Berechenbarkeit und Komplexität Vorlesung 2

Größe: px
Ab Seite anzeigen:

Download "Berechenbarkeit und Komplexität Vorlesung 2"

Transkript

1 Berechenbarkeit und Komplexität Vorlesung 2 Prof. Dr. Wolfgang Thomas Lehrstuhl Informatik 7 RWTH Aachen 17. Oktober 2014 Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 17. Oktober / 21

2 Rückblick: Vier Typen von Algorithmen Algorithmen zur Berechnung partieller Funktionen Algorithmen zur Berechnung totaler Funktionen Entscheidungsalgorithmen (zur Bestimmung der Mitgliedschaft von Wörten in Sprachen) Aufzählungsalgorithmen (zur Erzeugung der Elemente von Sprachen) Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 17. Oktober / 21

3 Die Kernfrage Welche Funktionen sind berechenbar? Welche Mengen sind entscheidbar, welche aufzählbar? Wenn man für eine Funktion f einen Algorithmus angibt, dann ist die Berechenbarkeit klar. Wie kann man nachweisen, dass eine Funktion f nicht berechenbar ist? Man muss gegen alle denkbaren Algorithmen argumentieren. Wie kann man sich einen Überblick über alle denkbaren Algorithmen verschaffen? Dies ist eine Kernfrage der Informatik. Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 17. Oktober / 21

4 Alan Turing ( ) Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 17. Oktober / 21

5 Aus Turings Arbeit von 1936 Computing is normally done by writing certain symbols on paper. We may suppose this paper is divided into squares like a child s arithmetic book. In elementary arithmetic the two-dimensional character of paper is sometimes used. But such a use is always avoidable, and I think that it will be agreed that the two-dimensional character of paper is no essential of computation. I assume then that the computation is carried out on one-dimensional paper, i.e. on a tape divided into squares. The behaviour of the computer at any moment is determined by the symbols which he is observing, and his state of mind at that moment. We may suppose that there is a bound B to the number of symbols or squares which the computer can observe at one moment. [...] If he wishes to observe more, he must use successive observations. Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 17. Oktober / 21

6 We will also suppose that the number of states of mind which need be taken into account is finite. [...] If we admitted an infinity of states of mind, some of them will be arbitrarily close and will be confused. Again, the restriction is not one which seriously affects computation, since the use of more complicated states of mind can be avoided by writing more symbols on the tape. Let us imagine the operations performed by the computer to be split up into simple operations which are so elementary that it is not easy to imagine them further divided. Every such operation consists of some change of the physical system consisting of the computer and his tape. We know the state of the system if we know the sequence of symbols on the tape, which of these are observed by the computer (possibly with a special order), and the state of mind of the computer. Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 17. Oktober / 21

7 Definition der Turingmaschine (TM) Komponenten einer TM Q, die endliche Zustandsmenge Σ, das endliche Eingabealphabet Γ Σ, das endliche Bandalphabet B Γ\Σ, das Leerzeichen (Blank) q 0 Q, der Anfangszustand q Q, der Endzustand δ : (Q \{ q}) Γ Q Γ {R,L,N}, die Zustandsüberführungsfunktion Eine TM ist definiert durch das 7-Tupel (Q,Σ,Γ,B,q 0, q,δ). Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 17. Oktober / 21

8 Funktionsweise der TM Ausgangssituation auf dem Band steht die Eingabe w Σ eingerahmt von Blanks der initiale Zustand ist q 0 der Kopf steht über dem ersten Symbol von w Nummerierung der Zellen des Bandes die initiale Kopfposition wird als Position 0 bezeichnet bewegt sich der Kopf einen Schritt nach rechts erhöht sich die Position um 1 bewegt sich der Kopf um einen Schritt nach links erniedrigt sich die Position um 1 Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 17. Oktober / 21

9 Funktionsweise der TM Durchführung eines Rechenschrittes a Γ bezeichne das gelesene Symbol q Q \{ q} bezeichne den aktuellen Zustand es sei δ(q,a) = (q,a,d), für q Q,a Γ,d {R,L,N} dann wird der Zustand auf q gesetzt an der Kopfposition wird das Symbol a geschrieben der Kopf um eine Position nach rechts falls d = R bewegt sich um eine Position nach links falls d = L nicht falls d = N Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 17. Oktober / 21

10 Funktionsweise der TM Ende der Rechnung die TM stoppt, wenn sie den Endzustand q erreicht das Ausgabewort w Σ kann dann vom Band abgelesen werden: w beginnt an der Kopfposition und endet unmittelbar vor dem ersten Symbol aus Γ\Σ Spezialfall: wenn wir es mit Entscheidungsproblemen zu tun haben, wird die Antwort wie folgt als JA oder NEIN interpretiert: die TM akzeptiert das Eingabewort, wenn sie terminiert und das Ausgabewort mit einer 1 beginnt die TM verwirft das Eingabewort, wenn sie terminiert und das Ausgabewort nicht mit einer 1 beginnt Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 17. Oktober / 21

11 Begriffe TM-berechenbar, TM-entscheidbar Definition Eine Funktion f : Σ Σ heißt rekursiv (TM-berechenbar), wenn es eine TM gibt, die bei Eingabe x immer terminiert und dann als Ausgabe den Wert f(x) liefert. Definition Eine partielle Funktion f : Σ Σ heißt rekursiv (partiell rekursiv, TM-berechenbar), wenn es eine TM gibt, die bei Eingabe x genau dann terminiert, wenn x Def(f), und in diesem Falle bei Terminierung als Ausgabe den Wert f(x) liefert. Definition Eine Sprache L Σ heißt rekursiv (TM-entscheidbar), wenn es eine TM gibt, die für alle Eingaben terminiert und die Eingabe w genau dann akzeptiert, wenn w L ist. Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 17. Oktober / 21

