VL11. Das Wasserstofatom in der QM II Energiezustände des Wasserstoffatoms Radiale Abhängigkeit (Laguerre-Polynome)

Größe: px
Ab Seite anzeigen:

Download "VL11. Das Wasserstofatom in der QM II Energiezustände des Wasserstoffatoms Radiale Abhängigkeit (Laguerre-Polynome)"

Transkript

1 VL 13 VL11. Das Wasserstofatom in der QM II Energiezustände des Wasserstoffatoms Radiale Abhängigkeit (Laguerre-Polynome) VL12. Spin-Bahn-Kopplung (I) 12.1 Bahnmagnetismus (Zeeman-Effekt) 12.2 Spinmagnetismus (Stern-Gerlach-Versuch) VL13. Spin-Bahn-Kopplung (II) Landé-Faktor (Einstein-deHaas Effekt) Berechnung des Landé-Faktors Anomaler Zeeman-Effekt VL14. Spin-Bahn-Kopplung (III) Vektormodell der Spin-Bahn-Kopplung Das Experiment von Lamb und Retherford Energieniveaus des Wasserstoffatoms Wim de Boer, Karlsruhe Atome und Moleküle,

2 Vorlesung 13: Roter Faden: Landé-Faktor (Einstein-deHaas Effekt) Berechnung des Landé-Faktors Folien auf dem Web: Siehe auch: Demtröder, Experimentalphysik 3, Springerverlag Und Wim de Boer, Karlsruhe Atome und Moleküle,

3 Zusammenfassung Elektronspin Wim de Boer, Karlsruhe Atome und Moleküle,

4 Präzessionsfrequenz in klass. Mechanik Beobachtung: drehendes Rad fällt nicht, sondern dreht sich in horizontaler Ebene. Erklärung: D Gewichtskraft übt Drehmoment in horizontaler Richtung aus und M=mgD=dL/dt schiebt L 0 =J 0 0 in die horizontale Richtung! L 0 Diese Bewegung nennt man Präzession. Präzessionsfrequenz aus M=dL/dt=L 0 d /dt=l 0 p oder p =M/L 0 =M/J 0 0 dl = L 0 d L 0 = J 0 0 L Wim de Boer, Karlsruhe Atome und Moleküle,

5 Präzessionsfrequenz des Spins Beobachtung: Spin nicht parallel B, sondern dreht sich in horizontaler Ebene. Erklärung: B S Magnetfeld übt Drehmoment in horizontaler Richtung aus und M= xb=-g S (e/2m)b Ssin = B S sin schiebt S sin in die horizontale Richtung! = g S (e/2m)=gyromagn gyromagn. Verhältnis. Präzessionsfrequenz aus M=dS/dt=Ssin d /dt= Ssin L oder L =M/ Ssin = - Bsin /Ssin =- B ds = Ssin d Ssin S Wim de Boer, Karlsruhe Atome und Moleküle,

6 Einstein-de Haas-Effekt ħ Wim de Boer, Karlsruhe Atome und Moleküle,

7 Einstein-de Haas-Effekt ħ ħ ħ ħ Wim de Boer, Karlsruhe Atome und Moleküle,

8 Einstein-de Haas-Effekt Wim de Boer, Karlsruhe Atome und Moleküle,

9 Praxis: Wechslung des Magnetfeldes bei Resonanzfreq. Rücktreibendes Moment: D=J.. Reibung: D= -k. Magnetisierung (klein!!!) Wim de Boer, Karlsruhe Atome und Moleküle,

10 Lösung: Wechslung des Magnetfeldes bei Resonanzfreq. Ausschlag B/ Jedoch Dämpfung und Hysterese unsicher. Schwierig! Heute wissen wir: Wim de Boer, Karlsruhe Atome und Moleküle,

11 Magnetisierung Wim de Boer, Karlsruhe Atome und Moleküle,

12 Diamagnetismus und Paramagnetismus Wim de Boer, Karlsruhe Atome und Moleküle,

13 Paramagnetische Stoffe Nach Hundschen Regeln haben parallele Spins die niedrigste Energie, wenn diese Zustände nicht durch das Pauli Prinzip verboten sind Wim de Boer, Karlsruhe Atome und Moleküle,

14 Elektronenanordnung im Grundzustand Wim de Boer, Karlsruhe Atome und Moleküle,

15 Elektron im B-Feld Was passiert in einem Magnetfeld, wenn das magnetische Moment des Spins ZWEI mal so groß ist wie für Bahndrehimpulses, also und mit g s =2? Antwort: hängt von der Stärke des Magnetfeldes ab. Wenn das interne Magnetfeld überwiegt: J=L+S, d.h. Bahndrehimpuls und Spin koppeln zum Gesamtdrehimpuls Magnetische Moment ist Vektor von Spin- und Bahnanteil, dass mit effektiven G-Faktor beschrieben wird. Wenn externe Magnetfeld überwiegt: Bahndrehimpuls und Spin entkoppeln und jedes magnetische Moment richtet sich aus im Magnetfeld -> Paschen-Back Effekt (später) Wim de Boer, Karlsruhe Atome und Moleküle,

16 Gesamtdrehimpuls hat Bahn- und Spinanteil: J=L+S Wim de Boer, Karlsruhe Atome und Moleküle,

17 Berechnung des effektiven G-Faktors (Landé-Faktor) Wim de Boer, Karlsruhe Atome und Moleküle,

18 Aufspaltung beim anomalen Zeeman-Effekt Wim de Boer, Karlsruhe Atome und Moleküle,

19 Beispiele Notation der Niveaus: 2S+1 L J Normaler Zeff. mit S=0 Anomaler Zeff. mit S=1/2 Wim de Boer, Karlsruhe Atome und Moleküle,

