1 Euklidische Approximation

Größe: px
Ab Seite anzeigen:

Download "1 Euklidische Approximation"

Transkript

1 1 Euklidische Approximation Sei V ein reeller euklidischer Vektorraum. Das Skalarprodukt in V wird mit, V und die Norm mit V bezeichnet. V N V sei ein Teilraum der Dimension N < mit Basis {φ n } n=1,...,n. (1.1) Problemstellung: Sei v V. Bestimme v N V mit v v N V = min w N V N v w N V. (1.2) Die Matrix ) A = ( φ n,φ k V n,k=1,...,n RN N ist symmetrisch und positiv definit. (1.3) Problem (1.1) ist eindeutig lösbar. Es gilt N v N = x n φ n, n=1 wobei x R N die eindeutige Lösung des linearen Gleichungssystems Ax = b ) mit b = ( v,φ k V k=1,...,n RN ist. C. Wieners: Einführung in die Numerische Mathematik 1

2 2 Direkte Lösungsverfahren für lineare Gleichungen (2.1) Sei L R N N eine normierte untere Dreiecksmatrix und b R N, d.h. diag L = I N und L[1 : n,n + 1] = 0 n für n = 1,...,N 1. Dann ist L regulär und das lineare Gleichungssystem Ly = b ist mit O(N 2 ) Operationen lösbar. Entsprech ist für eine reguläre obere Dreiecksmatrix R R N N (d.h. R[n,n] 0 für alle n und R[n + 1,1 : n] = 0 T n für n < N) das LGS Rx = y in O(N 2 ) Operationen lösbar. (2.2) Die normierten unteren Dreiecksmatrizen bilden eine Gruppe. Die regulären oberen Dreiecksmatrizen bilden eine Gruppe. (2.4) Wenn eine Matrix A R N N eine LR-Zerlegung A = LR mit einer normierten untere Dreiecksmatrix L und einer regulären obere Dreiecksmatrix R besitzt, dann ist A regulär und das LGS Ax = b ist mit O(N 2 ) Operationen lösbar. (2.5) Eine Matrix A R N N besitzt genau dann eine LR-Zerlegung von A, wenn alle Hauptuntermatrizen A[1 : n,1 : n] regulär sind. Die LR-Zerlegung ist eindeutig und lässt sich mit O(N 3 ) Operationen berechnen. N N N (2.6) Eine Matrix A R heißt strikt diagonal-dominant, falls A[n,n] > k=1, k n A[n, k] n. (2.7) Wenn A strikt diagonal dominant ist, dann existiert eine LR-Zerlegung. (2.8) Sei A R N N symmetrisch und positiv definit. Dann existiert genau eine Cholesky-Zerlegung A = LL T mit einer regulären unteren Dreiecksmatrix L. C. Wieners: Einführung in die Numerische Mathematik 2

3 LR- und Cholesky-Zerlegung function x = lr_solve(a,b) N = size(a,1); for n=1:n-1 A(n+1:N,n) = A(n+1:N,n) / A(n,n); A(n+1:N,n+1:N) = A(n+1:N,n+1:N) - A(n+1:N,n) * A(n,n+1:N); x = b; for n=2:n x(n) = x(n) - A(n,1:n-1) * x(1:n-1); for n=n:-1:1 x(n) = (x(n) - A(n,n+1:N) * x(n+1:n)) / A(n,n); return function x = cholesky_solve(a,b) N = size(a,1); for n=1:n A(n:N,n) = A(n:N,n) - A(n:N,1:n-1) * A(n,1:n-1) ; A(n:N,n) = A(n:N,n) / sqrt(a(n,n)); x = b for n=1:n x(n) = (x(n) - A(n,1:n-1) * x(1:n-1)) / A(n,n); for n=n:-1:1 x(n) = (x(n) - A(n+1:N,n) * x(n+1:n)) / A(n,n); return C. Wieners: Einführung in die Numerische Mathematik 3

4 2 Direkte Lösungsverfahren für lineare Gleichungen (2.9) Sei π S N eine Permutation. Dann heißt P π = ( e π 1 (1)... e π (N)) 1 R N N Permutationsmatrix zu π. Es gilt (P π A)[n,k] = A[π(n),k] und (AP π )[n,k] = A[n,π 1 (k)]. (2.10) Die Permutationsmatrizen in R N N bilden eine Gruppe. Es gilt P σ P π = P π σ und P π 1 = Pπ T. (2.11) Sei A R N N regulär. Dann existiert eine Permutationsmatrix P, so dass PA eine LR-Zerlegung PA = LR besitzt und für die Einträge L[m,n] 1 gilt. Sie lässt sich mit O(N 3 ) Operationen berechnen. Die Lösung von Ax = b berechnet sich aus Ly = Pb und Rx = y. Sei eine Vektornorm, und sei eine zugeordete Matrixnorm, d. h., Ax A x, x R N, A R M N. (2.12) Sei A R N N regulär, und sei A R N N so klein, dass A < A 1 1 gilt. Dann ist die Matrix à = A + A regulär. Sei b R N, b 0 N, b R N klein und b = b + b. Dann gilt für die Lösungen x R N von Ax = b und x R N von à x = b x κ(a) ( b x 1 κ(a) A + A ). b A A Dabei ist x = x x, x x der relative Fehler, und κ(a) = A A 1 die Kondition von A. C. Wieners: Einführung in die Numerische Mathematik 4

5 LR-Zerlegung mit Pivot-Suche function x = lr_pivot_solve(a,b) N = size(a,1); p = (1:N) ; for n = 1:N-1 [r,m] = max(abs(a(n:n,n))); m = m+n-1; if abs(a(m,n))<eps error( *** ERROR *** Matrix fast singulär ); if (m ~= n) A([n m],:) = A([m n],:); p([n m]) = p([m n]); A(n+1:N,n) = A(n+1:N,n) / A(n,n); A(n+1:N,n+1:N) = A(n+1:N,n+1:N) - A(n+1:N,n) * A(n,n+1:N); x = b(p); for n=2:n x(n) = x(n) - A(n,1:n-1) * x(1:n-1); for n=n:-1:1 x(n) = (x(n) - A(n,n+1:N) * x(n+1:n)) / A(n,n); return C. Wieners: Einführung in die Numerische Mathematik 5

6 2 Arithmetische Grundlagen (2.13) a) Eine Gleitkommazahlen zur Basis B {2, 3,...} der Mantissenlänge M und Exponentenlänge E ist die Menge { FL = ± B e M a m B m : e = e E 1 } + c k B k, a m,c k {0,1,...,B 1} m=1 k=0 b) Eine Gleitkommaarithmetik wird durch eine Abbildung fl: R FL mit fl(x) = x für x FL definiert. Sei bestimmt die Rundung: x y = { fl(x + y), x y = fl(x } y), etc. x fl(x) Die zugehörige Maschinengenauigkeit ist eps = sup : x FL. x (2.14) Sei f : R N R K eine differenzierbare Funktion und x R N. Dann heißt a) κabs kn = x n f k (x) absolute Konditionszahl. b) κrel kn = x n f k (x) xn f k (x) relative Konditionszahl. C. Wieners: Einführung in die Numerische Mathematik 6

