahlbestimmung und Prismenspektroskop Versuch: 17. Brechzahlbestimmung und Prismenspektroskop

PHY. Brechzahlbestimmung und Prismenspektroskop Versuch: 17. Brechzahlbestimmung und Prismenspektroskop Testat Brechzahlbestimmung und Prismenspektroskop Versuch: 17 Mo Di Mi Do Fr Datum: Abgabe: Fachrichtung Sem. Brechzahlbestimmung und Prismenspektroskop 1. Aufgabenstellung 1.1. Für eine vorgegebene Wellenlänge

Mehr

Thema heute: Aufbau der Materie: Das Bohr sche Atommodell

Thema heute: Aufbau der Materie: Das Bohr sche Atommodell Wiederholung der letzten Vorlesungsstunde: Erste Atommodelle, Dalton Thomson, Rutherford, Atombau, Coulomb-Gesetz, Proton, Elektron, Neutron, weitere Elementarteilchen, atomare Masseneinheit u, 118 bekannte

Mehr

SPEKTRUM. Bilden Sie zu Beginn des Beispieles eine Blende oder einen Spalt ab und studieren Sie die Eigenschaften

SPEKTRUM. Bilden Sie zu Beginn des Beispieles eine Blende oder einen Spalt ab und studieren Sie die Eigenschaften SPEKTRUM Bilden Sie zu Beginn des Beispieles eine Blende oder einen Spalt ab und studieren Sie die Eigenschaften dieser Abbildung. Wie hängen Bildgröße und Brennweite der Abbildungslinse zusammen? Wie

Mehr

Wechselwirkung zwischen Licht und chemischen Verbindungen

Wechselwirkung zwischen Licht und chemischen Verbindungen Photometer Zielbegriffe Photometrie. Gesetz v. Lambert-Beer, Metallkomplexe, Elektronenanregung, Flammenfärbung, Farbe Erläuterungen Die beiden Versuche des 4. Praktikumstages sollen Sie mit der Photometrie

Mehr

Welle, Frequenz und Energie 2018

Welle, Frequenz und Energie 2018 Welle, Frequenz und Energie 2018 LÄNGSTWELLEN MITTELWELLEN KURZWELLEN MIKROWELLEN MILLIMETERWELLEN FERNES INFRAROT MITTLERES INFRAROT SICHTBARES LICHT EXTREMES ULTRAVIOLET RÖNTGENSTRAHLEN GAMMASTRAHLUNG

Mehr

21.Vorlesung. IV Optik. 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente

21.Vorlesung. IV Optik. 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente 2.Vorlesung IV Optik 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente Versuche Lochkamera Brechung, Reflexion, Totalreflexion Lichtleiter Dispersion (Prisma)

Mehr

Vorlesung Allgemeine Chemie (CH01)

Vorlesung Allgemeine Chemie (CH01) Vorlesung Allgemeine Chemie (CH01) Für Studierende im B.Sc.-Studiengang Chemie Prof. Dr. Martin Köckerling Arbeitsgruppe Anorganische Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät, Institut

Mehr

Hallwachs-Experiment. Bestrahlung einer geladenen Zinkplatte mit dem Licht einer Quecksilberdampflampe

Hallwachs-Experiment. Bestrahlung einer geladenen Zinkplatte mit dem Licht einer Quecksilberdampflampe Hallwachs-Experiment Bestrahlung einer geladenen Zinkplatte mit dem Licht einer Quecksilberdampflampe 20.09.2012 Skizziere das Experiment Notiere und Interpretiere die Beobachtungen Photoeffekt Bestrahlt

Mehr

Praktikum Physik. Protokoll zum Versuch: Beugung. Durchgeführt am Gruppe X. Name 1 und Name 2

Praktikum Physik. Protokoll zum Versuch: Beugung. Durchgeführt am Gruppe X. Name 1 und Name 2 Praktikum Physik Protokoll zum Versuch: Beugung Durchgeführt am 01.12.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

BIOPHYSIK 7. Vorlesung

BIOPHYSIK 7. Vorlesung BIOPHYSIK 7. Vorlesung Der Photoeffekt: die auf die Materie einfallende Strahlung löst ein Elektron aus. Es gibt eine Grenzfrequenz, welche die Strahlung haben muss, um das Atom gerade zu ionisieren. Licht