12 Aufzählungs-TM, Begriff TM-aufzählbar Eine Aufzählungs-TM über Σ ist eine TM der Form (Q,Σ,Γ,B,q 0, q,q out,δ), bei der das Alphabet Σ nur als Ausgabealphabet verwendet wird, der Zustand q out als Ausgabezustand dient, bei dessen Erreichen jeweils das Wort ausgegeben wird, das an der Kopfposition beginnt und unmittelbar vor dem ersten Symbol aus Γ\Σ endet. Eine solche TM zählt die Menge derjenigen Wörter auf, die nach Starten auf dem leeren Band sukzessiv als Ausgabe geliefert werden. Eine Sprache heißt rekursiv aufzählbar, wenn es eine Aufzählungs-TM gibt, die die Sprache L aufzählt. Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 17. Oktober / 21

13 Beispiel Sei L = {w1 w {0,1} }. Wir finden eine TM, die L entscheidet. Verbale Beschreibung des Programms: Solange ein Symbol aus {0,1} gelesen wird überschreibe das Symbol mit B, bewege den Kopf nach rechts, und gehe in den Zustand q 0, wenn das Symbol eine 0 war, sonst in den Zustand q 1 Sobald ein Blank gelesen wird, so akzeptiere die Eingabe, falls der aktuelle Zustand q 1 ist, und verwirf die Eingabe ansonsten. Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 17. Oktober / 21

14 Genaue Definition L wird entschieden durch die TM M = (Q,Σ,Γ,B,q 0, q,δ) mit Q = {q 0,q 1, q} Σ = {0,1} Γ = {0,1,B} δ gemäß Tabelle δ 0 1 B q 0 q 1 accept steht als Abkürzung für ( q,1,n). reject steht als Abkürzung für ( q,0,n). (q 0,B,R) (q 1,B,R) reject (q 0,B,R) (q 1,B,R) accept Die Übergangsfunktion kann als Programm der TM interpretiert werden. Die Tabellenform heißt auch Turingtafel. Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 17. Oktober / 21

15 Berechnung einer partiellen Funktion Betrachte über Σ = {0,1} die Funktion f : Σ Σ mit f(w) = 0 falls w gerade ist, ansonsten undefiniert Wir nutzen die Zustände q 0,q 1, um modulo 2 zu zählen, und q 2 als Schleifenzustand. Zustandsmenge also Q = {q 0,q 1,q 2, q} Turingtafel: δ 0 1 B q 0 (q 1,0,R) (q 1,1,R) accept q 1 (q 0,0,R) (q 0,1,R) (q 2,B,N) (q 2,B,N) (q 2,B,N) (q 2,B,N) q 2 Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 17. Oktober / 21

16 Weitere Entscheidungs-TM Wir entwickeln eine TM für die Sprache L = {0 n 1 n n 1} Sei Σ = {0,1}, Γ = {0,1,B}, Q = {q 0,...,q 6, q}. Unsere TM arbeitet in zwei Phasen: Phase 1: Teste, ob das Eingabewort von der Form 0 i 1 j für i 0 und j 1 ist. Phase 2: Teste, ob i = j gilt. Phase 1 verwendet q 0 und q 1 und wechselt bei Erfolg zu q 2. Phase 2 verwendet q 2,...,q 6 und akzeptiert bei Erfolg. Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 17. Oktober / 21

17 Programmierung der TM am Beispiel - Phase 1 δ 0 1 B q 0 (q 0,0,R) (q 1,1,R) reject q 1 reject (q 1,1,R) (q 2,B,L) q 0 : Laufe von links nach rechts über die Eingabe bis ein Zeichen ungleich 0 gefunden wird. Falls dieses Zeichen eine 1 ist, gehe über in Zustand q 1. Sonst ist dieses Zeichen ein Blank. Verwirf die Eingabe. q 1 : Gehe weiter nach rechts bis zum ersten Zeichen ungleich 1. Falls dieses Zeichen eine 0 ist, verwirf die Eingabe. Sonst ist das gefundene Zeichen ein Blank. Bewege den Kopf um eine Position nach links auf die letzte gelesene 1. Wechsel in den Zustand q 2, Phase 2 beginnt. Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 17. Oktober / 21

18 Programmierung der TM am Beispiel - Phase 2 δ 0 1 B q 2 reject (q 3,B,L) reject q 3 (q 3,0,L) (q 3,1,L) (q 4,B,R) q 4 (q 5,B,R) reject reject q 5 (q 6,0,R) (q 6,1,R) accept q 6 (q 6,0,R) (q 6,1,R) (q 2,B,L) q 2 : Kopf steht auf dem letzten Nichtblank. Falls dieses Zeichen eine 1 ist, so lösche es, gehe nach links, und wechsel in den Zustand q 3. Sonst verwirf die Eingabe. q 3 : Bewege den Kopf auf das erste Nichtblank. Dann q 4. q 4 : Falls das gelesene Zeichen eine 0 ist, ersetze es durch ein Blank und gehe nach q 5, sonst verwirf die Eingabe. q 5 : Linkeste 0 und die rechteste 1 sind gelöscht. Falls Restwort leer, dann accept, sonst q 6. q 6 : Laufe wieder zum letzten Nichtblank und starte erneut in q 2. Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 17. Oktober / 21