7 2 Kondition und Stabilität (2.15) a) Ein Problem heißt sachgemäß gestellt, wenn es eindeutig lösbar ist und die Lösung stetig von den Daten abhängt. b) Die Kondition eines Problems ist eine Maß dafür, wie stark die Abhängigkeit der Lösung von Störungen in den Daten ist. c) Die Stabilität eines numerischen Algorithmus ist eine Maß dafür, wie stark die Daten- Abhängigkeit der numerischen Lösung im Vergeich zu der exakten Lösung ist. (2.16) Wir verwen für x R N und A R M N N x 1 = x[n], x 2 = x T x, x = max x[n] n=1 n=1,...,n Ax und die zugeordnete Operatornorm A p = sup p x 0N x p, d.h. M N A 1 = max A[m,n], A 2 = ρ(a T A), A = max A[m, n] n=1,...,n m=1 m=1,...,m n=1 mit Spekralradius ρ(a) = max{ λ : λ σ(a)} und Spektrum σ(a). C. Wieners: Einführung in die Numerische Mathematik 7

8 3 Ausgleichsrechnung Sei Q R N N orthogonal, d.h. Q T Q = I N. Dann ist κ 2 (Q) = 1. (3.1) Zu v R N und k n mit v[k] 2 + v[n] 2 > 0 existiert eine Givens-Rotation G R N N mit ( ) ( ) G[k,k] G[k,n] c s =, c G[n, k] G[n, n] s c 2 + s 2 = 1, und G[j][j] = 1 für j k,n und G[i][j] = 0 sonst, so dass en T Gv = 0 gilt: Für v[n] > v[k] setze τ = v[k] v[n], s = 1+τ 1 v[n], c = sτ, sonst setze τ = 2 v[k], c = 1+τ 1, s = cτ. 2 Es gilt G = c(e k ek T + e nen T ) + s(e k en T e n ek T ) + e j ej T. j k,n (2.10) Zu v R N, v 0 N, existiert eine Householder-Spiegelung H = I N 2 w T w ww T R N N mit w R N, w[1] = 1, so dass Hv = σe 1 mit σ R und Hw = w gilt: Falls v[1] > 0, setze σ = v 2, sonst setze σ = v 2. Dann definierte w = 1 v[1] σ (v σe 1). (3.3) Zu A R K N existiert eine QR-Zerlegung A = QR mit einer orthogonalen Matrix Q R K K und eine oberen Dreiecksmatrix R R K N, d.h. QQ T = I K und R[k + 1 : K,k] = 0 K k für k = 1,...,K. (3.4) Sei A R K N und b R K. Dann gilt: x R N minimiert Ax b 2 A T Ax = A T b. C. Wieners: Einführung in die Numerische Mathematik 8

9 Berechnung der Householder-Vektoren function [v,beta]=householder(y) N = length(y); s = y(2:n) * y(2:n); if N == 1 s = 0; ; v = [1;y(2:N)]; if s == 0 beta = 0; else mu = sqrt(y(1)^2 + s); if y(1) <= 0 v(1) = y(1) - mu; else v(1) = -s/(y(1) + mu); beta = 2*v(1)^2/(s + v(1)^2); v = v / v(1); return function x = qr_solve(a,b) [M,N] = size(a); for m = 1:min(N,M-1) [v,beta] = householder(a(m:m,m)); if beta ~= 0 w = beta * v * A(m:M,m:N); A(m:M,m:N) = A(m:M,m:N) - v * w; A(m+1:M,m) = v(2:m-m+1); for m = 1:min(N,M-1) v = [1;A(m+1:M,m)]; beta = 2 / (v * v); if beta ~= 2 b(m:m) = b(m:m)-beta*(v *b(m:m))*v; for n=min(n,m):-1:1 x(n) = (b(n)-a(n,n+1:n)*x(n+1:n))/a(n,n); return C. Wieners: Einführung in die Numerische Mathematik 9

10 3 Ausgleichsrechnung (3.5) Zu A R K N mit R = rang(a) existiert eine Singulärwertzerlegung A = V ΣU T mit Matizen V = (v 1 v R ) R K R, U = (u 1, u R ) R N R, Σ = diag(σ 1,...,σ R ) R R R mit V T V = U T U = I R und den Singulärwerten σ 1,...,σ R > 0. Es gilt A = R σ r u r vr T r=1 und Ax = R σ r (vr T x)u r. r=1 (2.22) A + = UΣ 1 V T ist die Pseudo-Inverse. Es gilt A + = R σr 1 v r ur T und Ax = R σr 1 (ur T x)v r. r=1 r=1 (2.22) x = A + b löst die Normalengleichung A T Ax = A T b. (2.23) Sei A R K N und b R M. Dann gilt für die Tikhonov-Regularisierung mit α > 0: x R N minimiert Ax b α x 2 2 (A T A + αi N )x = A T b. (2.24) Es gilt lim α 0 (AT A + αi N ) 1 A T b = A + b. Diskrepanzprinzip: Sei b Bild(A), x = A + b und b δ eine Störung mit b b δ < δ < b 2. Dann existiert ein α = α(δ) > 0 mit Ax α b δ 2 = δ für x α = (A T A + αi N ) 1 A T b δ. Es gilt α(δ) 0 für δ 0. C. Wieners: Einführung in die Numerische Mathematik 10

11 4 Eigenwertberechnung (4.3) H R N N heißt Hessenberg-Matrix, wenn H[n + 2 : N,n] = 0 N n 1 für n = 1,...,N 2. (4.4) Sei A R N N. Dann existiert eine orthogonale Matrix Q R N N, so dass H = QAQ eine Hessenberg-Matrix ist. Die Berechnung benötigt O(N 3 ) Operationen. Wenn A symmetrisch ist, dann ist H eine Tridiagonalmatrix. (4.8) Sei A R N N symmetrisch, tridiagonal, und irreduzibel, d.h. A[n 1,n] = A[n,n 1] 0 und A[n + 2 : N,n] = A[n,n + 2 : N] = 0 N n 1. Die charakteristischen Polynome P n (t) = det ( A[1 : n,1 : n] ti n ) der Hauptuntermatrizen lassen sich durch eine Dreitermrekursion berechnen: Setze P 0 1. Dann gilt P 1 (t) = A[1,1] t und P n (t) = (A[n,n] t)p n 1 (t) A[n 1,n] 2 P n 2 (t). Sie bilden eine Sturmsche Kette: Für die Nullstellen λ n 1 λ n 2 λ n n von P n gilt λ n 1 k 1 < λ n k < λ n 1 k, k = 1,...,n (mit λ n 0 = 2 A und λ n n+1 = 2 A ), und es gilt für t ( A, A ) λ n k < t λ n k+1 mit k = W n (t) und W n (t) = # { j {1,...,n}: P j (t)p j 1 (t) < 0 oder P j (t) = 0 }. C. Wieners: Einführung in die Numerische Mathematik 11