Mehr

2. Sterne im Hertzsprung-Russell-Diagramm

2. Sterne im Hertzsprung-Russell-Diagramm 2. Sterne im Hertzsprung-Russell-Diagramm Wie entstand die Astrophysik? Sternatmosphäre Planck-Spektrum Spektraltyp und Leuchtkraftklasse HRD Sternpositionen im HRD Die Sterne füllen das Diagramm nicht

Mehr

Strukturaufklärung (BSc-Chemie): Einführung

Strukturaufklärung (BSc-Chemie): Einführung Strukturaufklärung (BSc-Chemie): Einführung Prof. S. Grimme OC [TC] 13.10.2009 Prof. S. Grimme (OC [TC]) Strukturaufklärung (BSc-Chemie): Einführung 13.10.2009 1 / 25 Teil I Einführung Prof. S. Grimme

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Licht und Optik. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Licht und Optik. Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt: Licht und Optik Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT Licht und Optik Seite 7 von 20

Mehr

Glühende feste Körper und Gase unter hohem Druck senden Licht mit einem Kontinuierlichen Spektrum aus.

Glühende feste Körper und Gase unter hohem Druck senden Licht mit einem Kontinuierlichen Spektrum aus. 11PS - OPTIK P. Rendulić 2007 SPEKTREN 19 WELLENOPTIK 4 SPEKTREN 4.1 Kontinuierliche Spektren und Linienspektren Zerlegt man das Licht einer Glühlampe oder das Sonnenlicht mithilfe eines Prismas ( 2.5.2),

Mehr

Konvektion. Prinzip: Bei Konvektion ist Wärmetransport an Materialtransport. Beispiel: See- und Landwind

Konvektion. Prinzip: Bei Konvektion ist Wärmetransport an Materialtransport. Beispiel: See- und Landwind Konvektion Fluides Medium dehnt sich durch Erwärmung lokal aus erwärmte Stoffmenge hat kleinere Dichte steigt auf und wird durch kälteren Stoff ersetzt Konvektionskreislauf Prinzip: Warme Flüssigkeit steigt

Mehr

Spektroskopie. Einleitung

Spektroskopie. Einleitung Spektroskopie Einleitung Schon der Name Quantenphysik drückt aus, dass auf der Ebene der kleinsten physikalischen Objekte (z.b. Atome, Protonen, Neutronen oder Elektronen), bestimmte physikalische Gröÿen

Mehr

Spektroskopie. Einleitung

Spektroskopie. Einleitung Spektroskopie Einleitung Schon der Name Quantenphysik drückt aus, dass auf der Ebene der kleinsten physikalischen Objekte (z.b. Atome, Protonen, Neutronen oder Elektronen), bestimmte physikalische Gröÿen

Mehr

Spektren von Himmelskörpern

Spektren von Himmelskörpern Spektren von Himmelskörpern Inkohärente Lichtquellen Tobias Schulte 25.05.2016 1 Gliederung Schwarzkörperstrahlung Spektrum der Sonne Spektralklassen Hertzsprung Russell Diagramm Scheinbare und absolute

Mehr

22. Vorlesung EP. IV Optik. 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente

22. Vorlesung EP. IV Optik. 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente . Vorlesung EP IV Optik 3. Geometrische Optik Brechung und Totalrelexion Dispersion 4. Farbe 5. Optische Instrumente Versuche: Brechung, Relexion, Totalrelexion Lichtleiter Dispersion (Prisma) additive

Mehr

Ein Stück Weltall in Basler Mausefallen

Ein Stück Weltall in Basler Mausefallen Ein Stück Weltall in Basler Mausefallen Auf der Spur exotischer Moleküle Die Keller in seinem Institut hat er voller Fallen. In ihnen sitzen nicht Mäuse, sondern Ionen. Zum Beispiel von Fussballmolekülen.

Mehr

Thema heute: Das Bohr sche Atommodell

Thema heute: Das Bohr sche Atommodell Wiederholung der letzten Vorlesungsstunde: Radioaktive Zerfallsgeschwindigkeit, Altersbestimmungen, Ionisationszähler (Geiger-Müller-Zähler), Szintillationszähler, natürliche radioaktive Zerfallsreihen,

Mehr

Lernziele zu Farbigkeit von Stoffen

Lernziele zu Farbigkeit von Stoffen Farbstoffe Lernziele zu Farbigkeit von Stoffen du verstehst, wie Farbigkeit mit der Absorption von EM-Strahlung zusammenhängt. du verstehst die Unterschiede zwischen Feuerwerksfarben und Textilfarbstoffen.

