Struktur von Nukleinsäuren

Größe: px
Ab Seite anzeigen:

Download "Struktur von Nukleinsäuren"

Transkript

1 Struktur von Nukleinsäuren Woraus besteht DNA? James D. Watson & Francis H. C. Crick entwarfen 1953 mithilfe der Daten von Chargaff und der Röntgenkristallographie-Daten von Rosalind Franklin und Maurice Wilkins das Modell der DNA-Doppelhelix. Hinweis: Im Atelier finden Sie beim Posten "Geschichte" interessante Berichte über die Aufklärung der Struktur der DNA, darunter auch Originalliteratur ( Dokument G1 Die DNA- Doppelhelix ). DNA, die Desoxyribonukleinsäure, und die heterogene Gruppe der RNAs, Ribonukleinsäuren, gehören in die Familie der Nukleinsäuren. Nukleinsäuren bestehen ganz allgemein aus drei Bausteinen: aus einem Zucker, einer Phosphorsäure und aus Basen. Betrachten wir vorerst nur die DNA: Die DNA enthält als Zucker - wie schon der Name vermuten lässt - 2-Desoxyribose, ein C5- Kohlenhydrat. Die Hydroxylgruppe am zweiten C-Atom fehlt, so dass zur Verknüpfung der anderen Bausteine nur noch drei Möglichkeiten zur Verfügung stehen, nämlich die Hydroxylgruppen an C1, C3 und C5: Die Phosphorsäure ist mit zwei Zuckern verestert. Sie verbindet das C3 der einen Desoxyribose mit dem C5 einer andern. Indem auf jede Phosphorsäure ein Zucker folgt und auf diesen wiederum eine Phosphorsäure, entsteht ein langes, lineares Molekül. Nur an einem der beiden Enden, am sogenannten 5'-Ende (sprich: 5 Strich), befindet sich eine Phosphorsäure. Das andere 1

2 Ende, entsprechend 3'-Ende genannt, ist eine Desoxyribose, welche als einzige am C3 nicht verestert ist. Unsere Zucker-Phosphat-Kette erhält so eine Richtung: Die DNA enthält (neben Zucker und Phosphat) vier Basen, die man aufgrund ihrer Struktur in Purine und Pyrimidine unterteilt. Purine bestehen aus zwei Ringen (einem 6- und einem 5-Ring), Pyrimidine haben nur einen Ring, den 6-Ring: Die in der DNA regelmässig vorkommenden Basen sind die Purine Adenin und Guanin, sowie die Pyrimidine Thymin und Cytosin. Die ebenfalls aufgeführte Pyrimidin-Base Uracil kommt nur in der RNA vor. 2

3 Wie sind die Basen mit den andern Bausteinen verknüpft? Wie auf dem Bild (Struktur der Purine und Pyrimidine) gezeigt, sind zwei der drei Hydroxylgruppen der Desoxyribose bereits mit der Phosphorsäure verestert, so dass die Verbindung Zucker-Base nur noch über C1 erfolgen kann. Da die Koppelung über N9 bei den Purinen bzw. über N1 bei den Pyrimidinen erfolgt, nennt man die Bindung N-glykosidisch. Die Primärstruktur An jede Desoxyribose ist eine der vier Basen (Adenin, Guanin, Cytosin oder Thymin) N- glykosidisch gebunden. Die Abfolge der Basen kann beliebig variieren und stellt die eigentliche Erbinformation dar. So ist es möglich, dass die DNA (trotz ihres einfachen Baus) Träger von Information ist! Die Sequenz der Basen einer Nukleinsäure nennt man Primärstruktur. Sie liest sich vereinbarungsgemäss immer von 5' nach 3'. Als Beispiel sei ein DNA-Einzelstrang mit der Basenfolge 5'-Adenin-Thymin-Guanin-3' gezeigt: Die Sekundärstruktur In Zellen existiert ein DNA-Einzelstrang jeweils nur kurzfristig und nur über kurze Abschnitte, z.b. während der Zellteilung oder während der Transkription. Normalerweise paart sich ein DNA-Einzelstrang nämlich immer mit einem zweiten Einzelstrang. Diese Paarung ergibt sich dadurch, dass immer eine Base des einen Einzelstrangs mit einer bestimmten Base des anderen Strangs Wasserstoffbrücken ausbildet. Die beiden Basen, welche sich gegenüberstehen, nennt man komplementär. Adenin paart sich mit Thymin, Guanin mit Cytosin: 3

4 Sehen Sie sich die Basenpaare etwas genauer an: einer Purin-Base steht immer eine Pyrimidin- Base gegenüber und umgekehrt. Das bedeutet, dass in der DNA immer gleichviele Purine wie Pyrimidine eingebaut sind. Diese als Chargaff-Regel bekannte Tatsache besagt auch, dass die Summe der Adenine gleich der Summe der Thymine und die Summe der Guanine gleich der Summe der Cytosine ist: A + G = T + C A / T = G / C = 1 Die Sekundärstruktur einer Nukleinsäure wird durch die Abfolge komplementärer Basen bestimmt. Im Falle der DNA bleiben die Doppelstränge nicht einfach in einer Ebene, vielmehr verdrillen sie sich schraubenartig zu einer Doppelhelix, wobei die hydrophoben Basen innen liegen, die Zuckerringe und die Phosphodiesterbrücken hingegen das Rückgrat bilden und aussen liegen: Die DNA-Doppelhelix hat folgende Eigenschaften: Sie dreht nach rechts und hat einen Durchmesser von etwa 2 nm. Der Abstand zwischen zwei benachbarten Basen beträgt 0,34 nm und der helicale Drehungswinkel der benachbarten Basenpaare beträgt 36. Das ergibt pro Umdrehung 10 Basenpaare und eine Hubhöhe von 3,4 nm. Die planaren Basen liegen horizontal übereinander und können durch diese Stapelung ("base stacking") die Konformation der DNA stabilisieren. Weil sich die Zucker-Base-Bindungen der komplementären Basenpaare nicht direkt gegenüber liegen, also nicht diametral zueinander stehen (ihr Abstand beträgt weniger als der Durchmesser der Helix, vergl. obige Skizze), sind die vertikalen Abstände zwischen den beiden 4

5 Einzelsträngen der DNA nicht immer gleich gross, sie bilden entweder eine kleine oder eine grosse Grube. Die beiden Einzelstränge der DNA sind zueinander antiparallel angeordnet, d. h. das 5'-Ende des einen Strangs liegt dem 3'-Ende des andern gegenüber und umgekehrt. Durch die Basenpaarung ergibt sich, dass aus der Basenfolge des einen Strangs zwingend die Basenfolge im andern (komplementären) Strang bestimmt werden kann. Uebung: Sie können dies an einem einfachen Beispiel üben: Versuchen Sie aus folgender DNA- Sequenz den komplementären Strang zu finden: Lösung: S. 13 5'-AATCAGCGATCGCTG-3' Hinweise: Vergewissern Sie sich, dass Sie alle Eigenschaften der gezeigten DNA verstehen. Sie ist die am häufigsten vorkommende Konformation der DNA und wird als B-Form bezeichnet: siehe Stereobild auf dem Plakat. Man kann das Stereobild auch ohne eine Stereobrille als ein einziges, räumliches Bild sehen, wenn man es durch Üben schafft, zwei normalerweise miteinander verknüpfte Sehreflexe zu entkoppeln. Man muss die Augen streng parallel stellen, als wären sie auf ein fernes Objekt gerichtet, die Augenlinsen aber zugleich für nahes Sehen fokussieren:achtung! Beim Betrachten des Stereobildes ohne Stereobrille dreht die Helix nach links statt nach rechts! Sie können sich die Struktur der DNA wahrscheinlich am besten vorstellen, wenn Sie das dreidimensionale Modell zuhilfe nehmen. Im Atelier finden Sie ein DNA-Modell. Es zeigt eine vollständige Helixwindung einer B-DNA im Masstab 1:10 8 ; der Durchmesser des Modells beträgt also 20 cm (1 nm entspricht ungefähr 10 cm). Versuchen Sie, die folgenden Fragen zu beantworten: Welches ist die Phosphorsäure, welches der Zucker? Sehen Sie die grosse und die kleine Grube? Wo liegt das 3'- und wo das 5' - Ende eines Stranges? Sehen Sie, wie die Basen übereinandergestapelt und gegeneinander versetzt sind? Betrachten Sie ein Basenpaar: welches ist die Purinbase und welches die Pyrimidinbase? Vielleicht erkennen Sie die Basen sogar und damit die Basensequenz! Die Basensequenz eines DNA-Abschnitts bestimmt, welche Konformation die Doppelhelix annimmt. Alternative Konformationen sind wichtig für die Erkennung bestimmter Abschnitte durch Eiweisse (z.b. bei der Replikation der Transkription), weil die Basen dadurch für Eiweisse besser zugänglich gemacht werden. A-DNA: Sie kommt z.b. als Intermediäres bei der Transkription vor (DNA/RNA-Helix). Die zusätzliche Hydroxylgruppe am C2 der Ribose verhindert, dass das DNA-RNA-Hybride die B- Konformation annehmen kann. Aus demselben Grund kommt die A-Form auch bei doppelsträngiger RNA vor (z.b. in Viren). Die A-Form ist zwar ebenfalls rechtsdrehend, sie ist aber "dicker" als die B-Form und beide Gruben sind etwa gleich gross: siehe Stereobild auf dem Plakat. Z-DNA: Alternierende Purin-/Pyrimidinsequenzen wie z.b. 3 -CGCGCGCGCG-5 5 -GCGCGCGCGC-3 5