12 4 Eigenwertberechnung Sei A R N N symmetrisch mit Eigenwerten λ 1,...,λ N und ONB aus Eigenvektoren v 1,...,v N. Dann gilt A = n (4.9) Der Rayleigh-Quotient ist λ n v n (v n ) und Ax = λ n (vn x)v n. n r(a,x) = x Ax x x, x RN, x 0 N. (4.10) Sei λ 1 = ρ(a) und λ n < λ 1 für n = 2,...,N. Dann gilt für alle w R N mit w v 1 > 0 lim k r(a,ak w) = λ 1, (4.11) Sei w 2 = 1 und µ = r(a,w). Dann gilt min λ n µ Aw µw 2. n=1,...,n 1 lim k A k A k w = v 1. w 2 Eine konvergente Folge (d k ) in R mit Grenzwert d konvergiert a) linear, wenn c (0,1) und k 0 > 0 existieren mit d k+1 d c d k d für k k 0 b) superlinear, wenn zu jedem ε > 0 ein k 0 > 0 existiert mit d k+1 d ε d k d für k k 0 c) von der Ordnung p > 1, wenn wenn C > 0 existiert mit d k+1 d C d k d p. C. Wieners: Einführung in die Numerische Mathematik 12

13 4 Eigenwertberechnung (4.12) Inverse Iteration mit variablem shift S0) Wähle z 0 R N, z 0 0 N, ε 0. Setze k = 0. S1) Setze w k = 1 z k 2 z k, µ k = r(a,w k ). S2) Falls Aw k µ k w k 2 ε STOP. S3) Berechne z k+1 = (A µ k I N ) 1 w k. S4) Setze k := k + 1, gehe zu S1). Wenn der Startvektor z 0 hinreich nahe bei einem Eigenvektor v m mit isoliertem Eigenwert λ m liegt, konvergiert die Iteration kubisch (d.h. von der Ordnung p = 3). (4.13) QR-Iteration mit shift (A R N N symmetrisch) S0) Berechne A 0 = QAQ tridiagonal (Hessenberg-Transformation). Wähle ε 0. Setze k = 0. S1) Falls A k [n + 1,n] ε für ein n: getrennte Eigenwertberechnung für A k [1 : n,1 : n] und A k [n + 1 : N,n + 1 : N]. S2) Berechne d k = 1 2 (A k [N 1,N 1] A k [N,N]) und s k = A k [N,N] + d k sgn(d k ) dk 2 + A k [N 1,N] 2. S3) Berechne QR-Zerlegung Q k R k = A k s k I N und setze A k+1 = R k Q k + s k I N. S4) Setze k := k + 1, gehe zu S1). Es gilt A k+1 = Q k A k Q k. Falls der shift µ k = A k [N,N] gewählt wird, entspricht die QR-Iteration der Inversen Iteration mit variablem shift und Startvektor z 0 = e N. C. Wieners: Einführung in die Numerische Mathematik 13

14 4 Eigenwertberechnung (4.14) Gershgorin Zu A R N N sind die Gershgorin-Kreise durch K n = { λ C: λ A[n,n] A[n,k] }, k n defininiert. Dann gilt n = 1,...,N N σ(a) K n. n=1 (4.15) Sei A R N N symmetrisch mit Eigenwerten λ 1 λ 2 λ N. λ n = max dims=n λ N+1 n = min dims=n min r(a,x), 0 N x S max r(a,x). 0 N x S C. Wieners: Einführung in die Numerische Mathematik 14

15 5 Iterative Lösungsverfahren für lineare Gleichungen (5.1) Sei A,B R N N mit ρ(i N BA) < 1. Dann ist A invertierbar, und für alle b R N und alle Startvektoren x 0 R N konvergiert die Iteration x k+1 = x k + B(b Ax k ), k = 0,1,2,... gegen lim k x k = A 1 b. (5.2) Sei K R N N und ε > 0 Dann existiert eine Vektor-Norm und eine zugeordnete Matrix-Norm, so dass K ρ(k ) + ε gilt. Anwung: Es gilt x x k I N BA k x x 0 (lineare Konvergenz). (5.3) Konvergenz des Gauß-Seidel-Verfahrens Sei A = L + D + R R N N symmetrisch positiv definit und sei B = (L + D) 1. Dann gilt bezüglich der Energienorm x A = x T Kx Ax und K A = sup A x x 0 A N I N BA A < 1. Anwung der Neumannschen Reihe ergibt dann A 1 = (I N BA) k B. k=0 C. Wieners: Einführung in die Numerische Mathematik 15

16 5 Iterative Lösungsverfahren für lineare Gleichungen (5.4) Eine Matrix A R N N heißt stark diagonal-dominant, wenn und wenn ein j {1,...,N} existiert N A[n,k] A[n,n], n = 1,...,N, k=1 k n N A[j,k] < A[j,j]. k=1 k n (5.5) Eine Matrix A R N N sei irreduzibel. Dann existiert zu jedem Paar j n eine Folge j = j 0,j 1,j 2,...,j R = n mit A[j 1,j 0 ] 0,...,A[j R,j R 1 ] 0. (5.6) Eine Matrix A R N N sei stark diagonal-dominant und irreduzibel. Dann gilt: a) A ist regulär und das Jacobi-Verfahren x k+1 = x k + diag(a) 1 (b Ax k ) konvergiert. b) Sei A[n,n] > 0 für alle n. Dann ist A positiv definit. c) Sei A[n,n] > 0 und A[n,k] 0 für n k. Dann ist A 1 [n,k] 0 für alle n,k. C. Wieners: Einführung in die Numerische Mathematik 16

17 5 Iterative Lösungsverfahren: Krylov-Verfahren (5.7) Zu C R N N und d R N ist k-te Krylov-Raum K k (C,d) = span { d,cd,..c k 1 d } = { P(C)d : P P k 1 }. (5.8) Zu einer regulären Matrix A R N N, einer rechten Seite b R N und einem Startwert x 0 R N sei x R N die Lösung von Ax = b und r 0 = b Ax 0. Sei B R N N eine reguläre Matrix (Vorkonditionierer). Wenn dimk k (AB,r 0 ) < k für ein k gilt, dann ist x x 0 + K k 1 (BA,Br 0 ). Sei, ein Skalarprodukt in R N. Gram-Schmidt-Verfahren zur Berechnung einer Orthonormalbasis v 1,...,v k von K k (BA,Br 0 ) = span{br 0,BABr 0,...,(BA) k 1 Br 0 } = {V k y : y R k }, V k = ( v 1 v k ). S0) Wähle x 0 R N, setze r 0 = b Ax 0, z 1 = Br 0, h 10 = z 1 V und v 1 = h 1 z S1) Für k = 1,2,3,... berechne w k = BAv k, z k+1 = w k k h jk v j mit h jk = v j,w k V j=1 v k+1 = 1 h k+1,k z k+1 mit h k+1,k = z k+1 V Dann gilt BAv k = k+1 h jk v j, also BAV k = V k+1 H k mit H k = (h jm ) R k+1,k. j=1 C. Wieners: Einführung in die Numerische Mathematik 17