Mehr

Das Atom Aufbau der Materie (Vereinfachtes Bohrsches Atommodell)

Das Atom Aufbau der Materie (Vereinfachtes Bohrsches Atommodell) Das Atom Aufbau der Materie (Vereinfachtes Bohrsches Atommodell) Referat von Anna-Lena Butke und Kristina Lechner Übersicht Niels Bohr (Biographie) Das Bohrsche Atommodell Das Spektrum des Wasserstoffatoms

Mehr

Die Sonne. das Zentrum unseres Planetensystems. Erich Laager / Bern 1

Die Sonne. das Zentrum unseres Planetensystems. Erich Laager / Bern 1 Die Sonne das Zentrum unseres Planetensystems Erich Laager 2011 18.09.2012 / Bern 1 Die Sonne das Zentrum unseres Planetensystems 2 Die Bild-Quellen zur Sonne: NASA: 08, 14, 19, 33 ESA / NASA SOHO: 29,

Mehr

Versuchsanleitung zu den Experimenten zur Spektroskopie Lichtquellen, Sonnenspektrum, Absorption und Fluoreszenz von Licht

Versuchsanleitung zu den Experimenten zur Spektroskopie Lichtquellen, Sonnenspektrum, Absorption und Fluoreszenz von Licht Versuchsanleitung zu den Experimenten zur Spektroskopie Lichtquellen, Sonnenspektrum, Absorption und Fluoreszenz von Licht In diesem Versuch werden mit Gitterspektrometern zuerst die Spektren verschiedener

Mehr

P H Y S I K - Spektroskopie - Helene Plank Stephan Giglberger

P H Y S I K - Spektroskopie - Helene Plank Stephan Giglberger P H Y S I K - Spektroskopie - Helene Plank Stephan Giglberger Warum Spektroskopie auf dem Mars? Befindet sich Wasser auf dem Mars? Gibt es eine Atmosphäre? Aus welchen Elemente besteht sie? Gibt es Leben?

Mehr

Röntgenstrahlung ist eine elektromagnetische Strahlung, wie z.b. Licht sie ist für Menschen nicht sichtbar Röntgenstrahlung besitzt

Röntgenstrahlung ist eine elektromagnetische Strahlung, wie z.b. Licht sie ist für Menschen nicht sichtbar Röntgenstrahlung besitzt Röntgenstrahlung ist eine elektromagnetische Strahlung, wie z.b. Licht sie ist für Menschen nicht sichtbar Röntgenstrahlung besitzt Welleneigenschaften, ionisiert Gase, regt manche Stoffe zum Leuchten

Mehr

Weißes Licht wird farbig

Weißes Licht wird farbig B1 Weißes Licht wird farbig Das Licht, dass die Sonne oder eine Halogenlampe aussendet, bezeichnet man als weißes Licht. Lässt man es auf ein Prisma fallen, so entstehen auf einem Schirm hinter dem Prisma

Mehr

5.2.3 Emissions- und Absorptionsspektren, Resonanzfluoreszenz

5.2.3 Emissions- und Absorptionsspektren, Resonanzfluoreszenz 5..3 Emissions- und Absorptionsspektren, Resonanzfluoreszenz Das Wasserstoffspektrum Bunsen und Kirchhoff haben bereits 859 die so genannte Spektralanalyse begründet, bei der das von chemischen Elementen

Mehr

Abiturprüfung Physik, Leistungskurs

Abiturprüfung Physik, Leistungskurs Seite 1 von 8 Abiturprüfung 2010 Physik, Leistungskurs Aufgabenstellung: Aufgabe: Energieniveaus im Quecksilberatom Das Bohr sche Atommodell war für die Entwicklung der Vorstellung über Atome von großer

Mehr

1.1 Auflösungsvermögen von Spektralapparaten

1.1 Auflösungsvermögen von Spektralapparaten Physikalisches Praktikum für Anfänger - Teil Gruppe Optik. Auflösungsvermögen von Spektralapparaten Einleitung - Motivation Die Untersuchung der Lichtemission bzw. Lichtabsorption von Molekülen und Atomen

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I O32 Name: Gitterspektrometer mit He-Lampe Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen

Mehr

Planungsblatt Physik für die 3B

Planungsblatt Physik für die 3B Planungsblatt Physik für die 3B Woche 20 (von 15.01 bis 19.01) Hausaufgaben 1 Bis Montag 22.01: Lerne die Notizen von Woche 20! Kernbegriffe dieser Woche: Energie, Leistung, Wärme, Wärmeleitung, Konvektion,

Mehr

Atommodell führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen.