20 Elektronenanordnung im Grundzustand Wim de Boer, Karlsruhe Atome und Moleküle,

21 Zum Mitnehmen Bahndrehimpuls L und Spin bilden Gesamtdrehimpuls J=L+S, dessen z-komponente wieder quantisiert ist -> magnetische QZ mj. L und S präzessieren um J und daher tun die Kompassnadel p L und p S dies auch. Spin hat g-faktor = 2,d.h. Eigendrehimpuls ist zweimal so effektiv als Bahndrehimpuls um magnetisches Moment zu erzeugen (klassisch nicht erklärbar, folgt jedoch aus relativ.wellen-gleichung (DIRAC-Gleichung)) Aufspaltung im Magnetfeld beschrieben durch Landé-Faktor, die von m j abhängt -> anomaler Zeeman-Effekt. Wim de Boer, Karlsruhe Atome und Moleküle,

22 Andere Berechnung des Landé-Faktors Wim de Boer, Karlsruhe Atome und Moleküle,

23 Andere Berechnung des Landé-Faktors Wim de Boer, Karlsruhe Atome und Moleküle,

VL 12. VL11. Das Wasserstofatom in der QM II Energiezustände des Wasserstoffatoms Radiale Abhängigkeit (Laguerre-Polynome)

VL 12. VL11. Das Wasserstofatom in der QM II Energiezustände des Wasserstoffatoms Radiale Abhängigkeit (Laguerre-Polynome) VL 12 VL11. Das Wasserstofatom in der QM II 11.1. Energiezustände des Wasserstoffatoms 11.2. Radiale Abhängigkeit (Laguerre-Polynome) VL12. Spin-Bahn-Kopplung (I) 12.1 Bahnmagnetismus (Zeeman-Effekt) 12.2

Mehr

12.1 Bahnmagnetismus (Zeeman-Effekt) 12.2 Spinmagnetismus (Stern-Gerlach-Versuch)

12.1 Bahnmagnetismus (Zeeman-Effekt) 12.2 Spinmagnetismus (Stern-Gerlach-Versuch) VL 14 VL12. Spin-Bahn-Kopplung (I) 12.1 Bahnmagnetismus (Zeeman-Effekt) 12.2 Spinmagnetismus (Stern-Gerlach-Versuch) VL13. Spin-Bahn-Kopplung (II) 13.1. Landé-Faktor (Einstein-deHaas Effekt) 13.2. Berechnung

Mehr

VL Landé-Faktor (Einstein-deHaas Effekt) Berechnung des Landé-Faktors Anomaler Zeeman-Effekt

VL Landé-Faktor (Einstein-deHaas Effekt) Berechnung des Landé-Faktors Anomaler Zeeman-Effekt VL 14 VL13. Spin-Bahn-Kopplung (II) 13.1. Landé-Faktor (Einstein-deHaas Effekt) 13.2. Berechnung des Landé-Faktors 13.3. Anomaler Zeeman-Effekt VL14. Spin-Bahn-Kopplung (III) 14.1. Spin-Bahn-Kopplung 14.2.

Mehr

Vorlesung 14: Roter Faden: Wiederholung Lamb-Shift. Hyperfeinstruktur. Folien auf dem Web:

Vorlesung 14: Roter Faden: Wiederholung Lamb-Shift. Hyperfeinstruktur. Folien auf dem Web: Vorlesung 14: Roter Faden: Wiederholung Lamb-Shift Anomaler Zeeman-Effekt Hyperfeinstruktur Folien auf dem Web: http://www-ekp.physik.uni-karlsruhe.de/~deboer/ h i k h / d / Siehe auch: http://www.uni-stuttgart.de/ipf/lehre/online-skript/

Mehr

Vorlesung 12+13: Folien auf dem Web: Siehe auch: Demtröder, Experimentalphysik 3, Springerverlag

Vorlesung 12+13: Folien auf dem Web:  Siehe auch: Demtröder, Experimentalphysik 3, Springerverlag Vorlesung 12+13: Roter Faden: Wiederholung H-Atom Bahnmagnetismus (Zeeman-Effekt) Spinmagnetismus (Stern-Gerlach-Exp.) Landé-Faktor (Einstein-deHaas Effekt) Spin-Bahn Kopplung (Vektormodell J=L+S) Lamb-Retherford

Mehr

VL Spin-Bahn-Kopplung Paschen-Back Effekt. VL15. Wasserstoffspektrum Lamb Shift. VL16. Hyperfeinstruktur

VL Spin-Bahn-Kopplung Paschen-Back Effekt. VL15. Wasserstoffspektrum Lamb Shift. VL16. Hyperfeinstruktur VL 16 VL14. Spin-Bahn-Kopplung (III) 14.1. Spin-Bahn-Kopplung 14.2. Paschen-Back Effekt VL15. Wasserstoffspektrum 15.1. Lamb Shift VL16. Hyperfeinstruktur 16.1. Hyperfeinstruktur 16.2. Kernspinresonanz

Mehr

VL Spin-Bahn-Kopplung Paschen-Back Effekt. VL15. Wasserstoffspektrum Lamb Shift 15.2 Hyperfeinstruktur. VL16.