19 Konfigurationen und (direkte) Nachfolgekonfigurationen Definition i) Eine Konfiguration einer TM ist ein String αqβ, für q Q und α,β Γ. Bedeutung: auf dem Band steht αβ eingerahmt von Blanks, der Zustand ist q, und der Kopf steht unter dem ersten Zeichen von β. ii) α q β ist direkte Nachfolgekonfiguration von αqβ, falls α q β in einem Rechenschritt aus αqβ ensteht. Wir schreiben αqβ α q β. iii) α q β von αqβ aus erreichbar, falls α q β in endlich vielen Rechenschritten aus αqβ ensteht. Wir schreiben αqβ α q β. Bemerkung: insbesondere gilt αqβ αqβ. Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 17. Oktober / 21

20 Beispiel zum Umgang mit Konfigurationen Die für die Sprache L = {0 n 1 n n 1} beschriebene TM liefert in Phase 1 auf die Eingabe 0011 die folgende Konfigurationsfolge. Phase 1: q q q q q 1 B 001q 2 1 Beobachtung: abgesehen von Blanks am Anfang und Ende des Strings sind die Konfigurationsbeschreibungen eindeutig. Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 17. Oktober / 21

21 Beispiel einer Aufzählungs-TM Wir konstruieren eine Aufzählungs-TM für die Menge der Wörter 1 2i mit i > 0, d..h der Wörter 11,1111,111111,... Wir geben nur die Turingtafel an. δ 1 B q 0 [(q 1,1,N)] (q 1,1,L) q 1 [(q 1,1,N)] (q out,1,n) (q 0,1,L) [(q out,b,n)] q out Beginnend in q 0 auf dem leeren Band wird nach einem Schritt die Konfiguration q 1 B1 erreicht, dann q out 11, dann q 0 B11,q 1 111,q out 1111, etc. (Die Einträge in eckigen Klammern sind unwesentlich.) Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 17. Oktober / 21

Berechenbarkeit und Komplexität: Probleme, Sprachen, Maschinen

Berechenbarkeit und Komplexität: Probleme, Sprachen, Maschinen Berechenbarkeit und Komplexität: Probleme, Sprachen, Maschinen Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität 25. Oktober 2006 Was ist ein Problem? Informelle Umschreibung

Mehr

Berechenbarkeit und Komplexität: Erläuterungen zur Turingmaschine

Berechenbarkeit und Komplexität: Erläuterungen zur Turingmaschine Berechenbarkeit und Komplexität: Erläuterungen zur Turingmaschine Prof. Dr. Berthold Vöcking Lehrstuhl Informatik Algorithmen und Komplexität 24. Oktober 26 Programmierung der TM am Beispiel Beispiel:

Mehr

Berechenbarkeit und Komplexität Vorlesung 3

Berechenbarkeit und Komplexität Vorlesung 3 Berechenbarkeit und Komplexität Vorlesung 3 Prof. Dr. Wolfgang Thomas Lehrstuhl Informatik 7 RWTH Aachen 22. November 2014 Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 22.

Mehr

ALP I Turing-Maschine

ALP I Turing-Maschine ALP I Turing-Maschine Teil I WS 2012/2013 Äquivalenz vieler Berechnungsmodelle Alonzo Church λ-kalkül Kombinatorische Logik Alan Turing Turing-Maschine Mathematische Präzisierung Effektiv Berechenbare

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 13. Vorlesung 07.12.2006 1 Überblick: Die Church- Turing-These Turing-Maschinen 1-Band Turing-Maschine Mehrband-Turing-Maschinen Nichtdeterministische

Mehr

Semi-Entscheidbarkeit und rekursive Aufzählbarkeit

Semi-Entscheidbarkeit und rekursive Aufzählbarkeit Semi-Entscheidbarkeit und rekursive Aufzählbarkeit Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 9. November 2009 Berthold Vöcking, Informatik 1 () Vorlesung

Mehr

Kontextsensitive und Typ 0 Sprachen Slide 2. Die Turingmaschine

Kontextsensitive und Typ 0 Sprachen Slide 2. Die Turingmaschine Kontextsensitive und Typ 0 Sprachen Slide 2 Die Turingmaschine DTM = Deterministische Turingmaschine NTM = Nichtdeterministische Turingmaschine TM = DTM oder NTM Intuitiv gilt: DTM = (DFA + dynamischer

Mehr

Turingmaschinen Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen

Turingmaschinen Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: und effiziente Algorithmen Wintersemester 2011/12 Schematische Darstellung einer Turing-Maschine: Kopf kann sich nach links und

Mehr

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie 1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie 15 Ziele vgl. AFS: Berechnungsmodelle für Typ-0- und Typ-1-Sprachen (Nicht-)Abschlußeigenschaften

Mehr

Rekursive Aufzählbarkeit Die Reduktion

Rekursive Aufzählbarkeit Die Reduktion Rekursive Aufzählbarkeit Die Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Typ-0-Sprachen und Turingmaschinen

Typ-0-Sprachen und Turingmaschinen Typ-0-Sprachen und Turingmaschinen Jean Vancoppenolle Universität Potsdam Einführung in formale Sprachen und Automaten Dr. Thomas Hanneforth (Präsentation aus Foliensätzen von Dr. Thomas Hanneforth und

Mehr

Präsenzübung Berechenbarkeit und Komplexität

Präsenzübung Berechenbarkeit und Komplexität Lehrstuhl für Informatik 1 WS 2013/14 Prof. Dr. Berthold Vöcking 28.01.2014 Kamal Al-Bawani Benjamin Ries Präsenzübung Berechenbarkeit und Komplexität Musterlösung Name:...................................

Mehr

Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion

Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität 26. November 2007 Semi-Entscheidbarkeit

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen (II) 2.07.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Turing Maschine. Thorsten Timmer. SS 2005 Proseminar Beschreibungskomplexität bei Prof. D. Wotschke. Turing Maschine SS 2005 p.