6 bilden eine linksdrehende Doppelhelix, welche etwa 12 Basenpaare pro Umdrehung hat. Die Z- DNA verdankt ihren Namen ihrem "zick-zack"-artigen Zucker-Phosphat-Rückgrat: siehe Stereobild auf dem Plakat. Woraus besteht RNA? RNA ist eine heterogene Gruppe von Nukleinsäuren, deren Aufgabe es ist, Information in der DNA in Proteine umzusetzen. Die verschiedenen Klassen (trna, rrna, hnrna und mrna) werden deshalb erst bei den Kapiteln Transkription und Translation genauer erläutert. Hier sei vorerst nur der allgemeine Bau aufgezeigt. Die Ribonukleinsäure, kurz RNA, ist grundsätzlich gleich gebaut wie DNA, zeigt aber einige wichtige und interessante Unterschiede, welche zum Teil schon erwähnt worden sind: als Zucker dient Ribose, nicht 2-Desoxyribose die Pyrimidin-Base Uracil ersetzt Thymin. Alle andern Basen bleiben dieselben RNA besteht (in der Regel) nur aus einem Einzelstrang; es treten aber intramolekulare Basenpaarungen auf, wobei sich Adenin mit Uracil, Guanin mit Cytosin paaren Nukleoside und Nukleotide Purine und Pyrimidine sind nicht nur Bestandteile von Nukleinsäuren, sondern auch von Energieträgern im Cytosol, den sogenannten Nukleotiden, welche z.b. bei diversen Biosynthesen, bei Membrantransporten oder bei Muskelarbeit essentiell sind. 6

7 Sind nur Zucker und Base im Molekül vorhanden, sprechen wir von einem Nukleosid; ist am C5 noch ein Phosphorsäure-Rest gebunden, sprechen wir von einem Nukleotid: Nukleosid: Base + Zucker Nukleotid: Base + Zucker + Phosphat Für die diversen Verbindungen ergeben sich dadurch folgende Bezeichnungen: freie Base Nukleoside 1 Nukleotide 2 Adenin (A) Adenosin Adenosinmonophosphat (AMP) Guanin (G) Guanosin Guanosinmonophosphat (GMP) Cytosin (C) Cytidin Cytidinmonophosphat (CMP) Thymin (T) Thymidin Thymidinmonophosphat (TMP) Uracil (U) Uridin Uridinmonophosphat (UMP) 1 Nukleoside enden bei den Purin-Derivaten auf -osin, bei den Pyrimidin-Derivaten auf -idin. Enthalten Nukleoside Desoxyribose als Zucker, nennt man sie Desoxynukleoside; entsprechendes gilt auch für die Nukleotide (Abkürzung: damp, dgmp,... ) 2 Nukleotide können mit einem, zwei oder gar drei Phosphorsäure-Resten verknüpft werden. Entsprechend nennt man zum Beispiel die Adenin-Derivate Adenosinmonophosphat (AMP), Adenosindiphosphat (ADP) und Adenosintriphosphat (ATP). Als Beispiel für ein Nukleotid sei im folgenden Adenosintriphosphat (ATP) gezeigt, der wichtigste Energiespeicher und -überträger des Intermediärstoffwechsels: 7

8 Nukleinsäuren sind also unverzweigte, lineare Biopolymere aus Nukleotid-Monophosphaten, wobei damp, dgmp, dcmp und dtmp die Bausteine für die DNA, und AMP, GMP, CMP und UMP diejenigen für die RNA darstellen! Folgende Darstellung veranschaulicht diesen Sachverhalt: B = Base, Z = (Desoxy)-Ribose, P = Phosphat Hinweis: Sie haben die Möglichkeit, in der Videoecke den Videofilm Struktur von Nukleinsäuren (Dauer: 4.5 Min.) anzuschauen. Eer fasst das bisher Dargestellte in leicht verständlicher Form zusammen. Superstruktur der DNA Die menschliche DNA einer diploiden Zelle besteht aus ungefähr 6 x 10 9 Basenpaaren, verteilt auf 46 Chromosomen. Jeder Zellkern enthält somit 46 DNA-Moleküle unterschiedlicher Grösse (vgl. DNA in Zellorganellen wie Mitochondrien und Chloroplasten). Würde man die DNA in den 46 Chromosomen zu einer einzigen Doppelhelix zusammenfügen, käme man auf eine Länge von 2 Metern DNA pro Zelle! Es ist einleuchtend, dass die DNA Strukturen annehmen muss, die es erlauben, sie in den Zellkern zu packen und sie vor Scherkräften zu schützen, die die nur 2 nm Dicke Doppelhelix in Stücke reissen könnten. Aus diesem Grund binden bestimmte Proteine an die DNA und verformen diese zu stabilen Superstrukturen. Solche DNA-Proteinkomplexe nennt man Chromatin. Bei Zellteilungen Mitosen und Meiosen -, müssen sich die Chromosomen zu Mitosechromosomen maximal verdichten (kondensieren), damit sie überhaupt auf die Tochterzellen verteilt werden können. Betrachten wir also vorerst die sogenannten Interphasenchromosomen. Die an DNA gebundenen Proteine machen einen beträchtlichen Teil des Chromatins aus. Tatsächlich besteht Chromatin etwa zur Hälfte aus Proteinen, welche noch in Histone und Nicht- Histon-Proteine unterteilt werden können. Histone sind kleine, basische Eiweisse, die nur in Eukaryonten vorkommen. Mit ihrem hohen Anteil an positiv geladenen Aminosäuren wie Arginin und Lysin können sie relativ unspezifisch an die DNA binden und die negativen Ladungen der Phosphatgruppen des "DNA-Rückgrats" kompensieren. Aufgabe: Überlegen Sie sich, welche Auswirkungen es auf die Stabilität der DNA hätte, wenn die negativen Ladungen der Helix nicht aufgehoben würden. Lösung: S. 13 8