VL Spin-Bahn-Kopplung Paschen-Back Effekt. VL15. Wasserstoffspektrum Lamb Shift 15.2 Hyperfeinstruktur. VL16. VL 16 VL14. Spin-Bahn-Kopplung (III) 14.1. Spin-Bahn-Kopplung 14.2. Paschen-Back Effekt VL15. Wasserstoffspektrum 15.1. Lamb Shift 15.2 Hyperfeinstruktur VL16. Hyperfeinstruktur 16.1. Magnetische Resonanz

Mehr

Dia- und Paramagnetismus. Brandner Hannes Schlatter Nicola

Dia- und Paramagnetismus. Brandner Hannes Schlatter Nicola Dia- und Paramagnetismus Brandner Hannes Schlatter Nicola Ursachen des magnetischen Moments eines freien Atoms Spin der Elektronen (paramagn.) Deren Bahndrehimpuls bezüglich ihrer Bewegung um den Kern

Mehr

Vorlesung 11: Lösung der SG für das H-Atom. Folien auf dem Web:

Vorlesung 11: Lösung der SG für das H-Atom. Folien auf dem Web: Vorlesung 11: Roter Faden: Lösung der SG für das H-Atom Folien auf dem Web: http://www-ekp.physik.uni-karlsruhe.de/~deboer/ Siehe auch: Demtröder, Experimentalphysik 3, Springerverlag Mai 19, 2005 Atomphysik

Mehr

2.3. Atome in äusseren Feldern

2.3. Atome in äusseren Feldern .3. Atome in äusseren Feldern.3.1. Der Zeeman-Effekt Nobelpreis für Physik 19 (...researches into the influence of magnetism upon radiation phenomena ) H. A. Lorentz P. Zeeman Die Wechselwirkung eines

Mehr

10. Der Spin des Elektrons

10. Der Spin des Elektrons 10. Elektronspin Page 1 10. Der Spin des Elektrons Beobachtung: Aufspaltung von Spektrallinien in nahe beieinander liegende Doppellinien z.b. die erste Linie der Balmer-Serie (n=3 -> n=2) des Wasserstoff-Atoms

Mehr

3. Feinstruktur von Alkalispektren: Die gelbe D-Linie des Na ist ein Dublett, sollte aber nur eine Linie sein.

3. Feinstruktur von Alkalispektren: Die gelbe D-Linie des Na ist ein Dublett, sollte aber nur eine Linie sein. 13. Der Spin Experimentelle Fakten: 2. Normaler Zeeman-Effekt ist die Ausnahme: Meist sieht man den anormalen Zeeman-Effekt (Aufspaltung beobachtet, für die es keine normale Erklärung gab wegen Spin).

Mehr

Vorlesung 20: Roter Faden: Auswahlregeln. Folien auf dem Web:

Vorlesung 20: Roter Faden: Auswahlregeln. Folien auf dem Web: Vorlesung 20: Roter Faden: Auswahlregeln Folien auf dem Web: http://www-ekp.physik.uni-karlsruhe.de/~deboer/ Siehe auch: http://www.uni-stuttgart.de/ipf/lehre/online-skript/ Wim de Boer, Karlsruhe Atome

Mehr

Vorlesung 25: Roter Faden: Magnetische Effekte im H-Atom Periodensystem Röntgenstrahlung Laser

Vorlesung 25: Roter Faden: Magnetische Effekte im H-Atom Periodensystem Röntgenstrahlung Laser Vorlesung 25: Roter Faden: Magnetische Effekte im H-Atom Periodensystem Röntgenstrahlung Laser Juli 19, 2006 Ausgewählte Kapitel der Physik, Prof. W. de Boer 1 Magnetfelder im H-Atom Interne B-Felder:

Mehr

VL 19 VL Laser VL Mehrelektronensysteme VL Periodensystem

VL 19 VL Laser VL Mehrelektronensysteme VL Periodensystem VL 19 VL 18 18.1. Laser (Light Amplification by Stimulated Emission of Radiation) Maser = Laser im Mikrowellenbereich, d.h. Microwave Amplification by Stimulated Emission of Radiation) VL 19 19.1. Mehrelektronensysteme

Mehr

VL 19 VL 17 VL 18. 18.1. Mehrelektronensysteme VL 19. 19.1. Periodensystem. Wim de Boer, Karlsruhe Atome und Moleküle, 25.06.

VL 19 VL 17 VL 18. 18.1. Mehrelektronensysteme VL 19. 19.1. Periodensystem. Wim de Boer, Karlsruhe Atome und Moleküle, 25.06. VL 19 VL 17 17.1. Laser (Light Amplification by Stimulated Emission of Radiation) Maser = Laser im Mikrowellenbereich, d.h. Microwave Amplification by Stimulated Emission of Radiation) VL 18 18.1. Mehrelektronensysteme

Mehr

VL 18 VL Laser VL Mehrelektronensysteme VL Periodensystem

VL 18 VL Laser VL Mehrelektronensysteme VL Periodensystem VL 18 VL 17 17.1. Laser (Light Amplification by Stimulated Emission of Radiation) Maser = Laser im Mikrowellenbereich, d.h. Microwave Amplification by Stimulated Emission of Radiation) VL 18 18.1. Mehrelektronensysteme

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable

Mehr

Vorlesung 4: Roter Faden:

Vorlesung 4: Roter Faden: Vorlesung 4: Roter Faden: Bisher: lineare Bewegungen Heute: Kreisbewegung Exp.: Märklin, Drehschemel, Präzession Rad Ausgewählte Kapitel der Physik, SS 06, Prof. W. de Boer 1 Kreisbewegung Kinematik, d.h.

Mehr

Ferienkurs Experimentalphysik Übung 2 - Musterlösung

Ferienkurs Experimentalphysik Übung 2 - Musterlösung Ferienkurs Experimentalphysik 4 00 Übung - Musterlösung Kopplung von Drehimpulsen und spektroskopische Notation (*) Vervollständigen Sie untenstehende Tabelle mit den fehlenden Werten der Quantenzahlen.

Mehr

Ferienkurs der TU München- - Experimentalphysik 4 Wasserstoffatom, Feinstruktur und Atome im Magnetfeld. Jonas J. Funke

Ferienkurs der TU München- - Experimentalphysik 4 Wasserstoffatom, Feinstruktur und Atome im Magnetfeld. Jonas J. Funke Ferienkurs der TU München- - Experimentalphysik 4 Wasserstoffatom, Feinstruktur und Atome im Magnetfeld Lösung Jonas J. Funke 0.08.00-0.09.00 Aufgabe (Drehimpulsaddition). : Gegeben seien zwei Drehimpulse

Mehr

Übungen zur Physik der Materie 1 Blatt 10 - Atomphysik

Übungen zur Physik der Materie 1 Blatt 10 - Atomphysik Übungen zur Physik der Materie 1 Blatt 10 - Atomphysik Sommersemester 018 Vorlesung: Boris Bergues ausgegeben am 14.06.018 Übung: Nils Haag (Nils.Haag@lmu.de) besprochen am 0.06.018 Hinweis: Dieses Übungsblatt

Mehr

Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen Mechanik).

Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen Mechanik). phys4.017 Page 1 10.4.2 Bahndrehimpuls des Elektrons: Einheit des Drehimpuls: Der Bahndrehimpuls des Elektrons ist quantisiert. Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen

Mehr

VL 17. VL16. Hyperfeinstruktur Hyperfeinstruktur Kernspinresonanz VL Elektronenspinresonanz Kernspintomographie

VL 17. VL16. Hyperfeinstruktur Hyperfeinstruktur Kernspinresonanz VL Elektronenspinresonanz Kernspintomographie VL 17 VL16. Hyperfeinstruktur 16.1. Hyperfeinstruktur 16.2. Kernspinresonanz VL 17 17.1. Elektronenspinresonanz 17.2. Kernspintomographie Wim de Boer, Karlsruhe Atome und Moleküle, 21.06.2012 1 Magnetische

Mehr

VL 17. VL16. Hyperfeinstruktur Hyperfeinstruktur Kernspinresonanz VL Elektronenspinresonanz Kernspintomographie

VL 17. VL16. Hyperfeinstruktur Hyperfeinstruktur Kernspinresonanz VL Elektronenspinresonanz Kernspintomographie VL 17 VL16. Hyperfeinstruktur 16.1. Hyperfeinstruktur 16.2. Kernspinresonanz VL 17 17.1. Elektronenspinresonanz 17.2. Kernspintomographie Wim de Boer, Karlsruhe Atome und Moleküle, 21.06.2012 1 Magnetische

Mehr

Vorlesung 9: Roter Faden: Wiederholung Quantisierung der Energien in QM. Franck-Hertz Versuch. Emissions- und Absorptionsspektren der Atome

Vorlesung 9: Roter Faden: Wiederholung Quantisierung der Energien in QM. Franck-Hertz Versuch. Emissions- und Absorptionsspektren der Atome Vorlesung 9: Roter Faden: Wiederholung Quantisierung der Energien in QM Franck-Hertz Versuch Emissions- und Absorptionsspektren der Atome Spektren des Wasserstoffatoms Bohrsche Atommodell Folien auf dem

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebener Übungszettel aus dem Modul physik4. Dieser Übungszettel wurde nicht korrigiert. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle Übungszettel

Mehr

Drehimpuls Allgemeine Behandlung

Drehimpuls Allgemeine Behandlung Drehimpuls Allgemeine Behandlung Klassisch: = r p = r mv β m p Kreuprodukt weier Vektoren: = r p = r p sinβ 1 i Drehimpuls Allgemeine Behandlung 1 k j 1 Einheitsvektoren Vektordarstellung: = xi + yj+ k

Mehr

Eigenschaften des Photons

Eigenschaften des Photons Eigenschaften des Photons Das Photon ist das Energiequant der elektromagnetischen Wellen, d.h. Licht hat wie von Einstein postuliert nicht nur Wellencharakter, sondern auch Teilchencharakter mit den oben

Mehr

Vorlesung 9: Roter Faden: Franck-Hertz Versuch. Emissions- und Absorptionsspektren der Atome. Spektren des Wasserstoffatoms. Bohrsche Atommodell

Vorlesung 9: Roter Faden: Franck-Hertz Versuch. Emissions- und Absorptionsspektren der Atome. Spektren des Wasserstoffatoms. Bohrsche Atommodell Vorlesung 9: Roter Faden: Franck-Hertz Versuch Emissions- und Absorptionsspektren der Atome Spektren des Wasserstoffatoms Bohrsche Atommodell Folien auf dem Web: http://www-ekp.physik.uni-karlsruhe.de/~deboer/

Mehr

Atome - Moleküle - Kerne

Atome - Moleküle - Kerne Atome - Moleküle - Kerne Band I Atomphysik Von Univ.-Professor Dr. Gerd Otter und Akad.-Direktor Dr. Raimund Honecker III. Physikalisches Institut der Rheinisch-Westfälischen Technischen Hochschule Aachen

Mehr

Eigenschaften des Photons

Eigenschaften des Photons Eigenschaften des Photons Das Photon ist das Energiequant der elektromagnetischen Wellen, d.h. Licht hat wie von Einstein postuliert nicht nur Wellencharakter, sondern auch Teilchencharakter mit den oben

Mehr

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator VL 9 VL8. VL9. Das Wasserstoffatom in der Klass. Mechanik 8.1. Emissions- und Absorptionsspektren der Atome 8.2. Quantelung der Energie (Frank-Hertz Versuch) 8.3. Bohrsches Atommodell 8.4. Spektren des

Mehr

Übungen zur Physik der Materie 1 Lösungsvorschlag Blatt 11 - Atomphysik. Aufgabe 28: Kurzfragen zur Atomphysik Teil 2

Übungen zur Physik der Materie 1 Lösungsvorschlag Blatt 11 - Atomphysik. Aufgabe 28: Kurzfragen zur Atomphysik Teil 2 Übungen zur Physik der Materie 1 Lösungsvorschlag Blatt 11 - Atomphysik Sommersemester 018 Vorlesung: Boris Bergues ausgegeben am 1.06.018 Übung: Nils Haag (Nils.Haag@lmu.de) besprochen am 6.06.018 Aufgabe

Mehr

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator VL 9 VL8. VL9. Das Wasserstoffatom in der Klass. Mechanik 8.1. Emissions- und Absorptionsspektren der Atome 8.2. Quantelung der Energie (Frank-Hertz Versuch) 8.3. Bohrsches Atommodell 8.4. Spektren des

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein korrigierter Übungszettel aus dem Modul physik4. Dieser Übungszettel wurde von einem Tutor korrigiert. Dies bedeutet jedoch nicht, dass es sich um eine Musterlösung handelt. Weder

Mehr

(a) Welches ist die wichtigste Erkenntnis, die sich aus den Ergebnissen des Experiments ableiten lässt.

(a) Welches ist die wichtigste Erkenntnis, die sich aus den Ergebnissen des Experiments ableiten lässt. Übungen zur moderne Experimentalphysik I (Physik IV, Atome und Kerne) KIT, Sommersemester 2017 Prof. Dr. Guido Drexlin, Dr. Kathrin Valerius Vorlesungen Di 9:45 + Do 8:00, Gerthsen-Hörsaal Sprechstunde

Mehr

Vorlesung 24: Roter Faden: Wiederholung Quantisierung der Energien in QM. Emissions- und Absorptionsspektren der Atome

Vorlesung 24: Roter Faden: Wiederholung Quantisierung der Energien in QM. Emissions- und Absorptionsspektren der Atome Vorlesung 24: Roter Faden: Wiederholung Quantisierung der Energien in QM Franck-Hertz Versuch Emissions- und Absorptionsspektren der Atome Spektren des Wasserstoffatoms Bohrsche Atommodell Lösung der Schrödingergleichung

Mehr

Vorlesung 19: Roter Faden: Röntgenstrahlung Laserprinzip. Siehe auch: Demtröder, Experimentalphysik 3, Springerverlag

Vorlesung 19: Roter Faden: Röntgenstrahlung Laserprinzip. Siehe auch: Demtröder, Experimentalphysik 3, Springerverlag Vorlesung 19: Roter Faden: Röntgenstrahlung Laserprinzip Folien auf dem Web: http://www-ekp.physik.uni-karlsruhe.de/~deboer/ Siehe auch: Demtröder, Experimentalphysik 3, Springerverlag Juni 21, 2005 Atomphysik

Mehr

Musterlösung 02/09/2014

Musterlösung 02/09/2014 Musterlösung 0/09/014 1 Streuexperimente (a) Betrachten Sie die Streuung von punktförmigen Teilchen an einer harten Kugel vom Radius R. Bestimmen Sie die Ablenkfunktion θ(b) unter der Annahme, dass die

Mehr

Vorlesung 18: Roter Faden:

Vorlesung 18: Roter Faden: Vorlesung 18: Roter Faden: Heute: Kreisel Präzession Nutation Versuche: Kreisel, Gyroscoop 11 Dezember 2003 Physik I, WS 03/04, Prof. W. de Boer 1 Kreisel Bisher Rotation um feste Achsen, d.h. ω. Kreisel:

Mehr

Vorlesung 18: Roter Faden: Röntgenstrahlung. Folien auf dem Web:

Vorlesung 18: Roter Faden: Röntgenstrahlung. Folien auf dem Web: Vorlesung 18: Roter Faden: Röntgenstrahlung Folien auf dem Web: http://www-ekp.physik.uni-karlsruhe.de/~deboer/ h i k h / d / Siehe auch: http://www.wmi.badw.de/teaching/lecturenotes/index.html http://www.uni-stuttgart.de/ipf/lehre/online-skript/

Mehr

14. Atomphysik Physik für E-Techniker. 14. Atomphysik

14. Atomphysik Physik für E-Techniker. 14. Atomphysik 14. Atomphysik 14.1 Aufbau der Materie 14.2 Der Atomaufbau 14.2.1 Die Hauptquantenzahl n 14.2.2 Die Nebenquantenzahl l 14.2.3 Die Magnetquantenzahl m l 14.2.4 Der Zeemann Effekt 14.2.5 Das Stern-Gerlach-Experiment

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 30. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 30. 06.

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 06. 07. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 06. 07. 2009

Mehr

14. Atomphysik Aufbau der Materie

14. Atomphysik Aufbau der Materie 14. Atomphysik 14.1 Aufbau der Materie 14.2 Der Atomaufbau 14.2.1 Die Hauptquantenzahl n 14.2.2 Die Nebenquantenzahl l 14.2.3 Die Magnetquantenzahl m l 14.2.4 Der Zeemann Effekt 14.2.5 Das Stern-Gerlach-Experiment

Mehr

Einstein-de-Haas-Versuch

Einstein-de-Haas-Versuch Einstein-de-Haas-Versuch Versuch Nr. 5 Vorbereitung - 7. Januar 23 Ausgearbeitet von Martin Günther und Nils Braun Einführung 2 Aufbau und Durchführung Das hier vorgestellte Experiment von Einstein und

Mehr

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator VL 8 VL8. VL9. VL10. Das Wasserstoffatom in der klass. Mechanik 8.1. Emissions- und Absorptionsspektren der Atome 8.2. Quantelung der Energie (Frank-Hertz Versuch) 8.3. Bohrsches Atommodell 8.4. Spektren

Mehr

Vorlesung 7: Roter Faden:

Vorlesung 7: Roter Faden: Vorlesung 7: Roter Faden: Beispiele für Kräfte: Gewichtskraft, Reibungskraft, Federkraft, Windkraft, Gravitationskraft, elektromagnetische Kraft, Zentripetalkraft, Heute: weiter Zentripetalkraft Drehimpulserhaltung

Mehr

Vorlesung 1: Atomphysik beschäftigt sich mit dem Aufbau der Materie auf dem Niveau der Atome unter Berücksichtigung der Quantenmechanik.

Vorlesung 1: Atomphysik beschäftigt sich mit dem Aufbau der Materie auf dem Niveau der Atome unter Berücksichtigung der Quantenmechanik. Roter Faden: Vorlesung 1: Atomphysik beschäftigt sich mit dem Aufbau der Materie auf dem Niveau der Atome unter Berücksichtigung der Quantenmechanik. Atom: griechisch: das Unzerschneidbare lateinisch:

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2016 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 2. Vorlesung, 17. 3. 2016 Wasserstoffspektren, Zeemaneffekt, Spin, Feinstruktur,

Mehr

Vorlesung 1: Atomphysik beschäftigt sich mit dem Aufbau der Materie auf dem Niveau der Atome unter Berücksichtigung der Quantenmechanik.

Vorlesung 1: Atomphysik beschäftigt sich mit dem Aufbau der Materie auf dem Niveau der Atome unter Berücksichtigung der Quantenmechanik. Roter Faden: Vorlesung 1: Atomphysik beschäftigt sich mit dem Aufbau der Materie auf dem Niveau der Atome unter Berücksichtigung der Quantenmechanik. Atom: griechisch: das Unzerschneidbare lateinisch:

Mehr

14. Atomphysik. Inhalt. 14. Atomphysik

14. Atomphysik. Inhalt. 14. Atomphysik Inhalt 14.1 Aufbau der Materie 14.2 Der Atomaufbau 14.2.1 Die Hauptquantenzahl n 14.2.2 Die Nebenquantenzahl l 14.2.3 Die Magnetquantenzahl m l 14.2.4 Der Zeemann Effekt 14.2.5 Das Stern-Gerlach-Experiment

Mehr

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell:

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell: phys4.016 Page 1 10. Das Wasserstoff-Atom 10.1.1 Das Spektrum des Wasserstoff-Atoms im Bohr-Modell: Bohr-Modell liefert eine ordentliche erste Beschreibung der grundlegenden Eigenschaften des Spektrums

Mehr

3. Geben Sie ein Bespiel, wie man Bra und Ket Notation nützen kann.

3. Geben Sie ein Bespiel, wie man Bra und Ket Notation nützen kann. Fragen zur Vorlesung Einführung in die Physik 3 1. Was ist ein quantenmechanischer Zustand? 2. Wenn die Messung eines quantenmechanischen Systems N unterscheidbare Ereignisse liefern kann, wie viele Parameter

Mehr

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 9. Vorlesung. Pawel Romanczuk WS 2017/18

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 9. Vorlesung. Pawel Romanczuk WS 2017/18 Theoretical Biophysics - Quantum Theory and Molecular Dynamics 9. Vorlesung Pawel Romanczuk WS 2017/18 http://lab.romanczuk.de/teaching 1 Zusammenfassung letzte VL Wasserstoffatom Quantenmechanisches Zweikörperproblem

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Vorlesung 3 Atome im Magnetfeld, Mehrelektronensysteme Florian Lippert & Andreas Trautner 9.08.01 Inhaltsverzeichnis 1 Atome im externen Magnetfeld 1 1.1 Elektronenspin-Resonanz...........................

Mehr

Ferienkurs Experimentalphysik Lösung zur Übung 2

Ferienkurs Experimentalphysik Lösung zur Übung 2 Ferienkurs Experimentalphysik 4 01 Lösung zur Übung 1. Ermitteln Sie für l = 1 a) den Betrag des Drehimpulses L b) die möglichen Werte von m l c) Zeichnen Sie ein maßstabsgerechtes Vektordiagramm, aus

Mehr

FERIENKURS EXPERIMENTALPHYSIK 4. Mehrelektronensysteme

FERIENKURS EXPERIMENTALPHYSIK 4. Mehrelektronensysteme FERIENKURS EXPERIMENTALPHYSIK 4 Vorlesung 3 am 04.09.2013 Mehrelektronensysteme Hannah Schamoni, Susanne Goerke Inhaltsverzeichnis 1 Das Helium-Atom 2 1.1 Grundlagen und Ortswellenfunktion........................

Mehr

Feynman Vorlesungen über Physik

Feynman Vorlesungen über Physik Feynman Vorlesungen über Physik Band llhouantenmechanik. Definitive Edition von Richard R Feynman, Robert B. Leighton und Matthew Sands 5., verbesserte Auflage Mit 192 Bildern und 22Tabellen Oldenbourg

Mehr

Aufspaltung der Energieniveaus von Atomen im homogenen Magnetfeld

Aufspaltung der Energieniveaus von Atomen im homogenen Magnetfeld Simon Lewis Lanz 2015 simonlanzart.de Aufspaltung der Energieniveaus von Atomen im homogenen Magnetfeld Zeeman-Effekt, Paschen-Back-Effekt, Fein- und Hyperfeinstrukturaufspaltung Fließt elektrischer Strom

Mehr

Materie im Magnetfeld

Materie im Magnetfeld . Stromschleifen - Permanentmagnet Materie im Magnetfeld EX-II SS007 = > µmag = I S ˆn S = a b µ bahn = e m L µ spin = e m S Stromschleife im Magnetfeld Magnetisierung inhomogenes Magnetfeld = D = µmag

Mehr

9. Das Wasserstoff-Atom. 9.1 Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell:

9. Das Wasserstoff-Atom. 9.1 Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell: 09. Wasserstoff-Atom Page 1 9. Das Wasserstoff-Atom 9.1 Das Spektrum des Wasserstoff-Atoms im Bohr-Modell: Bohr-Modell liefert eine ordentliche erste Beschreibung der grundlegenden Eigenschaften des Spektrums

Mehr

6. Viel-Elektronen Atome

6. Viel-Elektronen Atome 6. Viel-Elektronen 6.1 Periodensystem der Elemente 6.2 Schwerere 6.3 L S und j j Kopplung 6.1 6.1 Periodensystem der Elemente 6.2 Auffüllen der Elektronen-Orbitale Pauliprinzip: je 1 Elektron je Zustand

Mehr

Ferienkurs Experimentalphysik Probeklausur

Ferienkurs Experimentalphysik Probeklausur Ferienkurs Experimentalphysik 4 2010 Probeklausur 1 Allgemeine Fragen a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable eine Erhaltungsgröße darstellt? b) Was versteht man

Mehr

Experimentalphysik Modul PH-EP4 / PH-DP-EP4

Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Universität Leipzig, Fakultät für Physik und Geowissenschaften 5 Das Wasserstoffatom Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Script für Vorlesung 14. Mai 2009 5.3 Vergleich der Schrödinger Theorie

Mehr

n r 2.2. Der Spin Magnetische Momente In einem klassischen Atommodell umkreist das Elektron den Kern Drehimpuls

n r 2.2. Der Spin Magnetische Momente In einem klassischen Atommodell umkreist das Elektron den Kern Drehimpuls 2.2. Der Spin 2.2.1. Magnetische Momente In einem klassischen Atommodell umkreist das Elektron den Kern Drehimpuls Dies entspricht einem Kreisstrom. n r r I e Es existiert ein entsprechendes magnetisches

Mehr

VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik

VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik VL7 VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik VL7. Elemente der Quantenmechanik II 7.1. Wellenpakete als Lösungen

Mehr

Ein Lehrbuch für Studierende der Chemie im 2. Studienabschnitt

Ein Lehrbuch für Studierende der Chemie im 2. Studienabschnitt Atom- und Molekülbau Ein Lehrbuch für Studierende der Chemie im 2. Studienabschnitt Von Peter C. Schmidt und Konrad G. Weil 147 Abbildungen, 19 Tabellen Georg Thieme Verlag Stuttgart New York 1982 Vorwort

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 11. Vorlesung, 4.7. 2013 Para-, Dia- und Ferromagnetismus Isingmodell, Curietemperatur,

Mehr

VL 20 VL Mehrelektronensysteme VL Periodensystem VL Röntgenstrahlung

VL 20 VL Mehrelektronensysteme VL Periodensystem VL Röntgenstrahlung VL 20 VL 18 18.1. Mehrelektronensysteme VL 19 19.1. Periodensystem VL 20 20.1. Röntgenstrahlung Wim de Boer, Karlsruhe Atome und Moleküle, 27.06.2013 1 Vorlesung 20: Roter Faden: Röntgenstrahlung Folien

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letten Vorlesung können Sie sich noch erinnern? Elektronmikroskopie Die Energie eines Elektrons in einer Elektronenfalle En π = ml n Photonenabsorption & Photonenemission

Mehr

VL 20 VL Mehrelektronensysteme VL Periodensystem VL Röntgenstrahlung

VL 20 VL Mehrelektronensysteme VL Periodensystem VL Röntgenstrahlung VL 20 VL 18 18.1. Mehrelektronensysteme VL 19 19.1. Periodensystem VL 20 20.1. Röntgenstrahlung Wim de Boer, Karlsruhe Atome und Moleküle, 27.06.2013 1 Vorlesung 20: Roter Faden: Röntgenstrahlung Folien

Mehr

F. Atomare Ursachen des Magnetismus

F. Atomare Ursachen des Magnetismus F. Atomare Ursachen des Magnetismus Im Folgenden sollen die atomaren Ursachen für den Magnetismus fester Stoffe erläutert werden. Die meisten Zusammenhänge lassen sich dabei auch auf flüssige gasförmige

Mehr

VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik

VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik VL7 VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik VL7. Elemente der Quantenmechanik II 7.1. Wellenpakete als Lösungen

Mehr

Spektroskopische Methoden in der Organischen Chemie (OC IV) NMR Spektroskopie 1. Physikalische Grundlagen

Spektroskopische Methoden in der Organischen Chemie (OC IV) NMR Spektroskopie 1. Physikalische Grundlagen NMR Spektroskopie 1. Physikalische Grundlagen Viele Atomkerne besitzen einen von Null verschiedenen Eigendrehimpuls (Spin) p=ħ I, der ganz oder halbzahlige Werte von ħ betragen kann. I bezeichnet die Kernspin-Quantenzahl.

Mehr

Festkörperelektronik 4. Übung

Festkörperelektronik 4. Übung Festkörperelektronik 4. Übung Felix Glöckler 23. Juni 2006 1 Übersicht Themen heute: Feedback Spin Drehimpuls Wasserstoffatom, Bohr vs. Schrödinger Wasserstoffmolekülion, kovalente Bindung Elektronen in

Mehr

Übungsblatt 10. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, oder 1. 7.

Übungsblatt 10. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, oder 1. 7. Übungsblatt 10 PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@uni-ulm.de) 30. 6. 2005 oder 1. 7. 2005 1 Aufgaben 1. Zeigen Sie, dass eine geschlossene nl-schale

Mehr

E2: Wärmelehre und Elektromagnetismus 18. Vorlesung

E2: Wärmelehre und Elektromagnetismus 18. Vorlesung E2: Wärmelehre und Elektromagnetismus 18. Vorlesung 21.06.2018 Barlow-Rad Heute: Telefon nach Bell - Materie im Magnetfeld: Dia-, Para-, Ferromagnetismus - Supraleitung - Faradaysches Induktionsgesetz

Mehr

Vorlesung 1: Atomphysik beschäftigt sich mit dem Aufbau der Materie auf dem Niveau der Atome unter Berücksichtigung der Quantenmechanik.

Vorlesung 1: Atomphysik beschäftigt sich mit dem Aufbau der Materie auf dem Niveau der Atome unter Berücksichtigung der Quantenmechanik. Roter Faden: Vorlesung 1: Atomphysik beschäftigt sich mit dem Aufbau der Materie auf dem Niveau der Atome unter Berücksichtigung der Quantenmechanik. Atom: griechisch: das Unzerschneidbare lateinisch:

Mehr

A14: Zeeman-Effekt. 1. Übersicht zum Thema und Zusammenfassung der Ziele

A14: Zeeman-Effekt. 1. Übersicht zum Thema und Zusammenfassung der Ziele - A 14.1 - A14: Zeeman-Effekt 1. Übersicht zum Thema und Zusammenfassung der Ziele Im Jahre 1896 beobachtete der Holländer Peter Zeeman eine Aufspaltung der Natrium D- Linien in einem Magnetfeld. Dieser

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker 4. Vorlesung 9.5.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Vorlesung 15: Wiederholung Elektronspinresonanz (ESR) Kernspinresonanz(NMR=Nuclear Magnetic Resonance) Medical Imaging (Kernspintomographie)

Vorlesung 15: Wiederholung Elektronspinresonanz (ESR) Kernspinresonanz(NMR=Nuclear Magnetic Resonance) Medical Imaging (Kernspintomographie) Vorlesung 15: Roter Faden: Wiederholung Elektronspinresonanz (ESR) Kernspinresonanz(NMR=Nuclear Magnetic Resonance) Medical Imaging (Kernspintomographie) Folien auf dem Web: http://www-ekp.physik.uni-karlsruhe.de/~deboer/

Mehr

Vorlesung 15: Kernspinresonanz(NMR=Nuclear Magnetic Resonance) Medical Imaging (Kernspintomographie)

Vorlesung 15: Kernspinresonanz(NMR=Nuclear Magnetic Resonance) Medical Imaging (Kernspintomographie) Vorlesung 15: Roter Faden: Wiederholung Elektronspinresonanz (ESR) Kernspinresonanz(NMR=Nuclear Magnetic Resonance) Medical Imaging (Kernspintomographie) Folien auf dem Web: http://www-ekp.physik.uni-karlsruhe.de/~deboer/

Mehr

Der Stern-Gerlach-Versuch

Der Stern-Gerlach-Versuch Der Stern-Gerlach-Versuch Lukas Mazur Physik Fakultät Universität Bielefeld Physikalisches Proseminar, 08.05.2013 1 Einleitung 2 Wichtige Personen 3 Motivation 4 Das Stern-Gerlach-Experiment 5 Pauli-Prinzip

Mehr

[ H, L 2 ]=[ H, L z. ]=[ L 2, L z. U r = Warum haben wir soviel Zeit mit L 2 verbracht? = x 2 2. r 1 2. y 2 2. z 2 = 2. r 2 2 r

[ H, L 2 ]=[ H, L z. ]=[ L 2, L z. U r = Warum haben wir soviel Zeit mit L 2 verbracht? = x 2 2. r 1 2. y 2 2. z 2 = 2. r 2 2 r Warum haben wir soviel Zeit mit L 2 verbracht? = x 2 2 y 2 2 z 2 = 2 r 2 2 r r 1 2 L r 2 ħ 2 11. Das Wasserstoffatom H = p2 2 U r μ = Masse (statt m, da m später als Quantenzahl verwendet wird) U r = e2

Mehr

Damit ergibt sich für den antisymmetrischen Feldstärke-Tensor

Damit ergibt sich für den antisymmetrischen Feldstärke-Tensor Damit ergibt sich für den antisymmetrischen Feldstärke-Tensor 0 E x E y E z F µ = @ µ A @ A µ E = x 0 B z B y E y B z 0 B x E z B y B x 0 Die homogenen Maxwell- Gleichungen B = 0 E + @ t B = 0 sind durch

Mehr

Φ muss eineindeutig sein

Φ muss eineindeutig sein phys4.018 Page 1 10.6.2 Lösungen für Φ Differentialgleichung: Lösung: Φ muss eineindeutig sein dies gilt nur für m l = 0, ±1, ±2, ±3,, ±l m l ist die magnetische Quantenzahl phys4.018 Page 2 10.6.3 Lösungen

Mehr

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1 . H Atom Grundlagen.1 Schrödingergleichung mit Radial-Potenzial V(r). Kugelflächen-Funktionen Y lm (θ,φ).3 Radial-Wellenfunktionen R n,l (r).4 Bahn-Drehimpuls l.5 Spin s Physik IV SS 005. H Grundl..1 .1

Mehr

Drehimpulse und Atomniveaus für PdM1

Drehimpulse und Atomniveaus für PdM1 Drehimpulse und Atomniveaus für PdM1 Nils Haag, 31.5.2018 1) Drehimpuls in der Quantenmechanik 1a) Kugelkoordinaten In Atomen macht das Rechnen mit kartesischen Koordinaten kaum Sinn, da die zu lösenden

Mehr