Turing Maschine. Thorsten Timmer. SS 2005 Proseminar Beschreibungskomplexität bei Prof. D. Wotschke. Turing Maschine SS 2005 p. Thorsten Timmer SS 2005 Proseminar Beschreibungskomplexität bei Prof. D. Wotschke Turing Maschine SS 2005 p. 1/35 Inhalt Einführung Formale Definition Berechenbare Sprachen und Funktionen Berechnung ganzzahliger

Mehr

Einführung in Berechenbarkeit, Komplexität und formale Sprachen

Einführung in Berechenbarkeit, Komplexität und formale Sprachen Johannes Blömer Skript zur Vorlesung Einführung in Berechenbarkeit, Komplexität und formale Sprachen Universität Paderborn Wintersemester 2011/12 Inhaltsverzeichnis 1 Einleitung 2 1.1 Ziele der Vorlesung...................................

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Turing-Maschine. Berechenbarkeit und Komplexität Turing-Maschinen. Turing-Maschine. Beispiel

Turing-Maschine. Berechenbarkeit und Komplexität Turing-Maschinen. Turing-Maschine. Beispiel Berechenbarkeit und Komplexität Turing-Maschinen Wolfgang Schreiner Wolfgang.Schreiner@risc.jku.at Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria http://www.risc.jku.at

Mehr

Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion

Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität 7. Dezember 2006 Rekursiv vs. rekursiv

Mehr

11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P

11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen, Entscheidbarkeit, P 239/ 333 Einführung in die NP-Vollständigkeitstheorie

Mehr

1.5 Turing-Berechenbarkeit

1.5 Turing-Berechenbarkeit A.M. Turing (1937): Maschinenmodell zur exakten Beschreibung des Begriffs effektiv berechenbar Stift Mensch a c b b Rechenblatt a b b c Lese-/Schreibkopf endliche Kontrolle Turingmaschine Eine Turingmaschine

Mehr

Komplexitätstheorie WiSe 2011/12 in Trier. Henning Fernau Universität Trier

Komplexitätstheorie WiSe 2011/12 in Trier. Henning Fernau Universität Trier Komplexitätstheorie WiSe 2011/12 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Komplexitätstheorie Gesamtübersicht Organisatorisches / Einführung Motivation / Erinnerung / Fragestellungen

Mehr

Rekursiv aufzählbare Sprachen

Rekursiv aufzählbare Sprachen Kapitel 4 Rekursiv aufzählbare Sprachen 4.1 Grammatiken und die Chomsky-Hierarchie Durch Zulassung komplexer Ableitungsregeln können mit Grammatiken größere Klassen als die kontextfreien Sprachen beschrieben

Mehr

Berechenbarkeit. Script, Kapitel 2

Berechenbarkeit. Script, Kapitel 2 Berechenbarkeit Script, Kapitel 2 Intuitiver Berechenbarkeitsbegriff Turing-Berechenbarkeit WHILE-Berechenbarkeit Church sche These Entscheidungsprobleme Unentscheidbarkeit des Halteproblems für Turingmaschinen

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen (III) 8.07.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

1.5 Turing-Berechenbarkeit

1.5 Turing-Berechenbarkeit A.M. Turing (1937): Maschinenmodell zur exakten Beschreibung des Begriffs effektiv berechenbar Stift Mensch a c b b Rechenblatt a b b c Lese-/Schreibkopf endliche Kontrolle Turingmaschine Eine Turingmaschine

Mehr

Weitere universelle Berechnungsmodelle

Weitere universelle Berechnungsmodelle Weitere universelle Berechnungsmodelle Mehrband Turingmaschine Nichtdeterministische Turingmaschine RAM-Modell Vektoradditionssysteme λ-kalkül µ-rekursive Funktionen 1 Varianten der dtm Mehrkopf dtm Kontrolle

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen 1.07.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Motivation 2. Terminologie

Mehr

Computational Models

Computational Models - University of Applied Sciences - Computational Models - CSCI 331 - Friedhelm Seutter Institut für Angewandte Informatik Part I Automata and Languages 0. Introduction, Alphabets, Strings, and Languages

Mehr

Ein formales Berechnungsmodell: Turingmaschinen. Turingmaschinen 26 / 62

Ein formales Berechnungsmodell: Turingmaschinen. Turingmaschinen 26 / 62 Ein formales Berechnungsmodell: Turingmaschinen Turingmaschinen 26 / 62 Ein formales Rechnermodell Bisher haben wir abstrakt von Algorithmen bzw. Programmen gesprochen und uns dabei JAVA- oder C++-Programme

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 11. Kontextsensitive und Typ-0-Sprachen Malte Helmert Gabriele Röger Universität Basel 7. April 2014 Kontextsensitive und allgemeine Grammatiken Wiederholung: (kontextsensitive)

Mehr

VL-03: Turing Maschinen II. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger

VL-03: Turing Maschinen II. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger VL-03: Turing Maschinen II (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger WS 2017, RWTH BuK/WS 2017 VL-03: Turing Maschinen II 1/27 Organisatorisches Nächste Vorlesung: Mittwoch, Oktober

Mehr

VL-02: Turing Maschinen II. (Berechenbarkeit und Komplexität, WS 2018) Gerhard Woeginger

VL-02: Turing Maschinen II. (Berechenbarkeit und Komplexität, WS 2018) Gerhard Woeginger VL-02: Turing Maschinen II (Berechenbarkeit und Komplexität, WS 2018) Gerhard Woeginger WS 2018, RWTH BuK/WS 2018 VL-02: Turing Maschinen II 1/33 Organisatorisches Nächste Vorlesung (morgen): Freitag,