9 Es gibt insgesamt fünf verschiedene Klassen von Histonen: H1, H2A, H2B, H3 und H4. Gewisse eukaryontische Zellen - wie z.b. die Erythrocyten des Huhns - haben noch einen weiteren Typ, das Histon H5, welches als Variante von H1 angesehen wird. Je zwei Moleküle H2A, H2B, H3 und H4 verbinden sich zu einem Histon-Octamer. Die DNA-Doppelhelix wickelt sich nun in Linkswindungen um dieses Octamer wie ein Faden um eine Spule. Die dadurch entstehende Struktur ist das Nucleosom. Weitere Angaben: Core-Partikel Chromatosom Nukleosom Core-Partikel: Die Doppelhelix wickelt sich 1 3/4-mal um das Histon-Oktamer. Dies entspricht 146 Basenpaaren (bp) DNA. Chromatosom: Es enthält zwei volle Windungen DNA (166 bp DNA).Daran bindet zusätzlich noch das Histon H1 (vertikaler Zylinder, rechts). Nukleosom: Es besteht ebenfalls aus zwei Windungen DNA, dem Histon-Octamer und H1, hat aber noch sog. Linker-DNA von etwa 30 bp, welche benachbarte Nukleosomen miteinander verbindet. Ein Nukleosom enthält also etwa 200 bp DNA. Behandelt man Chromatin mit einer stark hypotonen Lösung, so lassen sich die Chromosomen als Nukleosomenfäden im Elektronenmikroskop darstellen. Sie gleichen einer Perlenkette: Die nächsthöhere strukturelle Einheit des Chromatins ist das Solenoid. Für die Ausbildung des Solenoids ist das Histon H1 essentiell: es verbindet benachbarte Nukleosomen zu einer 30 nm dicken Chromatinspirale. Wie sich dieser Prozess genau vollzieht, ist aber noch weitgehend unklar. Folgendes EM-Bild veranschaulicht die dichte Packung der Nukleosomen: 9

10 Die Solenoid-Faser wird gelegentlich von nicht-histon-proteinen in Segmente unterteilt, wie folgendes Modell zeigt: Diese Proteine binden meist sequenzspezifisch an die DNA und stellen zum Teil Gen- Regulationsproteine (z.b. Transkriptionsfaktoren) dar, andere helfen bei der Initiation der DNA- Replikation. Eine weitere Gruppe von Proteinen organisiert das Solenoid in Schleifen, welche von der Hauptachse des Chromosoms abstehen. Ohne die Ausbildung von Schleifen, als lineares Solenoid also, würde ein durchschnittlich grosses Chromosom den Zellkern als 30-nm-Faser von 1 mm Länge etwa hundertmal durchmessen. Auch hier sind die Details der Faltung noch unbekannt und Gegenstand intensiver Forschung. Unten ein Schema, das das Prinzip der Faltungen wiedergibt: Hinweis: D. Hewish und L. Burgoyne waren unter den ersten, welche sich mit der Strukturaufklärung des Chromatins beschäftigten. Lesen Sie dazu das Dokument "Hewish & Burgoyne, 1973" am Geschichtsposten: Dokument G

11 Sowohl in Eukaryonten wie in Prokaryonten gibt es Enzyme, die Topoisomerasen, die unter ATP-Verbrauch einen oder beide DNA-Stränge auftrennen, durch Rotation um die Helixachse die Windungszahl pro Längeneinheit ändern und dann die freien Enden wieder verknüpfen (ligieren). Die Topoisomerase I spaltet dabei nur einen, die Topoisomerase II beide DNA-Stränge. Nimmt die Windungszahl pro Längeneinheit zu, spricht man von positivem Supercoiling, nimmt sie ab, von negativem Supercoiling. Diese Konformationsänderung setzt die DNA unter Torsionsspannung. Hat die DNA ein freies Ende, so kann sie sich wieder entspannen, indem sie um ihre Achse rotiert. Sind dagegen beide Enden fixiert, wie bei der Ring-DNA der Prokaryonten oder bei Chromatin-Schleifen, kann die DNA die Überspannung nur durch Ausbildung einer superhelicalen Schleife kompensieren (zwei fixe Enden können nicht frei rotieren). Bei dieser DNA-Superhelix ist die DNA zusätzlich zu den Doppelhelixwindungen umeinander verdrillt: Sie können sich die Entstehung dieser Konformation am besten vorstellen, wenn sie an ein spiraliges Telefonkabel denken, welches Sie aus einem gedehnten in einen entspannten Zustand führen. Hinweis: Gute Dienste leistet ein Schnurmodell aus zwei umeinander verdrillten Fäden, an dem Sie die Auswirkungen von positivem und negativem Supercoiling studieren können. Die Schnur und eine Anleitung finden Sie beim Posten. Topoisomerasen benötigen für die Rückführung (Relaxation) in den Normalzustand kein ATP; die Energie steckt nämlich in der Supercoil-Konformation selbst: 11

12 Was ist denn der Zweck dieser Superstrukturen? Negatives Supercoiling erleichtert wahrscheinlich Prozesse wie Replikation oder Transkription, weil die "unterwundene" DNA den Zugang bestimmter Proteine zu Steuersequenzen erleichtert. Quellennachweis Die Texte und Abbildungen des vorliegenden Scripts entsprechen den Seitenangaben aus folgenden Werken: Bruce Alberts et al.: Molekularbiologie der Zelle", VCH, 2. Auflage, p. 57, 62-63, p , p. 571, 577, , p Walther Traut: Chromosomen - klassische und molekulare Cytokinetik", Springer-Lehrbuch, p Hinweis: In der Lese-Ecke stehen Ihnen Lehrbücher zum vertieften Studium zur Verfügung 12

13 Lösungen Versuchen Sie aus folgender DNA-Sequenz den komplementären Strang zu finden: 5'-AATCAGCGATCGCTG-3' 3 -TTAGTCGCTAGCGAC-5 Der komplementäre Strang hat also die Basensequenz 5'-CAGCGATCGCTGATT-3' - Sequenzen werden in 5'-> 3'-Richtung hingeschrieben! Überlegen Sie sich, welche Auswirkungen es auf die Stabilität der DNA hätte, wenn die negativen Ladungen der Helix nicht aufgehoben würden. Die negativen Ladungen würden sich gegenseitig abstossen und die Doppelhelix destabilisieren. Uebungsaufgaben mit Lösungen finden Sie in der Internetversion des Ateliers! Hinweis: Das Repetitorium Molekularbiologie definiert den Stoff, welcher in den Prüfungen verlangt wird. Wegen seiner Kürze eignet es sich allerdings nicht als primäre Informationsquelle! 13

Der Träger aller genetischen Informationen ist die D N A - Desoxyribonucleic acid (Desoxyribonucleinsäure, DNS)

Der Träger aller genetischen Informationen ist die D N A - Desoxyribonucleic acid (Desoxyribonucleinsäure, DNS) N U C L E I N S Ä U R E N Der Träger aller genetischen Informationen ist die D N A - Desoxyribonucleic acid (Desoxyribonucleinsäure, DNS) BAUSTEINE DER NUCLEINSÄUREN Die monomeren Bausteine der Nucleinsäuren

Mehr

Das zentrale Dogma der Molekularbiologie:

Das zentrale Dogma der Molekularbiologie: Das zentrale Dogma der Molekularbiologie: DNA Transkription RNA Translation Protein 1 Begriffserklärungen GENOM: Ist die allgemeine Bezeichnung für die Gesamtheit aller Gene eines Organismus GEN: Ist ein

Mehr

DNA: Aufbau, Struktur und Replikation

DNA: Aufbau, Struktur und Replikation DNA: Aufbau, Struktur und Replikation Biochemie Die DNA als Träger der Erbinformation Im Genom sind sämtliche Informationen in Form von DNA gespeichert. Die Information des Genoms ist statisch, d. h. in

Mehr

KV: DNA Michael Altmann

KV: DNA Michael Altmann Institut für Biochemie und Molekulare Medizin KV: DNA Michael Altmann Herbstsemester 2008/2009 Übersicht VL DNA 1.) Lernmittel 1-3 2.) Struktur der Doppelhelix 3.) Die 4 Bausteine der DNA 4.) Bildung eines

Mehr

Struktur von Nukleinsäuren

Struktur von Nukleinsäuren Struktur von Nukleinsäuren Woraus besteht DNA? James D. Watson & Francis H. C. Crick entwarfen 1953 mithilfe der Daten von Chargaff und der Röntgenkristallographie-Daten von Rosalind Franklin und Maurice

Mehr

Aufbau, Struktur, Funktion von DNA, RNA und Proteinen

Aufbau, Struktur, Funktion von DNA, RNA und Proteinen Aufbau, Struktur, Funktion von DNA, RNA und Proteinen Mitarbeiterseminar der Medizinischen Fakultät Ruhr-Universität Bochum Andreas Friebe Abteilung für Pharmakologie und Toxikologie Aufbau, Struktur,

Mehr

Aus der Reihe Daniels Genetik-Kompendium

Aus der Reihe Daniels Genetik-Kompendium Aus der Reihe Daniels Genetik-Kompendium Erstellt von Daniel Röthgens Inhalt : 1. Einleitung 2. Bestandteile der Nukleinsäuren 3. DNA / Struktur und genetische Spezifität 1 1. Einleitung Die Frage nach

Mehr

t-rna Ribosom (adapted from the handouts of Prof. Beck-Sickinger, Universität Leipzig)

t-rna Ribosom (adapted from the handouts of Prof. Beck-Sickinger, Universität Leipzig) ukleinsäuren speichern die Erbinformation. Das menschliche Genom ist in jeder Zelle aus 3900 Millionen Basenpaare (Mbp) aufgebaut und hat eine Gesamtlänge von 99 cm. t-ra Ribosom (adapted from the handouts

Mehr

Antwort: 2.Uracil. Antwort: 2. durch Wasserstoffverbindungen. Adenin, Cystein und Guanin kommen alle in der RNA und DNA vor.