Atommodell führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen. Atommodell nach Rutherford 1911 führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen. Beobachtung: Fast alle Teilchen fliegen ungestört durch.

Mehr

Die Anzahl der Protonen und Neutronen entspricht der Atommassenzahl.

Die Anzahl der Protonen und Neutronen entspricht der Atommassenzahl. Atom Der Begriff Atom leitet sich von atomos her, was unteilbar heisst. Diese Definition ist alt, da man heutzutage fähig ist, Atome zu teilen. Atommassenzahl Die Anzahl der Protonen und Neutronen entspricht

Mehr

Atomabsorptionsspektroskopie (AAS)

Atomabsorptionsspektroskopie (AAS) Atomabsorptionsspektroskopie (AAS) 11.06.2012 1 Übersicht der spektrosk. Methoden Atomspektroskopie Atomemissionsspektroskopie (Flammenphotometrie) Spektralanalyse Emissionsspektroskopie Absorptionsspektroskopie

Mehr

Gitterspektrometer mit He-Lampe

Gitterspektrometer mit He-Lampe O32 Name: Gitterspektrometer mit He-Lampe Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig (keine

Mehr

1.1 Auflösungsvermögen von Spektralapparaten

1.1 Auflösungsvermögen von Spektralapparaten Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 1 - Optik 1.1 Auflösungsvermögen von Spektralapparaten Sitchwörter: Geometrische Optik, Wellenoptik, Auflösungsvermögen, Rayleigh Kriterium, Spektrograph,

Mehr

Photom etrieren Photometrie Fraunhofer sche Linien

Photom etrieren Photometrie Fraunhofer sche Linien 17 Photometrieren Die Spektroskopie, auch Spektralphotometrie, Spektrophotometrie oder einfach nur Photometrie genannt, umfasst eine Anzahl experimenteller Messverfahren, die generell die Wechselwirkung

Mehr

Laserlicht Laser. Video: Kohärenz. Taschenlampe. Dieter Suter Physik B Grundlagen

Laserlicht Laser. Video: Kohärenz. Taschenlampe. Dieter Suter Physik B Grundlagen Dieter Suter - 423 - Physik B2 6.7. Laser 6.7.1. Grundlagen Das Licht eines gewöhnlichen Lasers unterscheidet sich vom Licht einer Glühlampe zunächst dadurch dass es nur eine bestimmte Wellenlänge, resp.

Mehr

Lehrbuchaufgaben Strahlung aus der Atomhülle

Lehrbuchaufgaben Strahlung aus der Atomhülle LB S. 89, Aufgabe 1 Die Masse lässt sich mithilfe eines Massenspektrografen bestimmen. Der Radius von Atomen kann z.b. aus einmolekularen Schichten (Ölfleckversuch) oder aus Strukturmodellen (dichtgepackte

Mehr

Was bedeutet Optik? Lehrerinformation

Was bedeutet Optik? Lehrerinformation Lehrerinformation 1/5 Arbeitsauftrag Ziel Definitionen erarbeiten Beispiele nennen Wellenspektrum beschriften Farben mit Wellenlängen versehen Wellenlängen verstehen und zuordnen Visualisieren Beispiele

Mehr

Thema: Spektroskopische Untersuchung von Strahlung mit Gittern

Thema: Spektroskopische Untersuchung von Strahlung mit Gittern Thema: Spektroskopische Untersuchung von Strahlung mit Gittern Gegenstand der Aufgabe ist die spektroskopische Untersuchung von sichtbarem Licht, Mikrowellenund Röntgenstrahlung mithilfe geeigneter Gitter.

Mehr

Licht und Farbe mit Chemie

Licht und Farbe mit Chemie Licht und Farbe mit Chemie Folie 1 Was verstehen wir eigentlich unter Licht? Licht nehmen wir mit unseren Augen wahr Helligkeit: Farben: Schwarz - Grau - Weiß Blau - Grün - Rot UV-Strahlung Blau Türkis

Mehr

Lösungen zu den Aufg. S. 363/4

Lösungen zu den Aufg. S. 363/4 Lösungen zu den Aufg. S. 363/4 9/1 Die gemessene Gegenspannung (s. Tab.) entspricht der max. kin. Energie der Photoelektronen; die Energie der Photonen = E kin der Elektronen + Austrittsarbeit ==> h f

Mehr