Mehr

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie 1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie 139 Unentscheidbarkeit Überblick Zunächst einmal definieren wir formal

Mehr

ALP I Turing-Maschine

ALP I Turing-Maschine ALP I Turing-Maschine Teil I SS 2011 Äquivalenz vieler Berechnungsmodelle Alonzo Church λ-kalkül Kombinatorische Logik Alan Turing Turing-Maschine Mathematische Präzisierung Effektiv Berechenbare Funktionen

Mehr

Theoretische Informatik Mitschrift

Theoretische Informatik Mitschrift Theoretische Informatik Mitschrift 7. Turingmaschinen Automatenmodell für Typ-0-Sprachen Einschränkung liefert Automatenmodell für Typ-1-Sprachen Alan Turing 1936, ursprüngliches Ziel: Formalisierung des

Mehr

Informatik III - WS07/08

Informatik III - WS07/08 Informatik III - WS07/08 Kapitel 5 1 Informatik III - WS07/08 Prof. Dr. Dorothea Wagner dwagner@ira.uka.de Kapitel 5 : Grammatiken und die Chomsky-Hierarchie Informatik III - WS07/08 Kapitel 5 2 Definition

Mehr

Turing Maschinen II Wiederholung

Turing Maschinen II Wiederholung Organisatorisches VL-03: Turing Maschinen II (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger Nächste Vorlesung: Mittwoch, Oktober 25, 14:15 15:45 Uhr, Roter Hörsaal Webseite: http://algo.rwth-aachen.de/lehre/ws1718/buk.php

Mehr

Berechenbarkeit und Komplexität Vorlesung 10

Berechenbarkeit und Komplexität Vorlesung 10 Berechenbarkeit und Komplexität Vorlesung 10 Prof. Dr. Wolfgang Thomas Lehrstuhl Informatik 7 RWTH Aachen 27. November 2014 Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 27.

Mehr

Berechenbarkeit und Komplexität Vorlesung 1

Berechenbarkeit und Komplexität Vorlesung 1 Berechenbarkeit und Komplexität Vorlesung 1 Prof. Dr. Wolfgang Thomas Lehrstuhl Informatik 7 RWTH Aachen 13. Oktober 2014 Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 13.

Mehr

Unentscheidbarkeit von Problemen mittels Turingmaschinen

Unentscheidbarkeit von Problemen mittels Turingmaschinen Unentscheidbarkeit von Problemen mittels Turingmaschinen Daniel Roßberg 0356177 Roland Schatz 0355521 2. Juni 2004 Zusammenfassung In dieser Arbeit befassen wir uns mit der Unentscheidbarkeit von Problemen

Mehr

Unentscheidbare Probleme: Existenz, Diagonalsprache, Halteproblem

Unentscheidbare Probleme: Existenz, Diagonalsprache, Halteproblem Unentscheidbare Probleme: Existenz, Diagonalsprache, Halteproblem Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 25. Oktober 2010 Berthold Vöcking, Informatik

Mehr

Informatik III. Arne Vater Wintersemester 2006/ Vorlesung

Informatik III. Arne Vater Wintersemester 2006/ Vorlesung Informatik III Arne Vater Wintersemester 2006/07 10. Vorlesung 24.11.2006 1 Turingmaschinen Informatik III 9. Vorlesung - 2 Turingmaschinen Eine (deterministische 1-Band) Turingmaschine (DTM) wird beschrieben

Mehr

Halteproblem/Kodierung von Turing-Maschinen

Halteproblem/Kodierung von Turing-Maschinen Halteproblem/Kodierung von Turing-Maschinen Unser Ziel ist es nun zu zeigen, dass das sogenannte Halteproblem unentscheidbar ist. Halteproblem (informell) Eingabe: Turing-Maschine M mit Eingabe w. Frage:

Mehr

Kapitel 3: Berechnungstheorie Gliederung

Kapitel 3: Berechnungstheorie Gliederung Gliederung 0. Einleitung und Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 3.1. Algorithmische Probleme und Berechnungsmodelle 3.2. Das Berechnungsmodell

Mehr

11.1 Kontextsensitive und allgemeine Grammatiken

11.1 Kontextsensitive und allgemeine Grammatiken Theorie der Informatik 7. April 2014 11. Kontextsensitive und Typ-0-Sprachen Theorie der Informatik 11. Kontextsensitive und Typ-0-Sprachen 11.1 Kontextsensitive und allgemeine Grammatiken Malte Helmert

Mehr

Unentscheidbarkeit des Halteproblems: Unterprogrammtechnik

Unentscheidbarkeit des Halteproblems: Unterprogrammtechnik Unentscheidbarkeit des Halteproblems: Unterprogrammtechnik Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Oktober 2011 Berthold Vöcking, Informatik 1 () Vorlesung

Mehr

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie 1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie WS 11/12 155 Überblick Zunächst einmal definieren wir formal den Begriff

Mehr

Unentscheidbarkeit des Halteproblems: Unterprogrammtechnik

Unentscheidbarkeit des Halteproblems: Unterprogrammtechnik Unentscheidbarkeit des Halteproblems: Unterprogrammtechnik Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Oktober 2011 Berthold Vöcking, Informatik 1 () Vorlesung

Mehr

WS06/07 Referentin: Katharina Blinova. Formale Sprachen. Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven

WS06/07 Referentin: Katharina Blinova. Formale Sprachen. Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven WS06/07 Referentin: Katharina Blinova Formale Sprachen Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven 1. Allgemeines 2. Formale Sprachen 3. Formale Grammatiken 4. Chomsky-Hierarchie 5.