Antwort: 2.Uracil. Antwort: 2. durch Wasserstoffverbindungen. Adenin, Cystein und Guanin kommen alle in der RNA und DNA vor. Antwort: 2.Uracil Adenin, Cystein und Guanin kommen alle in der RNA und DNA vor. Thymin kommt nur in der DNA vor; Uracil nimmt seinen Platz in den RNA- Molekülen ein. Antwort: 2. durch Wasserstoffverbindungen

Mehr

Seminar Biochemie. Nukleotide - Nukleinsäuren - Nukleotidstoffwechsel - DNA-Replikation. Dr. Christian Hübbers

Seminar Biochemie. Nukleotide - Nukleinsäuren - Nukleotidstoffwechsel - DNA-Replikation. Dr. Christian Hübbers Seminar Biochemie Nukleotide - Nukleinsäuren - Nukleotidstoffwechsel - DNA-Replikation Dr. Christian Hübbers Lernziele Zusammensetzung der Nukleotide (Basen, Zucker) Purin-und Pyrimidinbiosynthese (prinzipieller

Mehr

Anabole Prozesse in der Zelle

Anabole Prozesse in der Zelle Anabole Prozesse in der Zelle DNA Vermehrung RNA Synthese Protein Synthese Protein Verteilung in der Zelle Ziel: Zellteilung (Wachstum) und Differenzierung (Aufgabenteilung im Organismus). 2016 Struktur

Mehr

KATA LOGO Biologie - Genetik - Vom Chromosom zum Gen

KATA LOGO Biologie - Genetik - Vom Chromosom zum Gen KATA LOGO Biologie - Genetik - Vom Chromosom zum Gen Bild 1 Ausdehnung eines Chromosoms (C) 1. Besteht aus Chromatin. Das ist die DNS + Proteine 2. Chromosomen liegen im Zellkern 3. Menschliche Körperzellen

Mehr

Expression der genetischen Information Skript: Kapitel 5

Expression der genetischen Information Skript: Kapitel 5 Prof. A. Sartori Medizin 1. Studienjahr Bachelor Molekulare Zellbiologie FS 2013 12. März 2013 Expression der genetischen Information Skript: Kapitel 5 5.1 Struktur der RNA 5.2 RNA-Synthese (Transkription)

Mehr

NEWS NEWS NEWS Banküberfall in der 11 Avenue NEWS NEWS NEWS

NEWS NEWS NEWS Banküberfall in der 11 Avenue NEWS NEWS NEWS (C) 2014 - SchulLV 1 von 8 Wortherkunft NEWS NEWS NEWS Banküberfall in der 11 Avenue NEWS NEWS NEWS Das ist dein erster Fall als Kriminalpolizist und gleich eine so große Sache: Ein Bankräuber ist nachts

Mehr

Struktur und Funktion der DNA

Struktur und Funktion der DNA Struktur und Funktion der DNA Wiederholung Nucleotide Nucleotide Nucleotide sind die Untereinheiten der Nucleinsäuren. Sie bestehen aus einer N-haltigen Base, einer Pentose und Phosphat. Die Base hängt

Mehr

Einführung Nukleinsäuren

Einführung Nukleinsäuren Einführung Nukleinsäuren Dr. Kristian M. Müller Institut für Biologie III Albert-Ludwigs-Universität Freiburg Einführung 1. Semester, WiSe 2007/2008 Historischer Überblick Literatur Bilder aus: Taschenatlas

Mehr

Biochemie Tutorium 8. Nukleinsäuren, DNA &Replikation

Biochemie Tutorium 8. Nukleinsäuren, DNA &Replikation Biochemie Tutorium 8 Nukleinsäuren, DNA &Replikation IMPP-Gegenstandskatalog 3 Genetik 3.1 Nukleinsäuren 3.1.1 Molekulare Struktur, Konformationen und Funktionen der Desoxyribonukleinsäure (DNA); Exon,

Mehr

GRUNDLAGEN DER MOLEKULARBIOLOGIE. 2 Polynucleotide (DNA und RNA) 2 Polynucleotide (DNA und RNA) - Dezember Prof. Dr.

GRUNDLAGEN DER MOLEKULARBIOLOGIE. 2 Polynucleotide (DNA und RNA) 2 Polynucleotide (DNA und RNA) - Dezember Prof. Dr. Page 1 of 5 GRUNDLAGEN DER MOLEKULARBIOLOGIE Prof. Dr. Anne Müller 2 Polynucleotide (DNA und RNA) 2.1 Entdeckungsgeschichte und Raumstruktur 2.2 Spezifität der Basenpaarung, Hybridisierung 2.3 DNA-Schmelztemperatur

Mehr

Biologie für Mediziner WS 2007/08

Biologie für Mediziner WS 2007/08 Biologie für Mediziner WS 2007/08 Teil Allgemeine Genetik, Prof. Dr. Uwe Homberg 1. Endozytose 2. Lysosomen 3. Zellkern, Chromosomen 4. Struktur und Funktion der DNA, Replikation 5. Zellzyklus und Zellteilung

Mehr

Aufgabe 1. Bakterien als Untersuchungsgegenstand!

Aufgabe 1. Bakterien als Untersuchungsgegenstand! Genetik I Aufgabe 1. Bakterien als Untersuchungsgegenstand 1. Beschriften Sie die Abbildung zu den Bakterien. 2. Nennen Sie Vorteile, die Bakterien wie Escherichia coli so wertvoll für die genetische Forschung

Mehr

Biochemie Vorlesung Die ersten 100 Seiten

Biochemie Vorlesung Die ersten 100 Seiten Biochemie Vorlesung 11-15 Die ersten 100 Seiten 1. Unterschiede der Zellen Eukaryoten- Prokaryoten Eukaryoten: - Keine Zellwand - Intrazelluläre Membransysteme - Kernhülle mit 2 Membranen und Kernporen

Mehr

Die molekulare BDV. Inhalt

Die molekulare BDV. Inhalt Die molekulare BDV Biochemie Inhalt BDV = Biologische Datenverabeitung Informationen in lebenden Systemen Die Entschlüsselung des genetischen Codes Der genetische Code ist degeneriert 1 Die Weitergabe

Mehr

Taschenlehrbuch Biologie: Genetik

Taschenlehrbuch Biologie: Genetik Taschenlehrbuch Biologie Taschenlehrbuch Biologie: Genetik. Auflage 200. Taschenbuch. 568 S. Paperback ISBN 978 3 3 4487 2 Format (B x L): 2,7 x 9 cm Weitere Fachgebiete > Chemie, Biowissenschaften, Agrarwissenschaften

Mehr

Biologie für Mediziner

Biologie für Mediziner Biologie für Mediziner - Zellbiologie 1 - Prof. Dr. Reiner Peters Institut für Medizinische Physik und Biophysik/CeNTech Robert-Koch-Strasse 31 Tel. 0251-835 6933, petersr@uni-muenster.de Dr. Martin Kahms