18 5 Iterative Lösungsverfahren: GMRES-Verfahren S0) Wähle x 0 R N, ε > 0. Berechne r 0 = b Ax 0, z 1 = Br 0, h 10 = z 1 2 und v 1 = h 1 z 1. Setze k = S1) Berechne w k = BAv k und z k+1 = w k k h jk v j mit h jk = (v j ) T w k j=1 v k+1 = 1 h k+1,k z k+1 mit h k+1,k = z k+1 2 S2) Berechne y k R k mit ρ k = H k y k h 10 e 1 2 = min! Dabei ist H k = (h jm ) j=1,...,k+1, m=1,...,k R k+1,k. S3) Wenn ρ k < ε, setze x k = x 0 + k yj k v j j=1 S4) Setze k := k + 1 und gehe zu S1). STOP. (5.4) Es gilt ρ k = min B(b Az) 2. z x 0 +span{v 1,...,v k } Das GMRES-Verfahren ist wohldefiniert, und wenn es abbricht, gilt x x k 2 (BA) 1 2 ε. (5.5) Für C α > 0 gelte z T BAz αz T z und BA 2 C. ) k/2 Dann gilt für das GMRES-Verfahren x k x 2 κ 2 (BA) (1 α2 C 2 x 0 x 2. C. Wieners: Einführung in die Numerische Mathematik 18

19 5 Iterative Lösungsverfahren: CG-Verfahren S0) Wähle x 0 R N, ε > 0. Berechne r 0 = b Ax 0, y 0 = Br 0, ρ 0 = (y 0 ) T r 0 und d 1 = y 0. Setze k = 0. S1) Falls ρ k ε STOP S2) Setze k := k + 1 und berechne u k = Ad k ρ α k = k 1 (u k ) T d k x k = x k 1 + α k d k r k = r k 1 α k u k y k = Br k ρ k = (y k ) T r k d k+1 = y k + ρ k ρ k 1 d k Gehe zu S1). (5.6) x k x A = min z x 0 +span{d 1,...,d k } z x A ( min κ(ba) 1 ) k x A 2 x 0 x A. P P k, P(0)=1 λ σ(ba) κ(ba) + 1 C. Wieners: Einführung in die Numerische Mathematik 19

20 5 Transformierte Chebychev-Polynome (5.6) k b min max P(t) 2 a 1 P P k, P(0)=1 t [a,b] b a + 1 P 4, P 5, P 6, P 12 mit P k (0) = 1 zu [a,b] = [0.1,2.1] C. Wieners: Einführung in die Numerische Mathematik 20

1 Euklidische Approximation

1 Euklidische Approximation 1 Euklidische Approximation Sei V ein reeller euklidischer Vektorraum. Das Skalarprodukt in V wird mit, V und die Norm mit V bezeichnet. V N V sei ein Teilraum der Dimension N < mit Basis {φ n } n=1,...,n.

Mehr

1 Euklidische Approximation

1 Euklidische Approximation 1 Euklidische Approximation Sei V ein reeller euklidischer Vektorraum. Das Skalarprodukt in V wird mit, V und die Norm mit V bezeichnet. V N V sei ein Teilraum der Dimension N < mit Basis {φ n } n=1,...,n.

Mehr

2 Direkte Lösungsverfahren für lineare Gleichungen

2 Direkte Lösungsverfahren für lineare Gleichungen 2 Direkte Lösungsverfahren für lineare Gleichungen (2.1) Sei L R N N eine normierte untere Dreiecksmatrix und b R N. Dann ist L invertierbar und das Lineare Gleichungssystem (LGS) Ly = b ist mit O(N 2

Mehr

2 Direkte Lösungsverfahren für lineare Gleichungen

2 Direkte Lösungsverfahren für lineare Gleichungen (2.1) Sei x = (x n ) n=1,...,n R N, A = (a m,n ) m=1,...,m, n=1,...,n R M,N. a) Sei 1 m n N. Dann ist x[m : n] = (x k ) k=m,...,n R 1+n m Teilvektor von x. b) Seien 1 m 1 m 2 M, 1 n 1 n 2 N. Dann ist A[m

Mehr

1 Euklidische Approximation

1 Euklidische Approximation 1 Euklidische Approximation Sei V ein reeller euklidischer Vektorraum. Das Skalarprodukt in V wird mit, V und die Norm mit V bezeichnet. V N V sei ein Teilraum der Dimension N < mit Basis {φ n } n=1,...,n.

Mehr

3 Eigenwertberechnung

3 Eigenwertberechnung 3 Eigenwertberechnung (3.) Definition Eine Matrix A R, heißt (obere) Block-Dreiecksmatrix, wenn ein n existiert, sodass A[n + :, : n] = 0 gilt, d.h.: A = ( ) A[ : n, : n] A[ : n,n + : ] 0 A[n + :,n + :

Mehr

LR-Zerlegung. N = size(a,1); for n=1:n-1 A(n+1:N,n) = A(n+1:N,n)/A(n,n); A(n+1:N,n+1:N) = A(n+1:N,n+1:N) - A(n+1:N,n) * A(n,n+1:N); end;

LR-Zerlegung. N = size(a,1); for n=1:n-1 A(n+1:N,n) = A(n+1:N,n)/A(n,n); A(n+1:N,n+1:N) = A(n+1:N,n+1:N) - A(n+1:N,n) * A(n,n+1:N); end; LR-Zerlegung N = size(a,1); for n=1:n-1 A(n+1:N,n) = A(n+1:N,n)/A(n,n); A(n+1:N,n+1:N) = A(n+1:N,n+1:N) - A(n+1:N,n) * A(n,n+1:N); x = b; for n=2:n x(n) = x(n) - A(n,1:n-1) * x(1:n-1); for n=n:-1:1 x(n)

Mehr

1 Arithmetische Grundlagen

1 Arithmetische Grundlagen Am 4. Juni 1996 explodierte kurz nach dem Start die erste Ariane 5 Rakete durch einen Softwarefehler. Die Horizontalgeschwindigkeit wurde durch eine Gleitkommazahl v [ 10 308, 10 308 ] {0} [10 308,10 308

Mehr

2 Direkte Lösungsverfahren für lineare Gleichungen

2 Direkte Lösungsverfahren für lineare Gleichungen 2 Direkte Lösungsverfahren für lineare Gleichungen Sei A R invertierbar und b R. Löse Ax = b genau und effizient. Die LR-Zerlegung Wir berechnen eine Zerlegung A = LR mit L, R R und den folgen Eigenschaften:

Mehr

1 Arithmetische Grundlagen

1 Arithmetische Grundlagen 1 Arithmetische Grundlagen Am 4. Juni 1996 explodierte kurz nach dem Start die erste Ariane 5 Rakete durch einen Softwarefehler. Die Horizontalgeschwindigkeit wurde durch eine Gleitkommazahl v [ 10 308,

Mehr

1 Euklidische Approximation

1 Euklidische Approximation 1 Euklidische Approximation Sei V ein reeller euklidischer Vektorraum. Das Skalarprodukt in V wird mit, V und die Norm mit V bezeichnet. V N V sei ein Teilraum der Dimension N < mit Basis {φ n N } n=1,...,n.

Mehr

3 Lineare Algebra Vektorräume

3 Lineare Algebra Vektorräume 3 Lineare Algebra Vektorräume (31) Sei K ein Körper Eine kommutative Gruppe V bzgl der Operation + ist ein Vektorraum über K, wenn eine Operation : K V V (λ, v) λv existiert mit i) v,w V λ,µ K: λ (v +

Mehr

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren 2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren Problem (P2): Löse Ax = b, A R n und b R. 2.1 Satz: Die folgenden Aussagen sind äquivalent: (i) Ax = b ist für jedes b eindeutig lösbar;

Mehr

Begleitmaterial zur Vorlesung Numerik II

Begleitmaterial zur Vorlesung Numerik II Begleitmaterial zur Vorlesung Numerik II Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik II 1 / 35 Inhalte der Numerik

Mehr

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Mathematische Grundlagen 1 / 16 Vektorraum u R n, u = (u 1,..., u n ), u k R Euklidisches Skalarprodukt Euklidische Vektornorm (u, v) = u k v k u 2 = (u, u) = n u 2 k Vektoren u, v R n heißen orthogonal,

Mehr

Begleitmaterial zur Vorlesung Numerik I

Begleitmaterial zur Vorlesung Numerik I Begleitmaterial zur Vorlesung Numerik I Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik I 1 / 49 Inhalte der Numerik

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Verständnisfragen-Teil Institut für Geometrie und Praktische Mathematik (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben).

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Institut für Geometrie und Praktische Mathematik Multiple-Choice-Test NumaMB F08 (30 Punkte) Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen IGPM RWTH Aachen Institut für Geometrie und Praktische Mathematik Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen

Mehr

Kapitel 3. Lineare Ausgleichsrechnung. Problem: Löse A x = b, A R m n, b R m, wobei. Rang(A) < Rang([A;b])

Kapitel 3. Lineare Ausgleichsrechnung. Problem: Löse A x = b, A R m n, b R m, wobei. Rang(A) < Rang([A;b]) Kapitel 3. Lineare Ausgleichsrechnung Problem: Löse A x = b, A R m n, b R m, wobei Rang(A) < Rang([A;b]) zugelassen ist, d.h. Ax = b ist nur im weitesten Sinne lösbar. 3.1 Lineares Ausgleichsproblem: Zu

Mehr

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen Kapitel 2: Lineare Gleichungssysteme 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen B(n, m) : Ω {0,...,255}, n = 1,...,N, m = 1,...,M. dig. Camera Realisierung

Mehr

Klausur Numerische Mathematik (für Elektrotechniker), Samstag, 19. August 2017

Klausur Numerische Mathematik (für Elektrotechniker), Samstag, 19. August 2017 Verständnisfragen-Teil (5 Punkte) Jeder der 5 Verständnisfragenblöcke besteht aus 5 Verständnisfragen. Werden alle 5 Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block

Mehr

4.6 Berechnung von Eigenwerten

4.6 Berechnung von Eigenwerten 4.6 Berechnung von Eigenwerten Neben der Festlegung auf den betragsgrößten Eigenwert hat die Potenzmethode den Nachteil sehr langsamer Konvergenz, falls die Eigenwerte nicht hinreichend separiert sind.

Mehr

Diplom VP Numerik 27. August 2007

Diplom VP Numerik 27. August 2007 Diplom VP Numerik 27. August 2007 Multiple-Choice-Test 30 Punkte Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine einzige Aussage angekreuzt, gilt diese

Mehr

TU Ilmenau Institut für Mathematik FG Numerische Mathematik und Informationsverarbeitung PD Dr. W. Neundorf Datei: UEBG2.TEX

TU Ilmenau Institut für Mathematik FG Numerische Mathematik und Informationsverarbeitung PD Dr. W. Neundorf Datei: UEBG2.TEX TU Ilmenau Institut für Mathematik FG Numerische Mathematik und Informationsverarbeitung PD Dr. W. Neundorf Datei: UEBG2.TEX Übungsaufgaben zum Lehrgebiet Numerische Mathematik - Serie 2 Beweise Sie folgende

Mehr

Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung. x = x 2 e x 1.

Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung. x = x 2 e x 1. Name: Matrikel-Nr.: 1 Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung R 3 R 2, x 1 f : x 1 + e x2 2 sin(x3 ) x = x 2 e x 1 (1 + x 2 1 + x, 2x 3 )

Mehr

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012)

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Technische Universität München Zentrum Mathematik, M1 Prof. Dr. Boris Vexler Dr. Ira Neitzel Dipl.-Math. Alana Kirchner 7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Diese Auswahl

Mehr

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b.

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b. NumaMB F14 Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Bewertung: Vier Fragen richtig beantwortet

Mehr

eps für alle x D. 4. Die Zahl 256 ist in M(2, 4, 6, 6) exakt darstellbar.

eps für alle x D. 4. Die Zahl 256 ist in M(2, 4, 6, 6) exakt darstellbar. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H13 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

Übungsblatt 12 Musterlösung

Übungsblatt 12 Musterlösung NumLinAlg WS56 Übungsblatt 2 Musterlösung Lösung 44 (QR-Algorithmus mit Wilkinson-Shift und Deflation) a)+b) Die QR-Iteration zur Berechnung aller Eigenwerte einer Matrix A kann wie folgt implementiert

Mehr

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB)

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Prof. R. Leithner, Dipl. Phys. E. Zander Wintersemester 2010/2011 Kapitel 6 Eigenwerte

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme Vorlesungsskript HM-Numerik (SS 4): Kapitel Version: 9 Mai 4 Lineare Gleichungssysteme Gegeben: A R n n mit det(a) b R n Gesucht: x R n mit Ax = b Zeilenäquilibrierung Möchten zunächst die Kondition des

Mehr

Lineares Gleichungssystem

Lineares Gleichungssystem Lineares Gleichungssystem Ein System von m linearen Gleichungen in n Unbekannten besteht aus einer Menge von algebraischen Relationen der Form n a ij x j = b i, i =,...,m, j= wobei a ij R, i m, j n, die

Mehr

Computergestützte Mathematik zur Linearen Algebra

Computergestützte Mathematik zur Linearen Algebra Computergestützte Mathematik zur Linearen Algebra Pivotwahl und Gleitkommaarithmetik Achim Schädle 3. und 20. Dezember 208 Achim Schaedle (HHU) CompLinA 3. und 20. Dezember 208 Instabilitäten bei Gauß-Elimination

Mehr

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen Kapitel 2: Lineare Gleichungssysteme 21 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen B(n, m) : Ω {0,,255}, n = 1,,N, m = 1,,M dig Camera Realisierung von B η ist

Mehr

Lineare Algebra. 10. Übungsstunde. Steven Battilana.

Lineare Algebra. 10. Übungsstunde. Steven Battilana. Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch November 3, 26 Erinnerung Gram-Schmidt Verfahren Sei V ein euklidischer/unitärer Vektorraum mit dim(v ) n < Gegeben: W span{v,...,

Mehr

Eigenwerte. Vorlesung Computergestützte Mathematik zur Linearen Algebra. Lehrstuhl für Angewandte Mathematik Sommersemester 2009

Eigenwerte. Vorlesung Computergestützte Mathematik zur Linearen Algebra. Lehrstuhl für Angewandte Mathematik Sommersemester 2009 Eigenwerte Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Sommersemester 2009 25. Juni + 2.+9. Juli 2009 Grundlagen Definition Ist für A C n,n, Ax = λx

Mehr

KAPITEL 1. Einleitung

KAPITEL 1. Einleitung KAPITEL 1 Einleitung Wir beschäftigen uns in dieser Vorlesung mit Verfahren aus der Numerischen linearen Algebra und insbesondere dem sogenannten Mehrgitterverfahren zur Lösung linearer Gleichungssysteme

Mehr

Einführung in die Numerik

Einführung in die Numerik Institut für Angewandte Mathematik Universität Heidelberg http://www.numerik.uni-hd.de/ lehre/ss10/numerik0/ Zahldarstellung Normalisierte Gleitkommazahl: x = ±[m 1 b 1 + + m r b r ] b ±[es 1bs 1 + +e

Mehr

Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV Aufgabe N1 (LR-Zerlegung mit Pivotisierung) Gegeben seien R 3.

Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV Aufgabe N1 (LR-Zerlegung mit Pivotisierung) Gegeben seien R 3. Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV 7.7.6 Aufgabe N (LR-Zerlegung mit Pivotisierung) Gegeben seien 6 8 A = 8 6 R und b = 6 R. a) Berechnen Sie die LR-Zerlegung von A mit Spaltenpivotisierung.

Mehr

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2)

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2) Prof. Hesse Höhere Mathematik I und II Musterlösung 7. 0. 0, 80min Aufgabe (3 Punkte) Zeigen Sie mit vollständiger Induktion: Für alle n N gilt n k= k k k(k + ) = n+ n +. Induktionsanfang: k= Induktionsschluss

Mehr

Erweiterungen der LR-Zerlegung

Erweiterungen der LR-Zerlegung Prof. Thomas Richter 6. Juli 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomas.richter@ovgu.de Material zur Vorlesung Algorithmische Mathematik II am 06.07.2017 Erweiterungen

Mehr

Wiederholung von Linearer Algebra und Differentialrechnung im R n

Wiederholung von Linearer Algebra und Differentialrechnung im R n Wiederholung von Linearer Algebra und Differentialrechnung im R n 1 Lineare Algebra 11 Matrizen Notation: Vektor x R n : x = x 1 x n = (x i ) n i=1, mit den Komponenten x i, i {1,, n} zugehörige Indexmenge:

Mehr

Lineare Algebra für Ingenieure

Lineare Algebra für Ingenieure TECHNISCHE UNIVERSITÄT BERLIN SS 4 Fakultät II - Mathematik J Liesen/F Lutz/R Seiler Lineare Algebra für Ingenieure Lösungen zur Juli-Klausur Stand: 4 September 4 Rechenteil Aufgabe (8 Punkte Berechnen

Mehr

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: b a 2 3a 1

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: b a 2 3a 1 Name: Matr.-Nr.: 2 Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: 1 1 0 2 b 1 1 2 4 1 1 4 6 x = 1 1. 2 2 2a 2 3a 1 (a) Bringen Sie das lineare Gleichungssystem auf Treppenform. (b) Für welche

Mehr

Vektor und Matrixnormen Vorlesung vom

Vektor und Matrixnormen Vorlesung vom Vektor und Matrixnormen Vorlesung vom 20.12.13 Grundlagen: Matrix Vektor und Matrixprodukt. Lineare Räume. Beispiele. Problem: Berechne die Lösung x von Ax = b zu gegebenem A R n,n und b R n. Ziele: Konditionsanalyse

Mehr

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie (KIT) WS 22/3 Institut für Analysis 28..23 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Höhere Mathematik I für die Fachrichtung Physik 4. Übungsblatt (letztes Blatt)

Mehr

Sommer 2017 Musterlösung

Sommer 2017 Musterlösung Sommer 7 Musterlösung. (5 Punkte) a) Sei V ein Vektorraum über K und sei T End(V ). Geben Sie die Definition eines Eigenwertes von T und zeigen Sie für endlichdimensionales V, dass λ K genau dann ein Eigenwert

Mehr

3. Lineare Gleichungssysteme

3. Lineare Gleichungssysteme 3. Lineare Gleichungssysteme 1 3.1. Problemstellung 2 3.2. Direkte Verfahren 3 3.3. Normen und Fehleranalyse 4 3.4. Iterative Verfahren 5 3.5. Konvergenz von linearen Iterationsverfahren 6 3.6. Gradienten-Verfahren

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2015 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8 Such-Algorithmen

Mehr

5 Iterationsverfahren für lineare Gleichungssysteme

5 Iterationsverfahren für lineare Gleichungssysteme 5 Iterationsverfahren für lineare Gleichungssysteme Klassische Iterationsverfahren Sei A R N N und b R N. Wir wollen nun das LGS Ax = b iterativ lösen. Dazu betrachten wir die Komponenten m = 1,...,N:

Mehr

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR LR-Zerlegung bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR Definition 2.17 Unter einer LR-Zerlegung einer Matrix A R n n verstehen wir eine

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Begleitmaterial zur Vorlesung Numerik I

Begleitmaterial zur Vorlesung Numerik I Begleitmaterial zur Vorlesung Numerik I Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik I 1 / 55 Studienplanung Bachelor

Mehr

Vektor und Matrixnormen Vorlesung vom

Vektor und Matrixnormen Vorlesung vom Vektor und Matrixnormen Vorlesung vom 18.12.15 Grundlagen: Matrix Vektor und Matrixprodukt. Lineare Räume. Beispiele. Problem: Berechne die Lösung x von Ax = b zu gegebenem A R n,n und b R n. Ziele: Konditionsanalyse

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Beispiel: Feder Masse System festes Ende Feder k 1 Masse m 1 k 2 m 2 k 3 m 3 k 4 festes Ende u 0 = 0 Federkraft y 1 Verschiebung u 1 y 2 u 2 y 3 u 3 y 4 u 4 = 0 Grundlagen der

Mehr

KAPITEL 7. Berechnung von Eigenwerten. Av = λv

KAPITEL 7. Berechnung von Eigenwerten. Av = λv KAPITEL 7. Berechnung von Eigenwerten Aufgabe: Sei A R n n eine reelle quadratische Matrix. Gesucht λ C und v C n, v 0, die der Eigenwertgleichung Av = λv genügen. Die Zahl λ heißt Eigenwert und der Vektor

Mehr

Klausur zu Grundlagen der Computermathematik

Klausur zu Grundlagen der Computermathematik Prof. Dr. Klaus Höllig 14. Oktober 2010 Klausur zu Grundlagen der Computermathematik en Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. a Die Folge A

Mehr

Lineare Algebra. 13. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching

Lineare Algebra. 13. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching Lineare Algebra 3. Übungsstunde Steven Battilana stevenb student.ethz.ch battilana.uk/teaching December 29, 27 Erinnerung Satz. Axiomatischer Zugang, Eigenschaften der Determinante. Die Abbildung det :

Mehr

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

Musterlösung Serie 21

Musterlösung Serie 21 D-MATH Lineare Algebra II FS 09 Prof. Richard Pink Musterlösung Serie Positiv-Definitheit und Singulärwertzerlegung. Welche der folgenden drei reellen symmetrischen Matrizen sind positiv definit? A : 6

Mehr

Der CG-Algorithmus (Zusammenfassung)

Der CG-Algorithmus (Zusammenfassung) Der CG-Algorithmus (Zusammenfassung) Michael Karow Juli 2008 1 Zweck, Herkunft, Terminologie des CG-Algorithmus Zweck: Numerische Berechnung der Lösung x des linearen Gleichungssystems Ax = b für eine

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Versus QR Matrizen mit vollem Rang 27. Mai 2011 Versus QR Inhaltsverzeichnis 1 2 3 Beispiel 4 Beispiel 5 6 Versus QR Kondition Vergleich Beispiel Versus QR Zu finden: Gerade, die den Punkten (0, 6), (1,

Mehr

MODULPRÜFUNG MODUL MA 1302 Einführung in die Numerik

MODULPRÜFUNG MODUL MA 1302 Einführung in die Numerik ................ Note Name Vorname 1 I II Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Obige Angaben sind richtig: Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT

Mehr

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei die Matrix

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei die Matrix Name: Matr.-Nr.: 2 Aufgabe 1. Gegeben sei die Matrix 1 1 1 A = 3 3 3 2 2 2 (a) Bestimmen Sie Rang(A), Kern(A) und Bild(A). Ist A invertierbar? Geben Sie zwei verschiedene rechte Seiten b 1, b 2 an, so

Mehr

Lineare Gleichungssysteme, Teil 2

Lineare Gleichungssysteme, Teil 2 Lineare Gleichungssysteme, Teil 2 11. Vorlesung 27.1.12 Lineare Gleichungssysteme Problem: Berechne die Lösung x von Ax = b zu gegebenem A R n,n und b R n. Ziele: Konditionsanalyse dieses Problems Stabilitätsanalyse

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 6/7 837 Aufgabe Punkte): Gegeben sei das lineare Gleichungssystem Ax = b mit A = 6 3 und

Mehr

Computergestützte Mathematik zur Linearen Algebra

Computergestützte Mathematik zur Linearen Algebra Computergestützte Mathematik zur Linearen Algebra Singulärwertzerlegung Achim Schädle Übungsleiter: Lennart Jansen Tutoren: Marina Fischer, Kerstin Ignatzy, Narin Konar Pascal Kuhn, Nils Sänger, Tran Dinh

Mehr

Lineare Algebra und Geometrie II, Übungen

Lineare Algebra und Geometrie II, Übungen Lineare Algebra und Geometrie II, Übungen Gruppe (9 9 45 ) Sei A 2 Bestimmen Sie A und A Finden Sie weiters Vektoren u, v R 2 mit u und Au A, beziehungsweise v und Av A Zunächst die Berechnung der Norm

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2017 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme 2 Lineare Gleichungssysteme Wir betrachten das lineare Gleichungssystem Ax = b mit der n n-koeffizientenmatrix A und der rechten Seite b R n. Wir leiten zuerst eine Variante des Gauss-Algorithmus (LR-Zerlegung)

Mehr

Numerische Mathematik I für Ingenieure Multiple-Choice Klausuraufgaben Frühjahr 08

Numerische Mathematik I für Ingenieure Multiple-Choice Klausuraufgaben Frühjahr 08 Numerische Mathematik I für Ingenieure Multiple-Choice Klausuraufgaen Frühjahr 08 Hier einige Hinweise zu den MC-Aufgaen. Die Lösungen sollten nicht auswendig gelernt werden. Man sollte verstehen, warum

Mehr

Banach scher Fixpunktsatz. 1) D ist abgeschlossen und konvex; 2) f ist selbstabbildend, d.h. f(d) D;

Banach scher Fixpunktsatz. 1) D ist abgeschlossen und konvex; 2) f ist selbstabbildend, d.h. f(d) D; Institut für Geometrie und Praktische Mathematik Höhere Mathematik IV (für Elektrotechniker und Technische Informatiker) - Numerik - SS 2007 Dr. S. Börm, Dr. M. Larin Banach scher Fixpunktsatz Gegeben

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Verständnisfragen-Teil Institut für Geometrie und Praktische Mathematik 4 Punkte Es gibt zu jeder der Aufgaben vier Teilaufgaben. Diese sind mit bzw. zu kennzeichnen hinschreiben. Es müssen

Mehr

Lineare Algebra und Numerische Mathematik D-BAUG. Winter 2013 Prof. H.-R. Künsch. , a R. det(a) = 0 a = 1.

Lineare Algebra und Numerische Mathematik D-BAUG. Winter 2013 Prof. H.-R. Künsch. , a R. det(a) = 0 a = 1. b Musterlösung Lineare Algebra und Numerische Mathematik D-BAUG. Multiple Choice) Gegeben sei die folgende Matrix Winter 3 Prof. H.-R. Künsch A = a a) deta) = genau dann wenn gilt x a =. a =. ), a R. x

Mehr

Lineare Algebra. 12. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching

Lineare Algebra. 12. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching Lineare Algebra 12. Übungsstunde Steven Battilana stevenb student.ethz.ch battilana.uk/teaching December 14, 2017 1 Erinnerung: Determinanten, Orthogonale/unitäre Matrizen Sei A R 2 2, dann kann die Inverse

Mehr

Diplom VP Numerik 28. August 2006

Diplom VP Numerik 28. August 2006 Diplom VP Numerik 8. August 6 Multiple-Choice-Test Punkte) Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine einzige Aussage angekreuzt, gilt diese Aufgabe

Mehr

Matr. Nr.: Benutzter Taschenrechner (genaue Typenbezeichnung) : Name: Vorname: Unterschrift: VFr: A1: A2: A3: A4: A5: BP: Platz Nr.

Matr. Nr.: Benutzter Taschenrechner (genaue Typenbezeichnung) : Name: Vorname: Unterschrift: VFr: A1: A2: A3: A4: A5: BP: Platz Nr. Matr. Nr.: Platz Nr.: Klausur zur Numerischen Mathematik (für Elektrotechniker) Prof. Dr. Wolfgang Dahmen Samstag, 19. August 2017 Institut für Geometrie und Praktische Mathematik Hilfsmittel: dokumentenechtes

Mehr

Klausur zur Mathematik II (Modul: Lineare Algebra II)

Klausur zur Mathematik II (Modul: Lineare Algebra II) Technische Universität Hamburg-Harburg Institut für Mathematik Prof. Dr. Wolfgang Mackens Wintersemester 0/04 Klausur zur Mathematik II (Modul: Lineare Algebra II) 05.0.04 Sie haben 60 Minuten Zeit zum

Mehr

Lineare Ausgleichsprobleme. Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte

Lineare Ausgleichsprobleme. Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte Lineare Ausgleichsprobleme Bisher: Lösung linearer GS Ax = b, A R n,n, A regulär, b R n Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte Ax = b mit A R m,n, b R m, m n, rg(a)

Mehr

Klausur zu Grundlagen der Computermathematik

Klausur zu Grundlagen der Computermathematik Prof. Dr. Klaus Höllig. März 11 Klausur zu Grundlagen der Computermathematik en Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. a Die Folge A n x/ A n

Mehr

Lineare Algebra. 13. Übungsstunde. Steven Battilana.

Lineare Algebra. 13. Übungsstunde. Steven Battilana. Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch January 2, 27 Erinnerung Berechnung von Eigenwerten und Eigenvektoren Gegeben: A E n n (falls F : V V lineare Abbildung gegeben ist,

Mehr

y (k) (0) = y (k) y(z) = c 1 e αz + c 2 e βz. c 1 + c 2 = y 0 k=1 k=1,...,m y k f k (x)

y (k) (0) = y (k) y(z) = c 1 e αz + c 2 e βz. c 1 + c 2 = y 0 k=1 k=1,...,m y k f k (x) 9 Ausgleichsrechnung 9.1 Problemstelllung Eine Reihe von Experimenten soll durchgeführt werden unter bekannten Versuchsbedingungen z Ê m. Es sollen Größen x Ê n bestimmt werden, für die ein Gesetz gelten

Mehr

D-MAVT NUMERISCHE MATHEMATIK FS 14 K. Nipp, A. Hiltebrand Lösung vom Test 2

D-MAVT NUMERISCHE MATHEMATIK FS 14 K. Nipp, A. Hiltebrand Lösung vom Test 2 D-MAVT NUMERISCHE MATHEMATIK FS 4 K Nipp, A Hiltebrand Lösung vom Test Sei A ( 3 3 ) a) Bestimmen Sie κ(a), die Kondition von A (in der -Norm): κ(a) b) Berechnen Sie den Spektralradius von A: ρ(a) 4 c)

Mehr

Numerische Mathematik für Ingenieure (SoSe 2013)

Numerische Mathematik für Ingenieure (SoSe 2013) Numerische Mathematik für Ingenieure (SoSe 2013) PD Dr(USA) Maria Charina Auszüge aus Vorlesungsfolien von Prof Joachim Stöckler werden verwendet Für die Bereitstellung dieses Materials und der Tex-Files

Mehr

Numerische Verfahren

Numerische Verfahren Numerische Verfahren Jens-Peter M. Zemke zemke@tu-harburg.de Institut für Numerische Simulation Technische Universität Hamburg-Harburg 03.06.2008 TUHH Jens-Peter M. Zemke Numerische Verfahren Lineare Ausgleichsprobleme

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 12. Aufgabe Herbstsemester Dr. V. Gradinaru D. Devaud.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 12. Aufgabe Herbstsemester Dr. V. Gradinaru D. Devaud. Dr. V. Gradinaru D. Devaud Herbstsemester 15 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 1 Aufgabe 1.1 1.1a) Sei A eine n n-matrix. Das Gleichungssystem Ax = b sei

Mehr

Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen

Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Wintersemester 2012/201 Zwischentest Teil 1: 1. Was bedeuten die Bezeichnungen O(h) und o(h)? (Definition) (siehe Skript!)

Mehr

Iterative Verfahren, Splittingmethoden

Iterative Verfahren, Splittingmethoden Iterative Verfahren, Splittingmethoden Theodor Müller 19. April 2005 Sei ein lineares Gleichungssystem der Form Ax = b b C n, A C n n ( ) gegeben. Es sind direkte Verfahren bekannt, die ein solches Gleichungssystem

Mehr

Lösungen zu Blatt 13 der Übungen zur Vorlesung Numerik, LMU München, Wintersemester 2016/2017

Lösungen zu Blatt 13 der Übungen zur Vorlesung Numerik, LMU München, Wintersemester 2016/2017 Lösungen zu Blatt 13 der Übungen zur Vorlesung Numerik, LMU München, Wintersemester 01/017 Peter Philip, Sabine Bögli. Januar 017 1. 10 Punkte) a) Betrachten Sie R mit der Maximumsnorm. Berechnen Sie die

Mehr

Kapitel 2: Lineare Gleichungssysteme

Kapitel 2: Lineare Gleichungssysteme Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 2: Lineare Gleichungssysteme Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 205 HM: Numerik (SS 205), Kapitel

Mehr

PS Numerische Mathematik für LAK WS 08/09, LV-Nr.: , HS Übungsblatt (bis )

PS Numerische Mathematik für LAK WS 08/09, LV-Nr.: , HS Übungsblatt (bis ) . Übungsblatt (bis 5.0.2008). Aufgabe. Skizzieren Sie die Einheitskugeln K (0,) im R 2 für die Normen, 2 und. 2. Aufgabe. Beweisen Sie x x 2 n x für alle x R n. 3. Aufgabe. Bestimmen Sie die relative Konditionszahl

Mehr

Institut für Angewandte und Numerische Mathematik Prof. Dr. Christian Wieners, Dipl.-Math. techn. Daniel Maurer

Institut für Angewandte und Numerische Mathematik Prof. Dr. Christian Wieners, Dipl.-Math. techn. Daniel Maurer Institut für Angewandte und Numerisce Matematik Prof. Dr. Cristian Wieners, Dipl.-Mat. tecn. Daniel Maurer Numerisce Matematik für die Facrictungen Informatik und Ingenieurwesen Lösungen zur Klausurvorbereitung

Mehr

Wiederholungsserie II

Wiederholungsserie II Lineare Algebra II D-MATH, FS 205 Prof. Richard Pink Wiederholungsserie II. Zeige durch Kopfrechnen, dass die folgende reelle Matrix invertierbar ist: 205 2344 234 990 A := 224 423 990 3026 230 204 9095

Mehr

Beispiele. Grundlagen. Kompakte Operatoren. Regularisierungsoperatoren

Beispiele. Grundlagen. Kompakte Operatoren. Regularisierungsoperatoren Beispiele Grundlagen Kompakte Operatoren Regularisierungsoperatoren Transportgleichung Dierenzieren ( nx ) (f δ n ) (x) = f (x) + n cos, x [0, 1], δ Regularisierung!! Inverse Wärmeleitung Durc f (f δ n

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

4 Lineare Ausgleichsrechnung

4 Lineare Ausgleichsrechnung Numerik I 15 4 Lineare Ausgleichsrechnung Die folgende Tabelle zeigt die Bevölkerungsentwicklung in den U.S.A. 19 191 192 193 194 75.995 91.972 15.711 123.23 131.669 195 196 197 198 199 15.697 179.323

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS /4 M. Eigel R. Nabben K. Roegner M. Wojtylak.4.4 April Klausur Lineare Algebra für Ingenieure Lösungsskizze. Aufgabe 9 Punkte Gegeben

Mehr