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik 0 KIT 17.05.2010 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik nationales Forschungszentrum Vorlesung in am

Mehr

Berechenbarkeit/Entscheidbarkeit

Berechenbarkeit/Entscheidbarkeit Berechenbarkeit/Entscheidbarkeit Frage: Ist eine algorithmische Problemstellung lösbar? was ist eine algorithmische Problemstellung? formale Sprachen benötigen einen Berechenbarkeitsbegriff Maschinenmodelle

Mehr

Turing-Maschinen: Ein abstrakes Maschinenmodell

Turing-Maschinen: Ein abstrakes Maschinenmodell Wann ist eine Funktion (über den natürlichen Zahlen) berechenbar? Intuitiv: Wenn es einen Algorithmus gibt, der sie berechnet! Was heißt, eine Elementaroperation ist maschinell ausführbar? Was verstehen

Mehr

Reduktionen. Formalisierung von Sprache A ist nicht schwerer als Sprache B.

Reduktionen. Formalisierung von Sprache A ist nicht schwerer als Sprache B. Reduktionen Formalisierung von Sprache A ist nicht schwerer als Sprache B. Idee: Algorithmus/DTM für B kann genutzt werden, um A zu entscheiden/akzeptieren. WS 2018/19 Reduktionen 1 Zwei einfache Sprachen

Mehr

mehreren Präzisierungen des intuitiven Begriffs des Verfahren sein muss, so legt sich nahe, dass er Der Begriff der TURING-Maschine ist eine unter

mehreren Präzisierungen des intuitiven Begriffs des Verfahren sein muss, so legt sich nahe, dass er Der Begriff der TURING-Maschine ist eine unter 7\S*UDPPDWLNHQ 7\S6SUDFKHQ XQG 7XULQJPDVFKLQHQ 258 785,1*0DVFKLQH70 Der Begriff der TURING-Maschine ist eine unter mehreren Präzisierungen des intuitiven Begriffs des $OJRULWKPXV bzw. der %HUHFKHQEDUNHLW

Mehr

2.4 Kontextsensitive und Typ 0-Sprachen

2.4 Kontextsensitive und Typ 0-Sprachen Definition 2.43 Eine Typ 1 Grammatik ist in Kuroda Normalform, falls alle Regeln eine der folgenden 4 Formen haben: Dabei: A, B, C, D V und a Σ. Satz 2.44 A a, A B, A BC, AB CD. Für jede Typ 1 Grammatik

Mehr

Berechenbarkeit. Script, Kapitel 2

Berechenbarkeit. Script, Kapitel 2 Berechenbarkeit Script, Kapitel 2 Intuitiver Berechenbarkeitsbegriff Turing-Berechenbarkeit WHILE-Berechenbarkeit Church sche These Entscheidungsprobleme Unentscheidbarkeit des Halteproblems für Turingmaschinen

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 18. Januar 2018 INSTITUT FÜR THEORETISCHE 0 18.01.2018 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität

Mehr

Die Komplexitätsklassen P und NP

Die Komplexitätsklassen P und NP Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

Turing-Maschinen. Definition 1. Eine deterministische Turing-Maschine (kurz DTM) ist ein 6- Dem endlichen Alphabet Σ von Eingabesymbolen.

Turing-Maschinen. Definition 1. Eine deterministische Turing-Maschine (kurz DTM) ist ein 6- Dem endlichen Alphabet Σ von Eingabesymbolen. Turing-Maschinen Nachdem wir endliche Automaten und (die mächtigeren) Kellerautomaten kennengelernt haben, werden wir nun ein letztes, noch mächtigeres Automatenmodell kennenlernen: Die Turing-Maschine

Mehr

Reduktion / Hilberts 10. Problem

Reduktion / Hilberts 10. Problem Reduktion / Hilberts 10. Problem Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 9. November 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 1-13. Sitzung Dennis Felsing dennis.felsing@student.kit.edu http://www.stud.uni-karlsruhe.de/~ubcqr/2010w/tut gbi/ 2011-01-31 Turingmaschinen 1 Turingmaschinen Wiederholung

Mehr

Fragen 1. Muss eine DTM ein Wort zu Ende gelesen haben, um es zu akzeptieren? a) Ja! b) Nein!

Fragen 1. Muss eine DTM ein Wort zu Ende gelesen haben, um es zu akzeptieren? a) Ja! b) Nein! 4 Turingmaschinen Eingabeband nicht nur lesen, sondern auch schreiben kann und die zudem mit ihrem Lese-Schreib-Kopf (LSK) nach links und rechts gehen kann. Das Eingabeband ist zudem in beide Richtungen

Mehr

VL-11: LOOP und WHILE Programme I. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger

VL-11: LOOP und WHILE Programme I. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger VL-11: LOOP und WHILE Programme I (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger WS 2017, RWTH BuK/WS 2017 VL-11: LOOP und WHILE Programme I 1/46 Organisatorisches Nächste Vorlesung: Mittwoch,

Mehr

Auffrischung Einige (wenige) Grundlagen der Theoretischen Informatik

Auffrischung Einige (wenige) Grundlagen der Theoretischen Informatik Logik, Berechenbarkeit und Komplexität Sommersemester 2008 Fachhochschule Wiesbaden Prof. Dr. Steffen Reith Auffrischung Einige (wenige) Grundlagen der Theoretischen Informatik 1 Turingmaschinen - Ein

Mehr

Die Reduktion Hilberts 10. Problem

Die Reduktion Hilberts 10. Problem Die Reduktion Hilberts 10. Problem Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 8. November 2010 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Entscheidungsprobleme