Mehr

17. Biomoleküle : Nucleinsäuren

17. Biomoleküle : Nucleinsäuren Friday, February 2, 2001 Allgemeine Chemie B II Page: 1 Inhalt Index 17. Biomoleküle : Nucleinsäuren Die gesamte Erbinformation ist in den Desoxyribonucleinsäuren (DNA) enthalten. Die Übersetzung dieser

Mehr

Biochemie Seminar. Struktur und Organisation von Nukleinsäuren Genomorganisation DNA-Replikation

Biochemie Seminar. Struktur und Organisation von Nukleinsäuren Genomorganisation DNA-Replikation Biochemie Seminar Struktur und Organisation von Nukleinsäuren Genomorganisation DNA-Replikation Dr. Jessica Tröger jessica.troeger@med.uni-jena.de Tel.: 938637 Adenosin Cytidin Guanosin Thymidin Nukleotide:

Mehr

Grundwissenkarten Gymnasium Vilsbisburg. 9. Klasse. Biologie

Grundwissenkarten Gymnasium Vilsbisburg. 9. Klasse. Biologie Grundwissenkarten Gymnasium Vilsbisburg 9. Klasse Biologie Es sind insgesamt 10 Karten für die 9. Klasse erarbeitet. davon : Karten ausschneiden : Es ist auf der linken Blattseite die Vorderseite mit Frage/Aufgabe,

Mehr

Datenspeicherung und Datenfluß in der Zelle - Grundlagen der Biochemie

Datenspeicherung und Datenfluß in der Zelle - Grundlagen der Biochemie Datenspeicherung und Datenfluß in der Zelle - Grundlagen der Biochemie Datenspeicherung und Datenfluß der Zelle Transkription DNA RNA Translation Protein Aufbau I. Grundlagen der organischen Chemie und

Mehr

Der Zellkern unterscheidet sich vom Rest einer Zelle

Der Zellkern unterscheidet sich vom Rest einer Zelle DNA und das Genom Der Zellkern unterscheidet sich vom Rest einer Zelle Bereits frühe Untersuchungen zeigten, das sich im Zellkern besondere, sich vom restlichen Zytoplasma unterscheidbare Stoffe befinden.

Mehr

IV. Übungsaufgaben für die Jahrgangstufe 9 & 10

IV. Übungsaufgaben für die Jahrgangstufe 9 & 10 IV. Übungsaufgaben für die Jahrgangstufe 9 & 10 Von der Erbanlage zum Erbmerkmal: 34) Welche Aufgaben haben Chromosomen? 35) Zeichne und benenne die Teile eines Chromosoms, wie sie im Lichtmikroskop während

Mehr

Molekulare Diagnostik

Molekulare Diagnostik Molekulare Diagnostik Andreas Prokesch, Dipl.-Ing. Dr.techn. 1 Molekulare Diagnostik in der Medizin Palliative Behandlung Molekulare Diagnostik Präventivmedizin (=>Personalisierte Medizin) Kurative Therapie

Mehr

Biochemie Tutorium 9. RNA, Transkription

Biochemie Tutorium 9. RNA, Transkription Biochemie Tutorium 9 RNA, Transkription IMPP-Gegenstandskatalog 3 Genetik 3.1 Nukleinsäuren 3.1.1 Molekulare Struktur, Konformationen und Funktionen der Desoxyribonukleinsäure (DNA); Exon, Intron 3.1.2

Mehr

Biologie für Mediziner

Biologie für Mediziner Biologie für Mediziner - Zellbiologie 1 - Prof. Dr. Reiner Peters Institut für Medizinische Physik und Biophysik/ CeNTech Robert-Koch-Strasse 31 Tel. 0251-835 6933, petersr@uni-muenster.de Dr. Martin Kahms

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Die klassische Genetik: T.H. Morgan und seine Experimente mit Drosophila melanogaster Das komplette Material finden Sie hier: Download

Mehr

DNA, RNA und der Fluss der genetischen Information

DNA, RNA und der Fluss der genetischen Information Vertretung durch Frank Breitling (Institut für Mikrostrukturtechnik (IMT), Campus Nord; www.imt.kit.edu/529.php) Vorlesungsdoppelstunde am 25.06.2015 Basis der Vorlesung: Stryer, Biochemie, 6. Auflage,

Mehr

Chemie der Nukleinsäuren

Chemie der Nukleinsäuren Chemie der Nukleinsäuren Hinweis: Im Atelier finden Sie die CD "The Nature of Genes". Mittels Tutorials und Aufgaben werden die wichtigsten Themen der Molekularbiologie leicht verständlich vermittelt.

Mehr

Weitergabe genetischer Information: DNA-Replikation Beispiel: Escherichia coli.

Weitergabe genetischer Information: DNA-Replikation Beispiel: Escherichia coli. Weitergabe genetischer Information: DNA-Replikation Beispiel: Escherichia coli. zirkuläres bakterielles Chromosom Replikation (Erstellung einer identischen Kopie des genetischen Materials) MPM 1 DNA-Polymerasen

Mehr

Von der DNA zum Eiweißmolekül Die Proteinbiosynthese. Ribosom

Von der DNA zum Eiweißmolekül Die Proteinbiosynthese. Ribosom Von der DNA zum Eiweißmolekül Die Proteinbiosynthese Ribosom Wiederholung: DNA-Replikation und Chromosomenkondensation / Mitose Jede Zelle macht von Teilung zu Teilung einen Zellzyklus durch, der aus einer

Mehr

Ausbildung zum Bienenwirtschaftsmeister Mai 2012 Christian Boigenzahn

Ausbildung zum Bienenwirtschaftsmeister Mai 2012 Christian Boigenzahn Einführung in die Grundlagen der Genetik Ausbildung zum Bienenwirtschaftsmeister Mai 2012 Christian Boigenzahn Molekularbiologische Grundlagen Die Zelle ist die grundlegende, strukturelle und funktionelle

Mehr

Unterschied Tiere, Pflanzen, Bakterien u. Pilze und die Zellorganellen

Unterschied Tiere, Pflanzen, Bakterien u. Pilze und die Zellorganellen Unterschied Tiere, Pflanzen, Bakterien u. Pilze und die Zellorganellen Die Organellen der Zelle sind sozusagen die Organe die verschiedene Funktionen in der Zelle ausführen. Wir unterscheiden Tierische

Mehr

Heterocyclen & Naturstoffe - DNA, RNA

Heterocyclen & Naturstoffe - DNA, RNA 35 Heterocyclen & Naturstoffe - DNA, RNA Heterocyclen besitzen mindestens einen Ring, der außer Kohlenstoff ein weiteres Element enthält. Zur Gruppe der Heterocyclen gehören die organischen Basen, die

Mehr

DNA Replikation ist semikonservativ. Abb. aus Stryer (5th Ed.)

DNA Replikation ist semikonservativ. Abb. aus Stryer (5th Ed.) DNA Replikation ist semikonservativ Entwindung der DNA-Doppelhelix durch eine Helikase Replikationsgabel Eltern-DNA Beide DNA-Stränge werden in 5 3 Richtung synthetisiert DNA-Polymerasen katalysieren die

Mehr

RNA- und DNA-Strukturen Strukturelle Bioinformatik WS15/16

RNA- und DNA-Strukturen Strukturelle Bioinformatik WS15/16 RNA- und DNA-Strukturen Strukturelle Bioinformatik WS15/16 Dr. Stefan Simm, 02.12.2015 simm@bio.uni-frankfurt.de RNA- und DNA-Strukturen DNA Historie der DNA Friedrich Miescher (1869) entdeckte in einem

Mehr

1. Beschriften Sie in der Abbildung die verschiedenen Bereiche auf der DNA und beschreiben Sie ihre Funktion! nicht-codogener Strang.

1. Beschriften Sie in der Abbildung die verschiedenen Bereiche auf der DNA und beschreiben Sie ihre Funktion! nicht-codogener Strang. ARBEITSBLATT 1 Transkription 1. Beschriften Sie in der Abbildung die verschiedenen Bereiche auf der DNA und beschreiben Sie ihre Funktion! Bindungsstelle für RNA-Polymerase RNA-Polymerase nicht-codogener

Mehr

Vorlesung Molekulare Humangenetik

Vorlesung Molekulare Humangenetik Vorlesung Molekulare Humangenetik WS 2013/2014 Dr. Shamsadin DNA-RNA-Protein Allgemeines Prüfungen o. Klausuren als indiv. Ergänzung 3LP benotet o. unbenotet Seminar Block 2LP Vorlesung Donnerstags 14-16

Mehr

KV: DNA-Replikation Michael Altmann

KV: DNA-Replikation Michael Altmann Institut für Biochemie und Molekulare Medizin KV: DNA-Replikation Michael Altmann Herbstsemester 2008/2009 Übersicht VL DNA-Replikation 1.) Das Zentraldogma der Molekularbiologie 1.) Semikonservative Replikation

Mehr

Auswahlverfahren Medizin Prüfungsgebiet Chemie. 6.Termin Organische Chemie Naturstoffe

Auswahlverfahren Medizin Prüfungsgebiet Chemie. 6.Termin Organische Chemie Naturstoffe Auswahlverfahren Medizin Prüfungsgebiet Chemie 6.Termin Organische Chemie Naturstoffe Kursleiter Mag. Wolfgang Mittergradnegger IFS Kurs 2009 Organische Chemie Naturstoffe Fette Kohlenhydrate Proteine

Mehr

Genetik Was ist ein Gen - Der Code des Lebens

Genetik Was ist ein Gen - Der Code des Lebens Genetik Was ist ein Gen - Der Code des Lebens A) Teilungsvorgänge 1. Körperzellen Unser Körper besteht aus ca 3 Billionen Zellen, die alle die gleiche Erbsubstanz haben. Nur wirken die Erbanlagen nicht

Mehr

Eukaryotische messenger-rna

Eukaryotische messenger-rna Eukaryotische messenger-rna Cap-Nukleotid am 5 -Ende Polyadenylierung am 3 -Ende u.u. nicht-codierende Bereiche (Introns) Spleißen von prä-mrna Viele Protein-codierende Gene in Eukaryoten sind durch nicht-codierende

Mehr

Biologie I/B: Klassische und molekulare Genetik, molekulare Grundlagen der Entwicklung Theoretische Übungen SS 2016

Biologie I/B: Klassische und molekulare Genetik, molekulare Grundlagen der Entwicklung Theoretische Übungen SS 2016 Biologie I/B: Klassische und molekulare Genetik, molekulare Grundlagen der Entwicklung Theoretische Übungen SS 2016 Vorbemerkung für die Erlangung des Testats: Bearbeiten Sie die unten gestellten Aufgaben

Mehr

4.2 DNA und Chromatin DNA-Struktur Die DNA (Desoxyribonukleinsäure) ist eine Doppelstrangstruktur,

4.2 DNA und Chromatin DNA-Struktur Die DNA (Desoxyribonukleinsäure) ist eine Doppelstrangstruktur, 4.2 DNA und Chromatin DNA-Struktur Die DNA (Desoxyribonukleinsäure) ist eine Doppelstrangstruktur, die aus zwei antiparallel verlaufenden Einzelsträngen, die jeweils aus sehr vielen, kovalent miteinander

Mehr

Struktur und Funktion der DNA

Struktur und Funktion der DNA Struktur und Funktion der DNA Wiederholung Nucleotide Nucleotide Nucleotide sind die Untereinheiten der Nucleinsäuren. Sie bestehen aus einer N-haltigen Base, einer Pentose und Phosphat. Die Base hängt

Mehr

BIOWISSENSCHAFTEN. Die Biowissenschaften. Biochemie. Molekularbiologie. Mikrobiologie. Botanik, Zoologie. Genetik. Biotechnologie.

BIOWISSENSCHAFTEN. Die Biowissenschaften. Biochemie. Molekularbiologie. Mikrobiologie. Botanik, Zoologie. Genetik. Biotechnologie. Die Biowissenschaften Mikrobiologie Biotechnologie Biochemie Genetik Molekularbiologie Botanik, Zoologie weitere Disziplinen Physiologie Zellbiologie Zentrum f. Angew. Genetik BIOWISSENSCHAFTEN Genetik

Mehr

4. Genetische Mechanismen bei Bakterien

4. Genetische Mechanismen bei Bakterien 4. Genetische Mechanismen bei Bakterien 4.1 Makromoleküle und genetische Information Aufbau der DNA Phasen des Informationsflusses Vergleich der Informationsübertragung bei Pro- und Eukaryoten 4.2 Struktur

Mehr

DNA- Replikation. PowerPoint-Learning. Andrea Brügger. von

DNA- Replikation. PowerPoint-Learning. Andrea Brügger. von DNA- Replikation PowerPoint-Learning von Andrea Brügger Lernziele dieser Lerneinheit: 1. Sie kennen und verstehen die einzelnen Teilschritte der DNA-Replikation und können diese Teilschritte den entsprechenden

Mehr

Posttranskriptionale RNA-Prozessierung

Posttranskriptionale RNA-Prozessierung Posttranskriptionale RNA-Prozessierung Spaltung + Modifikation G Q Spleissen + Editing U UUU Prozessierung einer prä-trna Eukaryotische messenger-rna Cap-Nukleotid am 5 -Ende Polyadenylierung am 3 -Ende

Mehr

Grundlagen der Molekulargenetik

Grundlagen der Molekulargenetik Mathematik und Naturwissenschaften Psychologie Differentielle- & Persönlichkeitspsychologie Grundlagen der Molekulargenetik Dresden, 11.11.2010 Charlotte Bauer Gliederung 1. Speicherung genetischer Information

Mehr

Nukleotide und Nukleinsäuren. Prof. Dr. Albert Duschl

Nukleotide und Nukleinsäuren. Prof. Dr. Albert Duschl Nukleotide und Nukleinsäuren Prof. Dr. Albert Duschl Genetischer Code Der genetische Code entsteht durch die Abfolge von Basen in der DNA. Dadurch wird die Abfolge von Aminosäuren in einem Protein codiert.

Mehr

Verbesserte Basenpaarung bei DNA-Analysen

Verbesserte Basenpaarung bei DNA-Analysen Powered by Seiten-Adresse: https://www.gesundheitsindustriebw.de/de/fachbeitrag/aktuell/verbesserte-basenpaarungbei-dna-analysen/ Verbesserte Basenpaarung bei DNA-Analysen Ein Team aus der Organischen

Mehr

Einleitung. Replikation

Einleitung. Replikation (C) 2014 - SchulLV 1 von 9 Einleitung Der Action-Film von gestern Abend war wieder ziemlich spannend. Mal wieder hat es der Superheld geschafft, alle Zeichen richtig zu deuten, diverse Geheimcodes zu knacken

Mehr

Erwin Graf. Genetik an Stationen DNA. Sekundarstufe uf. e I. Erwin Graf. Downloadauszug aus dem Originaltitel: netik

Erwin Graf. Genetik an Stationen DNA. Sekundarstufe uf. e I. Erwin Graf. Downloadauszug aus dem Originaltitel: netik Erwin Graf Genetik an Stationen DNA Sekundarstufe uf e I Erwin Graf Downloadauszug aus dem Originaltitel: netik Genetik an Stationen DNA Dieser Download ist ein Auszug aus dem Originaltitel Genetik Über

Mehr

2 Proteine. 2.1 Aminosäuren

2 Proteine. 2.1 Aminosäuren 18 2 Proteine 2.1 Aminosäuren In der Natur sind bisher über 260 verschiedene Aminosäuren (auch: Aminocarbonsäuren) bekannt. Gerade einmal 20 von ihnen sind die Bausteine von Proteinen. Man bezeichnet diese

Mehr

Gene, Umwelt & Verhalten II: Molekulare Genetik

Gene, Umwelt & Verhalten II: Molekulare Genetik Gene, Umwelt & Verhalten II: Molekulare Genetik 1. Struktur und Funktion der DNA 2. Die Vervielfältigung der genetischen Information 2.1 Replikation innerhalb des Zellzyklus 2.2 Entstehung von Keimzellen

Mehr

MOLEKULARGENETIK. Die Bestandteile liegen in folgenden Mengenverhältnissen vor:

MOLEKULARGENETIK. Die Bestandteile liegen in folgenden Mengenverhältnissen vor: MOLEKULARGENETIK BAU UND FUNKTOIN DER NUKLEINSÄUREN Bau von DNS und RNS Den räumlichen Bau der Desoxyribonukleinsäure (=DNS, DNA) entschlüsselten die beiden britischen Forscher James Watson und Francis

Mehr

Modul Biologische Grundlagen Kapitel I.2 Grundbegriffe der Genetik

Modul Biologische Grundlagen Kapitel I.2 Grundbegriffe der Genetik Frage Was sind Fachbegriffe zum Thema Grundbegriffe der Genetik? Antwort - Gene - Genotyp - Phänotyp - Genom - Dexoxyribonucleinsäure - Träger genetischer Information - Nukleotide - Basen - Peptid - Start-Codon

Mehr

Träger der Erbinformation sind die Nukleinsäuren. Es handelt sich hierbei um hochmolekulare lineare Kettenmoleküle, die aus durch

Träger der Erbinformation sind die Nukleinsäuren. Es handelt sich hierbei um hochmolekulare lineare Kettenmoleküle, die aus durch Achtung Die folgenden Texte sind als Stichworte für die Klausurvorbereitung zu sehen. Keinesfalls sind die Fragen in der Klausur auf den Inhalt dieser Folien beschränkt, sondern werden aus dem Stoff der

Mehr

1.1 Die Z-DNA [11] 1.1.1 Struktur und Eigenschaften

1.1 Die Z-DNA [11] 1.1.1 Struktur und Eigenschaften Die Entwicklung der Biochemie, die aus den drei großen naturwissenschaftlichen Disziplinen Biologie, Physik und Chemie hervorgegangen ist, erlebte in den letzten Jahrzehnten eine geradezu stürmische Entwicklung,

Mehr

VORANSICHT II/B2. Studien an eineiigen Zwillingen. Der zweite Code die DNA ist nicht die ganze Antwort Reihe 13 Verlauf Material S 4

VORANSICHT II/B2. Studien an eineiigen Zwillingen. Der zweite Code die DNA ist nicht die ganze Antwort Reihe 13 Verlauf Material S 4 S 4 M 2 Studien an eineiigen Zwillingen Was ist für die Unterschiede bei eineiigen Zwillingen verantwortlich? Aufgaben 1. Fassen Sie die Informationen des Textes zusammen. 2. Wie sind die im Text beschriebenen

Mehr

Skript zum Workshop Molekular Genetik für die Jahrgangsstufe 12

Skript zum Workshop Molekular Genetik für die Jahrgangsstufe 12 Skript zum Workshop Molekular Genetik für die Jahrgangsstufe 12 Erstellt von: Michael Müller Erstellungsdatum: 23.01.2004 e-mail: michael.mueller@rwth-aachen.de Molekular Genetik Seite 2 von 16 Molekular

Mehr

Einstieg: Fortpflanzung

Einstieg: Fortpflanzung Einstieg: Fortpflanzung Wozu ist Sex gut? - Nachkommen werden gezeugt --> Erhalt der Spezies. - Es entstehen Nachkommen mit Merkmalen (z.b. Aussehen), die denen von Vater und Mutter ähneln. Beide Eltern

Mehr

1 Aufbau und Eigenschaften von Nukleinsäuren

1 Aufbau und Eigenschaften von Nukleinsäuren ufbau und Eigenschaften von ukleinsäuren. ukleotide als Bausteine von ukleinsäuren Im Mittelpunkt aller gentechnischen und molekularbiologischen Experimente stehen die ukleinsäuren, die räger der Erbinformation.

Mehr

Überblick von DNA zu Protein. Biochemie-Seminar WS 04/05

Überblick von DNA zu Protein. Biochemie-Seminar WS 04/05 Überblick von DNA zu Protein Biochemie-Seminar WS 04/05 Replikationsapparat der Zelle Der gesamte Replikationsapparat umfasst über 20 Proteine z.b. DNA Polymerase: katalysiert Zusammenfügen einzelner Bausteine

Mehr

In der Doppel-Helix- Struktur,werden die komplimentären Basisbausteine zusammengehalten von:

In der Doppel-Helix- Struktur,werden die komplimentären Basisbausteine zusammengehalten von: Welche Base kommt in der RNA aber nicht in der DNA vor? 1.Cystein 2.Uracil 3.Adenin 4.Thymin In der Doppel-Helix- Struktur,werden die komplimentären Basisbausteine zusammengehalten von: 1. N-glycosidische

Mehr

Eukaryoten und Prokaryoten

Eukaryoten und Prokaryoten Eukaryoten und Prokaryoten Biochemie Inhalt Zellen Prokaryoten, Eukaryoten Unterschiede und Ähnlichkeiten Zellstrukturen Evolution der Zellen Entwicklung von Mitochondrien und Chloroplasten Angriffsmöglichkeiten

Mehr

I Allgemeine Grundlagen und Präanalytik

I Allgemeine Grundlagen und Präanalytik I Allgemeine Grundlagen und Präanalytik Leitfaden Molekulare Diagnostik. Herausgegeben von Frank Thiemann, Paul M. Cullen und Hanns-Georg Klein Copyright 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Mehr

Ein preiswertes DNA-Modell

Ein preiswertes DNA-Modell Theorie und Praxis des Unterrichts Ein preiswertes DNA-Modell RALF LEMKE/GERHARD SCHLACK Nucleinsäuren als Träger der genetischen Information gehören seit 1953/1/ nicht nur zum elementaren Unterricht in

Mehr

Wiederholunng. Klassische Genetik

Wiederholunng. Klassische Genetik Wiederholunng Klassische Genetik Mendelsche Regeln Uniformitätsregel Spaltungsregel Freie Kombinierbarkeit Koppelung von Genen Polygene: mehre Gene für ein Merkmal Pleiotropie: 1 Gen steuert mehrere Merkmale

Mehr

Vererbung. Die durch Fortpflanzung entstandene Nachkommenschaft gleicht den Elternorganismen weitgehend

Vererbung. Die durch Fortpflanzung entstandene Nachkommenschaft gleicht den Elternorganismen weitgehend Vererbung Die durch Fortpflanzung entstandene Nachkommenschaft gleicht den Elternorganismen weitgehend Klassische Genetik Äußeres Erscheinungsbild: Phänotypus setzt sich aus einer Reihe von Merkmalen (Phänen))

Mehr

Kapitel 8 Ò Chromosomen und Genregulation

Kapitel 8 Ò Chromosomen und Genregulation Kapitel 8 Ò Chromosomen und Genregulation 8.1 Struktur eukaryontischer Chromosomen Ein menschlicher Zellkern ist nur zehn Mikrometer gross und (10-9 ) hat zwei Meter DNA drin. Damit es da kein Durcheinander

Mehr

Vom Gen zum Protein. Zusammenfassung Kapitel 17. Die Verbindung zwischen Gen und Protein. Gene spezifizieren Proteine

Vom Gen zum Protein. Zusammenfassung Kapitel 17. Die Verbindung zwischen Gen und Protein. Gene spezifizieren Proteine Zusammenfassung Kapitel 17 Vom Gen zum Protein Die Verbindung zwischen Gen und Protein Gene spezifizieren Proteine Zellen bauen organische Moleküle über Stoffwechselprozesse auf und ab. Diese Prozesse

Mehr

DNA Kraftspektroskopie. Kevin Krug

DNA Kraftspektroskopie. Kevin Krug DNA Kraftspektroskopie Kevin Krug 15.2.2008 Übersicht Vorstellung einiger DNA Konformationen FJC: allgemeines einfaches Modell zur Beschreibung der Elastizität eines Polymers DNA Übergang bei höheren externen

Mehr

Zellzyklus, Replikation und Chromosomen

Zellzyklus, Replikation und Chromosomen Zellzyklus, Replikation und Chromosomen Wiederholung: Größenverhältnisse im DNA-Molekül 3 5 Das größte menschliche Chromosom enthält 247 Millionen Basenpaare Moleküllänge: 8.4 cm Die Länge des gesamten

Mehr

Die DNA Replikation. Exakte Verdopplung des genetischen Materials. Musterstrang. Neuer Strang. Neuer Strang. Eltern-DNA-Doppelstrang.

Die DNA Replikation. Exakte Verdopplung des genetischen Materials. Musterstrang. Neuer Strang. Neuer Strang. Eltern-DNA-Doppelstrang. Die DNA Replikation Musterstrang Neuer Strang Eltern-DNA-Doppelstrang Neuer Strang Musterstrang Exakte Verdopplung des genetischen Materials Die Reaktion der DNA Polymerase 5`-Triphosphat Nächstes Desoxyribonucleosidtriphosphat

Mehr

DNS-Modell Best.-Nr. 2015801

DNS-Modell Best.-Nr. 2015801 DNS-Modell Best.-Nr. 2015801 1. Produktvorstellung Ziel des Produktes Dieses Modell soll das DNS-Molekül visualisieren: es soll die Doppelspirale, Stickstoffbasen mit Wasserstoffbrückenbindung, Zucker-Phosphatskelette

Mehr

Molekulargenetik 1. 1.1 DNA-Struktur. 1.1.1 Nukleotide

Molekulargenetik 1. 1.1 DNA-Struktur. 1.1.1 Nukleotide O:/Wiley/Reihe_verdammt_klever/Fletcher/3d/c01.3d from 15.08.2013 17:16:38 1 Molekulargenetik 1 In diesem Kapitel geht es um diese Themen: DNA-Struktur Gene Der genetische Code Von der DNA zum Protein

Mehr

2. Stofwechsel. 2.8 Proteinbiosynthese

2. Stofwechsel. 2.8 Proteinbiosynthese 2. Stofwechsel 2.8 Proteinbiosynthese Die Proteinbiosynthese ist ein biochemischer Prozess. Von einem Abschnitt der Desoxynucleinsäure (DNA, A für engl. acid) werden nach Transkription und Translation

Mehr

Urheberrechtlich geschütztes Material

Urheberrechtlich geschütztes Material Lernkarteikarten Veterinärmedizin - BIOCHEMIE BIOCHEMIE Teil 1: Kohlenhydrate, Lipide, Nukleinsäuren, Vitamine 2014 Vetbrainfood - Tiermedizinische Lernkarteikarten - Diplombiologin und Tierärztin G. Glück

Mehr

Gen Protein Aufgaben: Edel LK-Bio BI-3

Gen Protein Aufgaben: Edel LK-Bio BI-3 Proteinbiosynthese Von der DNA zum Protein Dieses Lernprogramm zeigt Ihnen in einem vereinfachten Modell den im Zellinneren ablaufenden Prozess vom Gen auf der DNA zum Protein. Aufgaben: 1 Betrachten Sie

Mehr

Biologie I/B: Klassische und molekulare Genetik, molekulare Grundlagen der Entwicklung Theoretische Übungen SS 2016

Biologie I/B: Klassische und molekulare Genetik, molekulare Grundlagen der Entwicklung Theoretische Übungen SS 2016 Biologie I/B: Klassische und molekulare Genetik, molekulare Grundlagen der Entwicklung Theoretische Übungen SS 2016 Fragen für die Übungsstunde 2 (06.06. 10.06.) DNA-Schäden, Mutationen und Reparatur 1.

Mehr

1. Struktur biologisch relevanter Moleküle

1. Struktur biologisch relevanter Moleküle 1. Struktur biologisch relevanter Moleküle ukleinsäuren (RS, DS): - Speicherung genetischer Information Proteine: - Regulative Funktionen (Enzyme) - Bausteine von Biomembranen Lipide und Lipoide: - Bausteine

Mehr

1. Fragentyp A Welche Aussage über Introns und Exons ist f a 1 sc h? A. Exons enthalten Protein-codierende Sequenzen. B. Reife mrna enthält Exon- und Intron-Abschnitte. C. Intron-Sequenzen werden im Zellkern

Mehr

Molekulare Grundlagen der Vererbung

Molekulare Grundlagen der Vererbung 1 Molekulare Grundlagen der Vererbung Das Gemälde»Laokoon 1977«von Hans Erni könnte als Voraussicht der Fragen gesehen werden, die sich durch die Fortschritte der Molekularbiologie stellen. Es drückt aber

Mehr

Inhaltsverzeichnis - Kapitel

Inhaltsverzeichnis - Kapitel Inhaltsverzeichnis - Kapitel 1. Einleitung: Die Chemie des Lebens 2. Kohlenhydrate 3. Lipide und Membranen 4. 5. Aminosäuren und Proteine 6. Enzyme und Katalyse 7. Vitamine & Kofaktoren 8. Stoffwechsel

Mehr

Studienkolleg der Technischen Universität Berlin. Biologie-Prüfung. für BewerberInnen mit Beruflicher Qualifikation nach 11 BerlHG

Studienkolleg der Technischen Universität Berlin. Biologie-Prüfung. für BewerberInnen mit Beruflicher Qualifikation nach 11 BerlHG Studienkolleg der Technischen Universität Berlin Biologie-Prüfung für BewerberInnen mit Beruflicher Qualifikation nach 11 BerlHG Teil 1 Markieren Sie bitte die richtige Antwort. (pro richtiger Antwort

Mehr

Protein-NMR. Vertiefungsfach Analytische Chemie (WS2015/16) Dr. Peter Bellstedt NMR Plattform IAAC & IOMC

Protein-NMR. Vertiefungsfach Analytische Chemie (WS2015/16) Dr. Peter Bellstedt NMR Plattform IAAC & IOMC Protein-NMR Vertiefungsfach Analytische Chemie (WS2015/16) Dr. Peter Bellstedt NMR Plattform IAAC & IOMC Peter.Bellstedt@uni-jena.de Themenübersicht Termin 1 am 30.11.15: Biochemie von Proteinen (Aufbau,

Mehr

Transkription und Regulation der Genexpression

Transkription und Regulation der Genexpression Transkription und Regulation der Genexpression Dr. Laura Bloch Laura.Bloch@med.uni-jena.de 1. Das zentrale Dogma der Molekularbiologie 24.11.2014 Laura Bloch 2 2. RNA vs. DNA Desoxyribose und Ribose die

Mehr

Zellstrukturen und ihre Funktionen Zellkern (inkl. Chromosomen)

Zellstrukturen und ihre Funktionen Zellkern (inkl. Chromosomen) Zellstrukturen und ihre Funktionen Zellkern (inkl. Chromosomen) Nukleus aufgebaut aus Kernmembran = Kontinuum aus rauem Endoplasmatischem Reticulum, Kernplasma, Chromatin, Nucleolen 3 verschiedene Zustände

Mehr

Nukleinsäuren. 1.Theoretischer Hintergrund... 2. 1.1 Aufbau der DNA... 2. 1.2 Struktur und Replikation der DNA... 3

Nukleinsäuren. 1.Theoretischer Hintergrund... 2. 1.1 Aufbau der DNA... 2. 1.2 Struktur und Replikation der DNA... 3 Inhaltsverzeichnis 1.Theoretischer Hintergrund... 2 1.1 Aufbau der DNA... 2 1.2 Struktur und Replikation der DNA... 3 1.3 Struktur und Aufgaben der verschiedenen RNAs... 6 1.4 Methoden der Molekularbiologie...

Mehr

Biologie I/B: Klassische und molekulare Genetik, molekulare Grundlagen der Entwicklung Theoretische Übungen SS 2016

Biologie I/B: Klassische und molekulare Genetik, molekulare Grundlagen der Entwicklung Theoretische Übungen SS 2016 Biologie I/B: Klassische und molekulare Genetik, molekulare Grundlagen der Entwicklung Theoretische Übungen SS 2016 Fragen für die Übungsstunde 4 (20.06. 24.06.) Regulation der Transkription II, Translation

Mehr

Referat : Aufbau v. Proteinen u. ihre Raumstruktur

Referat : Aufbau v. Proteinen u. ihre Raumstruktur Referat : Aufbau v. Proteinen u. ihre Raumstruktur 1. Einleitung Unsere Körperzellen enthalten einige Tausend verschiedene Proteine wobei man schätzt, das insgesamt über 50 000 verschiedene Eiweißstoffe

Mehr