Entscheidungsprobleme Entscheidungsprobleme übliche Formulierung gegeben: Eingabe x aus einer Grundmenge U Frage: Hat x eine bestimmte Eigenschaft P? Beispiel: gegeben: Frage: n N Ist n eine Primzahl? Formalisierung: Grundmenge

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 heoretische Informatik 1 uringmaschinen David Kappel Institut für Grundlagen der Informationsverarbeitung U Graz SS 2014 Übersicht uring Maschinen Algorithmusbegriff konkretisiert Modelldefinition uring-berechenbarkeit

Mehr

Informatik III. Arne Vater Wintersemester 2006/ Vorlesung

Informatik III. Arne Vater Wintersemester 2006/ Vorlesung Informatik III Arne Vater Wintersemester 2006/07 11. Vorlesung 30.11.2006 1 Beziehungen zwischen den Sprachen Jede reguläre Sprache ist eine kontextfreie Sprache. Jede kontextfreie Sprache ist eine entscheidbare

Mehr

Proseminar Komplexitätstheorie P versus NP Wintersemester 2006/07. Nichtdeterministische Turingmaschinen und NP

Proseminar Komplexitätstheorie P versus NP Wintersemester 2006/07. Nichtdeterministische Turingmaschinen und NP Proseminar Komplexitätstheorie P versus NP Wintersemester 2006/07 Vortrag am 17.11.2006 Nichtdeterministische Turingmaschinen und NP Yves Radunz Inhaltsverzeichnis 1 Wiederholung 3 1.1 Allgemeines........................................

Mehr

LOOP-Programme: Syntaktische Komponenten

LOOP-Programme: Syntaktische Komponenten LOOP-Programme: Syntaktische Komponenten LOOP-Programme bestehen aus folgenden Zeichen (syntaktischen Komponenten): Variablen: x 0 x 1 x 2... Konstanten: 0 1 2... Operationssymbole: + Trennsymbole: ; :=

Mehr

VL-06: Unentscheidbarkeit II. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger

VL-06: Unentscheidbarkeit II. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger VL-06: Unentscheidbarkeit II (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger WS 2017, RWTH BuK/WS 2017 VL-06: Unentscheidbarkeit II 1/37 Organisatorisches Nächste Vorlesung: Mittwoch, November

Mehr

2 Turingmaschinen 6. Eine nd. k-band-turingmaschine M zur Erkennung einer m-stelligen Sprache L (Σ ) m ist ein 8-Tupel

2 Turingmaschinen 6. Eine nd. k-band-turingmaschine M zur Erkennung einer m-stelligen Sprache L (Σ ) m ist ein 8-Tupel 2. Turingmaschinen Als Formulierung von Algorithmen benutzen wir hier Turingmaschinen. Von den vielen Varianten dieses Konzeptes (s. Vorlesung Einführung in die Theoretische Informatik ) greifen wir das

Mehr

Wiederholung. Organisatorisches. VL-11: LOOP und WHILE Programme I. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger

Wiederholung. Organisatorisches. VL-11: LOOP und WHILE Programme I. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger Organisatorisches VL-11: LOOP und WHILE Programme I (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger Nächste Vorlesung: Mittwoch, November 29, 14:15 15:45 Uhr, Roter Hörsaal Webseite: http://algo.rwth-aachen.de/lehre/ws1718/buk.php

Mehr

Reguläre Sprachen. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,

Reguläre Sprachen. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer, Reguläre Sprachen Reguläre Sprachen (Typ-3-Sprachen) haben große Bedeutung in Textverarbeitung und Programmierung (z.b. lexikalische Analyse) besitzen für viele Entscheidungsprobleme effiziente Algorithmen

Mehr

Wiederholung. Organisatorisches. VL-09: Das Postsche Correspondenzproblem. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger

Wiederholung. Organisatorisches. VL-09: Das Postsche Correspondenzproblem. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger Organisatorisches VL-09: Das Postsche Correspondenzproblem (Berechenbarkeit und Komplexität WS 2017) Gerhard Woeginger Nächste Vorlesung: Mittwoch November 22 14:15 15:45 Uhr Roter Hörsaal Webseite: http://algo.rwth-aachen.de/lehre/ws1718/buk.php

Mehr

Theoretische Grundlagen der Informatik. Vorlesung am 07. November INSTITUT FÜR THEORETISCHE INFORMATIK

Theoretische Grundlagen der Informatik. Vorlesung am 07. November INSTITUT FÜR THEORETISCHE INFORMATIK Theoretische Grundlagen der Informatik 0 07.11.2017 Torsten Ueckerdt - Theoretische Grundlagen der Informatik KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu Frage Frage: Ist der

Mehr

Deterministische und nichtdeterministische Turing-Maschinen, Typ1- und Typ0-Sprachen

Deterministische und nichtdeterministische Turing-Maschinen, Typ1- und Typ0-Sprachen Dr. Sebastian Bab WiSe 12/13 Theoretische Grundlagen der Informatik für TI Termin: VL 15 + 16 vom 17.12.2012 und 20.12.2012 Deterministische und nichtdeterministische Turing-Maschinen, Typ1- und Typ0-Sprachen

Mehr

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V11, 16.1.2012 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar

Mehr

Alan Mathison Turing ( )

Alan Mathison Turing ( ) 3. Turingmaschinen Alan Mathison Turing (1912-1954) Britischer Logiker, Mathematiker und Computerpionier http://www.time.com/time/time100/scientist/profile/turing.html 1 FORMALISIERUNG VON ALGORITHMEN

Mehr

Theoretische Informatik für Wirtschaftsinformatik und Lehramt

Theoretische Informatik für Wirtschaftsinformatik und Lehramt Theoretische Informatik für Wirtschaftsinformatik und Lehramt Entscheidungsprobleme Priv.-Doz. Dr. Stefan Milius stefan.milius@fau.de Theoretische Informatik Friedrich-Alexander Universität Erlangen-Nürnberg

Mehr

Universelle Turingmaschinen

Universelle Turingmaschinen Universelle Turingmaschinen bisher: zum Erkennen einer rekursiven Sprache L wurde jeweils eine spezielle dtm M L angegeben jetzt: konstruieren feste dtm ( universelle Turingmaschine ), die als Eingabe

Mehr

Theoretische Informatik II

Theoretische Informatik II Theoretische Informatik II Einheit 4.2 Modelle für Typ-0 & Typ-1 Sprachen 1. Nichtdeterministische Turingmaschinen 2. Äquivalenz zu Typ-0 Sprachen 3. Linear beschränkte Automaten und Typ-1 Sprachen Maschinenmodelle

Mehr

Mehrband-Turingmaschinen und die universelle Turingmaschine

Mehrband-Turingmaschinen und die universelle Turingmaschine Mehrband-Turingmaschinen und die universelle Turingmaschine Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 15 Turingmaschinen mit mehreren Bändern k-band

Mehr

a b b a Vom DFA zur TM Formale Grundlagen der Informatik 1 Kapitel 9 Turing-Maschinen Der Lese-/Schreibkopf Bedeutung der TM

a b b a Vom DFA zur TM Formale Grundlagen der Informatik 1 Kapitel 9 Turing-Maschinen Der Lese-/Schreibkopf Bedeutung der TM Vom DFA zur TM Formale der Informatik 1 Kapitel 9 Frank Heitmann heitmann@informatik.uni-hamburg.de a b b a z 0 a z 1 a z 2 b 2. Mai 2016 Wir wollen auf dem Band nach rechts und links gehen können und

Mehr

Rucksackproblem und Verifizierbarkeit

Rucksackproblem und Verifizierbarkeit Rucksackproblem und Verifizierbarkeit Gegeben: n Gegenstände mit Gewichten G={g 1,g 2,,g n } und Werten W={w 1,w 2,,w n } sowie zulässiges Gesamtgewicht g. Gesucht: Teilmenge S {1,,n} mit i i S unter der

Mehr

Grundbegriffe der Informatik Tutorium 13

Grundbegriffe der Informatik Tutorium 13 Grundbegriffe der Informatik Tutorium 13 Tutorium Nr. 16 Philipp Oppermann 3. Februar 2015 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 heoretische Informatik 1 eil 2 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung U Graz SS 2009 Übersicht 1 uring Maschinen uring-berechenbarkeit 2 Kostenmaße Komplexität 3 Mehrband-M

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Die Komplexitätsklasse P David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Äquivalenz von RM und TM Äquivalenz, Sätze Simulation DTM

Mehr

Theoretische Informatik und Logik Übungsblatt 1 (2016S) Lösung

Theoretische Informatik und Logik Übungsblatt 1 (2016S) Lösung Theoretische Informatik und Logik Übungsblatt (26S) en Aufgabe. Sei L = {w#w r w {, } }. Geben Sie eine deterministische Turingmaschine M an, welche die Sprache L akzeptiert. Wählen Sie mindestens einen

Mehr

Das Halteproblem für Turingmaschinen

Das Halteproblem für Turingmaschinen Das Halteproblem für Turingmaschinen Das Halteproblem für Turingmaschinen ist definiert als die Sprache H := { T w : T ist eine TM, die bei Eingabe w {0, 1} hält }. Behauptung: H {0, 1} ist nicht entscheidbar.

Mehr

Grundlagen der Theoretischen Informatik Musterlösungen zu ausgewählten Übungsaufgaben

Grundlagen der Theoretischen Informatik Musterlösungen zu ausgewählten Übungsaufgaben Dieses Dokument soll mehr dazu dienen, Beispiele für die formal korrekt mathematische Bearbeitung von Aufgaben zu liefern, als konkrete Hinweise auf typische Klausuraufgaben zu liefern. Die hier gezeigten

Mehr

Unentscheidbare Probleme: Diagonalisierung

Unentscheidbare Probleme: Diagonalisierung Unentscheidbare Probleme: Diagonalisierung Prof Dr Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Oktober 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik 0 KIT 07.11.2014 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik nationales Forschungszentrum Vorlesung in am

Mehr

Algorithmentheorie 8. Vorlesung

Algorithmentheorie 8. Vorlesung Algorithmentheorie 8. Vorlesung Martin Dietzfelbinger 1. Juni 2006 1.7 Die Churchsche These Der intuitive Berechenbarkeitsbegriff wird durch die Formalisierung TM-Berechenbarkeit, also Rekursivität von

Mehr

8. Turingmaschinen und kontextsensitive Sprachen

8. Turingmaschinen und kontextsensitive Sprachen 8. Turingmaschinen und kontextsensitive Sprachen Turingmaschinen (TM) von A. Turing vorgeschlagen, um den Begriff der Berechenbarkeit formal zu präzisieren. Intuitiv: statt des Stacks bei Kellerautomaten

Mehr

Unentscheidbarkeitssätze der Logik

Unentscheidbarkeitssätze der Logik Unentscheidbarkeitssätze der Logik Elmar Eder () Unentscheidbarkeitssätze der Logik 1 / 30 Die Zahlentheorie ist nicht formalisierbar Satz (Kurt Gödel) Zu jedem korrekten formalen System der Zahlentheorie

Mehr

Registermaschine (RAM), Church-Turing-These

Registermaschine (RAM), Church-Turing-These Registermaschine (RAM), Church-Turing-These Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 21. Oktober 2010 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr