Errata zu Numerische Mathematik von Michael Knorrenschild Fachbuchverlag Leipzig im Carl Hanser Verlag 2003 (1. Aufl.), ISBN

Größe: px
Ab Seite anzeigen:

Download "Errata zu Numerische Mathematik von Michael Knorrenschild Fachbuchverlag Leipzig im Carl Hanser Verlag 2003 (1. Aufl.), ISBN"

Transkript

1 Errata zu Numerische Mathematik von Michael Knorrenschild Fachbuchverlag Leipzig im Carl Hanser Verlag 2003 (. Aufl.), ISBN Die Änderungen sind rot hervorgehoben. Dank an Dr. Thomas Schenk (Aachen), Prof. Dr. Wieland Richter (Soest), Prof. Dr. Georg Engelmann (Köln), Dr. Angela Lilienthal (Gelsenkirchen), Dr. Hans-Jochen Bartsch, Prof. Dr. Bernd Engelmann (Leipzig), Johannes Jaeschke, Prof. Dr. Helmut Paster (München), Theodor Lorch (München), Kristina Bretschneider, Thomas Kisel, Tim Guske, Eva Rieger (alle Stuttgart), Tobias Heilmannseder (München), Sebastian Kraatz (Wilhelmshaven), Peter Proske (Augsburg), Franz Niederl (Graz), Michael Schlosser (Koblenz), Alessandro Lenzen (Aachen), Prof. Dr. Uwe Schnell (Zittau), Marc Finkenzeller (Offenburg), Dr. Karl-Heinz Brakhage (Aachen), Prof. Dr. Stefan Glasauer (Augsburg), Dr. Nadine Conza (Windisch), Anton Feist (Bielefeld) und Christian Frei (Basel) für Beiträge zu dieser Liste. Alle hier aufgeführten Fehler beziehen sich nur auf die. Auflage (2003), die meisten davon sind in den späteren Auflagen bereits behoben. S. 9 Definition Eine n-stellige Gleitpunktzahl zur Basis B hat die Form n x = ±(0.z z 2... z n ) B B E und den Wert ± z i B E i (.) S. 5 + eps gilt. Man bezeichnet eps auch als Maschinengenauigkeit. Es gilt S. 5 Beispiel.4 Es soll f(x, h) := f(x + h) f(x) für f(x) = sin x, x = und S. 6 Lösung: Man erhält h f(, h) abs. Fehler rel. Fehler

2 2 S Was können Sie über den relativen Fehler von f( x) sagen, wenn Sie S. 28 n x n x n x n S. 3 x n x αn α x x 0 = 0.75n = n! 0 4 n Die a-posteriori-abschätzung für n = 9 lautet S. 33 Siehe Bild 2.2. Das geht natürlich nur, wenn f (x 0 ) 0 ist, d. h. wenn die Tangente nicht parallel zur x-achse liegt. Die Stelle x sollte dann eine bessere S. 34 x n+ = x n x n x n f(x n ) f(x n ) f(x n), n =, 2,... S. 38 a a 2 a n x b a 2 a 22 a 2n... x 2. = b 2. a n a n2 a nn x n b n S A 2 x = x = 24 bzw. =

3 3 S A 4 x = x = 4 bzw. = S. 45 Beispiel 3.5 Lösung: z 3:=z z z3:=z3 z Beispiel 3.6 Das System A x = b mit 0 4 A =, b = 2 [...] 0 Lösung: Ohne Pivotisierung erhält man bei 4-stelliger Rechnung 0 4 z ( A b) = 2:=z z [...] ( 0 4 ) 2 0 z z z 2:=z z S. 46 Die exakte Lösung ist x = ( , ) T, d. h. das mit [...] λ = [...] letzte Zeile: 0 0 L 4 := L 3 L 2 L = 4 0, 0.5 S. 47 Lösung: Wir haben in Beispiel 3.7 R schon ausgerechnet. Aus L 4 A = R erhalten wir sofort A = L 4 R, wobei L 4 = L L 2 L 3. Dabei lassen sich die Matrizen L i, i =, 2, 3 ganz einfach durch Wechseln der Vorzeichen der Unterdiagonalelemente von L i berechnen. Insbesondere ist auch L 4 wieder eine links-untere Dreiecksmatrix. Mit L := L 4 erhalten wir insgesamt:

4 4 S. 5 Definition Eine Abbildung. : IR n IR heißt Norm, wenn die folgenden... S. 53 Die -Norm von A ist also die maximale zeilenweise Summe der Absolutbeträge der Elemente ( Zeilensummennorm ) und die -Norm von A ist S. 54 A = 2 4, b = A = 2., A = = A 4 2 = = In der -Norm haben wir also cond( A) = = Mit (3.4) und (3.5) und b =.5 erhalten wir dann: x x 60.5 b b 6.05 x x x cond( A) b b b = Die Lösung x des gestörten Systems A x = b wird also von der Lösung x des exakten Systems A x = b in jeder Komponente um maximal 6.05 abweichen (absoluter Fehler), und der relative Fehler in der -Norm wird maximal 48.8 betragen. Man beachte, dass der relative Fehler nicht auf die Komponenten umgerechnet werden kann, da wir hier mit Vektoren hantieren. Der Fehlerverstärkungsfaktor für den absoluten Fehler in der -Norm ist maximal 60.5, der für den relativen Fehler maximal Testen wir das an einem konkreten Fall: Die gestörte rechte Seite sei 0.9 b =, also b b.6 = 0., b b b = 0..5 = S. 55 Wir sehen also, dass in dieser Situation der absolute Fehler um den Faktor 60.5 (der maximal mögliche) verstärkt wurde und der relative Fehler um den Faktor [...]

5 5 Beispiel 3.2 Lösung: A = 2., cond( A) = , b =.5, b 0. also cond( A) A A x x = <, [...] ( ) Ã = , b = S. 56 x = ( ), x = = x x = , x x x = Wir sehen also, dass der relative Fehler des Lösungsvektors ca. 62 % beträgt; [...] x = ( I A) x + b = x = x S. 58 i x (i) S. 59 x (n+) 2 = 0.4 x (n) 0.2 x (n) (3.9)

6 6 S. 59, unten: x (n+) = 0 0 x (n) S. 6 das sog. Zeilensummenkriterium. Matrizen, die diese Bedingung erfüllen, nennt man auch diagonaldominant. Für die -Norm erhalten wir analog: B = D ( L + R) = max j=,...,n n i j a ij a ii Hinreichend für die Konvergenz des Gesamtschrittverfahrens ist auch das Spaltensummenkriterium: n a ij < a jj, für alle j =,..., n. i j Einen Nachweis findet man z. B. in [2]. S. 62 Der wirkliche Fehler von x (5) ist: x (5) x = max { , , } = , und ist damit etwa 0mal kleiner als unsere Abschätzung suggeriert. S. 65 Wir suchen nun eine Nullstelle x der rechten Seite, d. h. f( x (n) ) + Df( x (n) ) ( x x (n) ) = o Die Idee ist wiederum, dass dieser Vektor x eine genauere Näherung für die S. 67 Bemerkungen:. Durch eine Schrittweitendämpfung kann eine Verbesserung der Konvergenz erzielt werden; man spricht dann vom gedämpften Newton- S. 69 neu Df( x (0) ) δ () = Df(4, 2) δ () = f( x () ) = f( 2.909,.455) 2 4 δ () 0.00 = δ () =

7 7 [...] Bemerkung: Auch Fixpunktiterationen, wie wir sie in Abschnitt 2.3 kennen gelernt haben, sind für die Lösung nichtlinearer Gleichungssysteme einsetzbar. Die Begriffe aus der eindimensionalen Situation übertragen sich entsprechend auf die mehrdimensionale. Anstelle von F (x) tritt wieder die Jacobi-Matrix DF ( x). Ein Fixpunkt x von F ist anziehend, wenn DF ( x) < S. 70 möchte man in einer Weise weiterarbeiten, die mit den Wertepaaren selbst eine Funktions/ f, deren Graph genau durch die vorgegebenen Wertepaare S. 7 Satz: Existenz und Eindeutigkeit des Interpolationspolynoms Gegeben sind n + Wertepaare (x i, f i ), i = 0,..., n. Dann gibt es genau S. 72 es gibt kein a 4 im Beispiel vorgestellten Methoden) zu: a 0 = 2, a = 9, a 2 = 9, a 3 = 7. Das S. 74, vorletzte Zeile die in der oberen Schrägzeile des Differenzenschemas stehen. S. 76 Algorithmus: Das Neville-Aitken-Schema für k =,..., n: für i = 0,..., n k:

8 8 S. 77 x i f i = p i0 (.5) p i (.5) p i2 (.5) p i3 (.5) = p 0(.5) 4.5 = p (.5) 2.25 = p 02(.5) 5.5 = p 2(.5) 8.25 = p 03(.5) 2.5 = p 2(.5) 2-4 S. 80 Beispiel 5.8 Lösung: Wir erhalten p(x) = 0.0 x x x S. 8 ist bis auf Ausnahmen nicht sinnvoll. Eine davon wird in 7..3 behandelt S. 84 auch der Spline diese Ableitungen besitzt: s (x 0 ) = y 0, s (x n ) = y n.... Satz: Berechnung der Momente... für den periodischen Spline: M 0 = M n und... wobei x n+ := x n + x x 0, f n+ = f,... S. 89, 2. Zeile... und D = 0.25, D 2 =, D 3 = 0.25.

9 s(x) = π 3 x π 2 x π x 27 x [ 2π 4 3, π] S. 92 0! = gehört nicht in die beiden folgenden Gleichungen: S. 94 a a n n x 2 i + b x i = n n x i + b = n f(x i ) x i (6.4) n f(x i ), (6.5) 0 = E(f)(λ, λ 2,..., λ m ) λ i, i =,..., m 0. Zeile von unten metrischen m m-koeffizientenmatrix A T A, der gegebenen rechten Seite S = 0 = E(a, b) a E(a, b) b = 2 = 2 5 (y i a e b xi ) e b xi 5 (y i a e b xi ) a e b xi x i. S. 00, drittletzte Zeile wobei Df( x (0) ) die Jacobi-Matrix in x (0) bezeichnet (siehe 4.). Das Minimie- S. 0 Definition: Gauß-Newton-Verfahren Berechne δ (n) als Lösung des linearen Ausgleichsproblems: minimiere f( x (n) ) + Df( x (n) ) δ (n) 2 2 Setze x (n+) := x (n) + δ (n).

10 0 Algorithmus: Gedämpftes Gauß-Newton-Verfahren Sei x (0) ein Startvektor in der Nähe des Minimums von E. Das gedämpfte Gauß-Newton-Verfahren zur näherungsweisen Bestimmung des Minimums lautet: löse Df( x (n) ) T Df( x (n) ) δ (n) = Df( x (n) ) T f( x (n) ) S. 06, 3. und 4. Zeile von unten bei 0-stelliger Rechnung, eps = : Da für h < eps auf dem Rechner +h und identisch sind, wird D f(, h) = 0 und damit ist der Fehler S. 08 Zur Herleitung einer genaueren Differenzenformel lesen wir die Taylorformel (7.) mit x = x 0 ± h und n = 2 und erhalten: f(x 0 + h) = f(x 0 ) + f (x 0 ) h + f (x 0 ) 2 h 2 + f (x 0 ) 6 h 3 + f (4) (z ) 24 h 4 S. 0, vorletzte Zeile zu erhöhen, ist für alle Formeln durchführbar, die eine Fehlerentwicklung nach Potenzen von h besitzen. S. D (h) = D c 2 2 h D (h) = D c 2 h k+ 2 (2 k ) c 3 h k (2 k )... S. 5 Zu beobachten sind die gleichen Phänomene wie in Beispiel 7.5: Abnehmender Fehler von oben nach unten und links nach rechts im Dreiecksschema.

11 S. 6 Satz p i0 (0) := D( h 2 i ), für i = 0,..., n p ik (0) = p i+,k (0) + x i+k x i+k x i (p i,k (0) p i+,k (0)) S. 33 aus T i,0 und den neu hinzu kommenden Funktionswerten. Mit n := 2 i T i0 = [...] = 2 T i,0 + h i 2 n k= f(a + 2 k 2 h i ). S. 49 Hierbei ist s die Stufenzahl, a ij, c j, b j sind Konstanten. Die Konsistenz- S. 5, 3. Zeile 8.4 der Differenzialgleichung berechnet wird, wenn die Bedingung s j= b j = S. 52, 7. Zeile rischen Lösung. Implizite Verfahren weisen jedoch Vorteile in der Stabilität S Das gibt 2 5 verschiedene Exponenten (da die Null doppelt gezählt wurde). Insgesamt gibt es also 2 20 (2 5 ) = Möglichkeiten. Da wir aber die Zahl 0 noch nicht erfasst haben, sind es insgesamt Maschinenzahlen. Die kleinste positive Maschinenzahl ist dabei 0. 2 = , die größte ist 0. 2 = ( 2 20 ) 2 5 = =

12 2 S eps := ; while. + eps. do eps := eps/2; eps := eps 2; write eps. S f(x) = ln x + x 2 = f (x) = + x2 2 x 2 ln x x ( + x 2 ) 2. Auf [ 3, 2] gilt dann f (x) + x2 + 2 x 2 ln x x ( + x 2 ) ln 3 3 ( + = 2.43 (5 + 8 ln 3) 9 )2 Mit M := 2.43 (5 + 8 ln 3) gilt also f(x) f( x) M x x. Damit f(x) f( x) 0.0 ist, reicht es aus, wenn M x x 0.0 gilt, also x x M 0.0. S R 5 = S x x 2 6 x + 5 x [0, ] s 2 (x) = 9 x x 2 30 x + 3 x [, 2] 5 x 3 48 x x 99 x [2, 4] S. 65/ Diskretisierungsfehler von D 2 f(x 0, h) 6 f (x 0 ) h 2 s. (7.4) Gleichsetzen ergibt: 0 n f(x 0 ) Umstellen nach h führt auf: h n f(x 0) f (x 0 ). 2 h 6 f (x 0 ) h 2. Angewandt auf Aufgabe 7. erhält man: h tan ,

13 3 S. 70 y N = y N + h 2 (f(t N ) + f(t N )) = y N 2 + h 2 (f(t N 2) + 2 f(t N ) + f(t N )) Stand: 8. Mai 204

Errata zu Numerische Mathematik von Michael Knorrenschild Fachbuchverlag Leipzig im Carl Hanser Verlag 2005 (2. Aufl.), ISBN

Errata zu Numerische Mathematik von Michael Knorrenschild Fachbuchverlag Leipzig im Carl Hanser Verlag 2005 (2. Aufl.), ISBN Errata zu Numerische Mathematik von Michael Knorrenschild Fachbuchverlag Leipzig im Carl Hanser Verlag 2005 (2. Aufl.), ISBN 3-446-40440-6 Die Änderungen sind rot hervorgehoben. Dank an Johannes Jaeschke,

Mehr

Ausgleichsproblem. Definition (1.0.3)

Ausgleichsproblem. Definition (1.0.3) Ausgleichsproblem Definition (1.0.3) Gegeben sind n Wertepaare (x i, y i ), i = 1,..., n mit x i x j für i j. Gesucht ist eine stetige Funktion f, die die Wertepaare bestmöglich annähert, d.h. dass möglichst

Mehr

5 Numerische Mathematik

5 Numerische Mathematik 6 5 Numerische Mathematik Die Numerische Mathematik setzt sich aus mehreren Einzelmodulen zusammen Für alle Studierenden ist das Modul Numerische Mathematik I: Grundlagen verpflichtend In diesem Modul

Mehr

Übungen zur Mathematik Blatt 1

Übungen zur Mathematik Blatt 1 Blatt 1 Aufgabe 1: Bestimmen Sie die Fourier-Reihe der im Bild skizzierten periodischen Funktion, die im Periodenintervall [ π, π] durch die Gleichung f(x) = x beschrieben wird. Zeichnen Sie die ersten

Mehr

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

5 Interpolation und Approximation

5 Interpolation und Approximation 5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Institut für Geometrie und Praktische Mathematik Multiple-Choice-Test NumaMB F08 (30 Punkte) Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine

Mehr

Diplom VP Informatik/Numerik 9. September 2000 / Seite 1. Aufgabe 1: L-R-Zerlegung, Nachiteration / Ly = b. y = Rx = y.

Diplom VP Informatik/Numerik 9. September 2000 / Seite 1. Aufgabe 1: L-R-Zerlegung, Nachiteration / Ly = b. y = Rx = y. Diplom VP Informatik/Numerik 9 September 2000 / Seite 1 1 Pivotisierung : 2 L-R-Zerlegung von A: 3 Vorwärtseinsetzen: (pivotisierung) Aufgabe 1: L-R-Zerlegung, Nachiteration A A = 4 2 10 2 6 9 2 1 6 L

Mehr

Numerische Mathematik

Numerische Mathematik Michael Knorrenschild Mathematik-Studienhilfen Numerische Mathematik Eine beispielorientierte Einführung 5., aktualisierte Auflage Inhaltsverzeichnis 1 Rechnerarithmetik und Gleitpunktzahlen 9 1.1 Grundbegriffe

Mehr

Einführung in die numerische Mathematik

Einführung in die numerische Mathematik Prof. Dr. M. Günther K. Gausling, M.Sc. C. Hendricks, M.Sc. Sommersemester 4 Bergische Universität Wuppertal Fachbereich C Mathematik und Naturwissenschaften Angewandte Mathematik / Numerische Analysis

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Verständnisfragen-Teil Institut für Geometrie und Praktische Mathematik (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben).

Mehr

von Michael Knorrenschild Fachbuchverlag Leipzig im Carl Hanser Verlag 2009, ISBN

von Michael Knorrenschild Fachbuchverlag Leipzig im Carl Hanser Verlag 2009, ISBN Errata zu Mathematik für Ingenieure 1 von Michael Knorrenschild Fachbuchverlag Leipzig im Carl Hanser Verlag 2009, ISBN 978-3-446-41346-7 Die Änderungen sind blau hervorgehoben. Dank an Prof. Dr. Klaus-Werner

Mehr

H.J. Oberle Analysis II SoSe Interpolation

H.J. Oberle Analysis II SoSe Interpolation HJ Oberle Analysis II SoSe 2012 7 Interpolation 71 Allgemeine Problemstellung Interpolation ist die Kunst, zwischen den Zeilen einer Tabelle zu lesen (Rutishauser) Von f : R R seien Funktionswerte (x j,

Mehr

eps für alle x D. 4. Die Zahl 256 ist in M(2, 4, 6, 6) exakt darstellbar.

eps für alle x D. 4. Die Zahl 256 ist in M(2, 4, 6, 6) exakt darstellbar. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H13 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

Begleitmaterial zur Vorlesung Numerik II

Begleitmaterial zur Vorlesung Numerik II Begleitmaterial zur Vorlesung Numerik II Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik II 1 / 35 Inhalte der Numerik

Mehr

Musterlösungen zur Leistungsnachweisklausur vom Studiengang Informatik, Ingenieurinformatik, Lehramt

Musterlösungen zur Leistungsnachweisklausur vom Studiengang Informatik, Ingenieurinformatik, Lehramt TU ILMENAU Institut für Mathematik Numerische Mathematik PD Dr. W. Neundorf Musterlösungen zur Leistungsnachweisklausur vom.0.006 Studiengang Informatik, Ingenieurinformatik, Lehramt 1. Lineare Algebra

Mehr

19. Januar Universität Erlangen-Nürnberg Department Mathematik PD Dr. Markus Bause. . Danach liefert die Gauss-Elinination. .

19. Januar Universität Erlangen-Nürnberg Department Mathematik PD Dr. Markus Bause. . Danach liefert die Gauss-Elinination. . Universität Erlangen-Nürnberg Department Mathematik PD Dr Markus Bause Numerik I 9 Januar A Gegeben sei die Matrix A = a Führen Sie eine Zeilenskalierung der Matrix durch Klausur b Bestimmen Sie mit Hilfe

Mehr

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren 2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren Problem (P2): Löse Ax = b, A R n und b R. 2.1 Satz: Die folgenden Aussagen sind äquivalent: (i) Ax = b ist für jedes b eindeutig lösbar;

Mehr

Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV Aufgabe N1 (LR-Zerlegung mit Pivotisierung) Gegeben seien R 3.

Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV Aufgabe N1 (LR-Zerlegung mit Pivotisierung) Gegeben seien R 3. Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV 7.7.6 Aufgabe N (LR-Zerlegung mit Pivotisierung) Gegeben seien 6 8 A = 8 6 R und b = 6 R. a) Berechnen Sie die LR-Zerlegung von A mit Spaltenpivotisierung.

Mehr

D-MAVT NUMERISCHE MATHEMATIK FS 14 K. Nipp, A. Hiltebrand Lösung vom Test 2

D-MAVT NUMERISCHE MATHEMATIK FS 14 K. Nipp, A. Hiltebrand Lösung vom Test 2 D-MAVT NUMERISCHE MATHEMATIK FS 4 K Nipp, A Hiltebrand Lösung vom Test Sei A ( 3 3 ) a) Bestimmen Sie κ(a), die Kondition von A (in der -Norm): κ(a) b) Berechnen Sie den Spektralradius von A: ρ(a) 4 c)

Mehr

Leseprobe. Hans-Jochen Bartsch. Taschenbuch mathematischer Formeln für Ingenieure und Naturwissenschaftler. ISBN (Buch):

Leseprobe. Hans-Jochen Bartsch. Taschenbuch mathematischer Formeln für Ingenieure und Naturwissenschaftler. ISBN (Buch): Leseprobe Hans-Jochen Bartsch Taschenbuch mathematischer Formeln für Ingenieure und Naturwissenschaftler ISBN (Buch): 978-3-446-43800-2 ISBN (E-Book): 978-3-446-43735-7 Weitere Informationen oder Bestellungen

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b

Mehr

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

Diplom VP Numerik 27. August 2007

Diplom VP Numerik 27. August 2007 Diplom VP Numerik 27. August 2007 Multiple-Choice-Test 30 Punkte Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine einzige Aussage angekreuzt, gilt diese

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen IGPM RWTH Aachen Institut für Geometrie und Praktische Mathematik Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen

Mehr

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016 Verständnisfragen-Teil ( Punkte) Jeder der Verständnisfragenblöcke besteht aus Verständnisfragen. Werden alle Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block Punkte.

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Nichtlineare Gleichungssysteme Jetzt: Numerische Behandlung nichtlinearer GS f 1 (x 1,..., x n ) =0. f n (x 1,..., x n ) =0 oder kurz f(x) = 0 mit f : R n R n Bemerkung: Neben dem direkten Entstehen bei

Mehr

Numerische Mathematik

Numerische Mathematik Michael Knorrenschild Mathematik-Studienhilfen Numerische Mathematik Eine beispielorientierte Einführung 6., aktualisierte und erweiterte Auflage 1.1 Grundbegriffe und Gleitpunktarithmetik 15 second, also

Mehr

Diplom VP Numerik 21. März 2005

Diplom VP Numerik 21. März 2005 Diplom VP Numerik. März 5 Aufgabe Gegeben sei das lineare Gleichungssystem Ax = b mit A = 3 3 4 8 und b = 4 5.5 6. ( Punkte) a) Berechnen Sie die LR-Zerlegung von A mit Spaltenpivotisierung. Geben Sie

Mehr

Erweiterungen der LR-Zerlegung

Erweiterungen der LR-Zerlegung Prof. Thomas Richter 6. Juli 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomas.richter@ovgu.de Material zur Vorlesung Algorithmische Mathematik II am 06.07.2017 Erweiterungen

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Institut für Geometrie und Praktische Mathematik Diplom VP Numerik 13. September 004 Aufgabe 1 10 0 40 Gegeben sei die Matrix A = 80 10 10. 10 5 5 (6 Punkte) a) Skalieren (Zeilenäquilibrierung)

Mehr

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR LR-Zerlegung bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR Definition 2.17 Unter einer LR-Zerlegung einer Matrix A R n n verstehen wir eine

Mehr

4 Numerische Lösung nichtlinearer Gleichungssysteme Problemstellung Das Newton-Verfahren für Systeme... 66

4 Numerische Lösung nichtlinearer Gleichungssysteme Problemstellung Das Newton-Verfahren für Systeme... 66 Inhaltsverzeichnis 1 Rechnerarithmetik und Gleitpunktzahlen 9 1.1 Grundbegriffe und Gleitpunktarithmetik............ 9 1.2 Auslöschung............................ 16 1.3 Fehlerrechnung..........................

Mehr

Begleitmaterial zur Vorlesung Numerik I

Begleitmaterial zur Vorlesung Numerik I Begleitmaterial zur Vorlesung Numerik I Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik I 1 / 49 Inhalte der Numerik

Mehr

6. Polynom-Interpolation

6. Polynom-Interpolation 6. Polynom-Interpolation 1 6.1. Klassische Polynom-Interpolation 2 6.2. Lösung mit Hilfe Lagrange scher Basisfunktionen 3 6.3. Lösung mit Hilfe Newton scher Basisfunktionen 4 6.4. Fehlerabschätzung für

Mehr

Numerische Mathematik

Numerische Mathematik Numerische Mathematik Eine beispielorientierte Einführung von Michael Knorrenschild 1. Auflage Numerische Mathematik Knorrenschild schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Verständnisfragen-Teil Institut für Geometrie und Praktische Mathematik 4 Punkte Es gibt zu jeder der Aufgaben vier Teilaufgaben. Diese sind mit bzw. zu kennzeichnen hinschreiben. Es müssen

Mehr

Vektor und Matrixnormen Vorlesung vom

Vektor und Matrixnormen Vorlesung vom Vektor und Matrixnormen Vorlesung vom 18.12.15 Grundlagen: Matrix Vektor und Matrixprodukt. Lineare Räume. Beispiele. Problem: Berechne die Lösung x von Ax = b zu gegebenem A R n,n und b R n. Ziele: Konditionsanalyse

Mehr

VF-3: Gegeben seien die Daten f(x 0 ), f(x 1 ),..., f(x n ) mit x 0,..., x n paarweise verschiedenen und

VF-3: Gegeben seien die Daten f(x 0 ), f(x 1 ),..., f(x n ) mit x 0,..., x n paarweise verschiedenen und IGPM RWTH Aachen Verständnisfragen-Teil NumaMB F10 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Aussagen Diese sind mit wahr bzw falsch zu kennzeichnen (hinschreiben) Es müssen alle Fragen mit wahr

Mehr

Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min)

Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min) Lehrstuhl für Angewandte Mathematik Montanuniversität Leoben 70 004 Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan. 207 2:00-4:00 (20 min) Name Matrikelnummer Mündliche Prüfung: Bitte markieren

Mehr

Diplom VP Numerik 28. August 2006

Diplom VP Numerik 28. August 2006 Diplom VP Numerik 8. August 6 Multiple-Choice-Test Punkte) Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine einzige Aussage angekreuzt, gilt diese Aufgabe

Mehr

Kapitel 5 Nichtlineare Gleichungssysteme und Iterationen

Kapitel 5 Nichtlineare Gleichungssysteme und Iterationen Kapitel 5 Nichtlineare Gleichungssysteme und Iterationen Wir betrachten das System f() = 0 von n skalaren Gleichungen f i ( 1,..., n ) = 0, i = 1,..., n. Gesucht: Nullstelle von f() = 0. Es sei (0) eine

Mehr

Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV 6.8.005 1 Aufgabe N1 Gegeben seien A = 5-10 -5-10 8-10 -5-10 13 R 3 3 und b = a) Überprüfen Sie, ob die Matrix A positiv definit ist. b) Bestimmen

Mehr

Teil 6. Differentialrechnung mehrerer Veränderlicher

Teil 6. Differentialrechnung mehrerer Veränderlicher Teil 6 Differentialrechnung mehrerer Veränderlicher 95 96 6.1 Topologie von Mengen Umgebung ε-umgebung eines Punktes x R n : B ε (x) = {y : y x < ε} Umgebung U von x: Menge, die eine ε-umgebung von x enthält

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 6/7 837 Aufgabe Punkte): Gegeben sei das lineare Gleichungssystem Ax = b mit A = 6 3 und

Mehr

Orthogonale Matrix. Definition 4.19

Orthogonale Matrix. Definition 4.19 Orthogonale Matrix Ausgleichsprobleme sind häufig schlecht konditioniert. Matrix des Normalengleichungssystems kann nahezu singulär sein. Spezielle Matrixzerlegung für höhere numerische Stabilität: QR-Zerlegung

Mehr

Vorkurs Mathematik Übungen zu linearen Gleichungssystemen

Vorkurs Mathematik Übungen zu linearen Gleichungssystemen Vorkurs Mathematik Übungen zu linearen Gleichungssystemen Lineare Gleichungssysteme lösen Aufgabe. Lösen sie jeweils das LGS A x = b mit ( ( a A =, b = b A =, b = 6 Aufgabe. Berechnen Sie für die folgenden

Mehr

(d) das zu Grunde liegende Problem gut konditioniert ist.

(d) das zu Grunde liegende Problem gut konditioniert ist. Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt

Mehr

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2. MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw

Mehr

Klausur Numerische Mathematik (für Elektrotechniker), Samstag, 19. August 2017

Klausur Numerische Mathematik (für Elektrotechniker), Samstag, 19. August 2017 Verständnisfragen-Teil (5 Punkte) Jeder der 5 Verständnisfragenblöcke besteht aus 5 Verständnisfragen. Werden alle 5 Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block

Mehr

Numerische Mathematik I: Grundlagen

Numerische Mathematik I: Grundlagen Numerische Mathematik I: Grundlagen 09.10.2017 Inhalt der Lehrveranstaltung Inhaltlich sollen Sie in der Lehrveranstaltung Numerische Mathematik I insbesondere vertraut gemacht werden mit der Numerik linearer

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 4. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 17. März 2016 Lineare Gleichungssysteme 1 Wiederholung: Normen, Jacobi-Matrix,

Mehr

7. Nichtlineare Gleichngssysteme. Problem 7: Sei f : R n R n stetig. Löse f(x) = 0.

7. Nichtlineare Gleichngssysteme. Problem 7: Sei f : R n R n stetig. Löse f(x) = 0. 7. Nichtlineare Gleichngssysteme Problem 7: Sei f : R n R n stetig. Löse f(x) = 0. Das Gleichungssystem f(x) = 0 lässt sich in die Fixpunktgleichung x = φ(x) umschreiben, wobei φ : D R n R n. Beispielsweise

Mehr

5 Randwertprobleme. y = f(t, y, y ) für t J, (5.2a) y(t 0 ) = y 0, y(t) = y T (5.2b) zu gegebener Funktion f und Werten y 0, y T.

5 Randwertprobleme. y = f(t, y, y ) für t J, (5.2a) y(t 0 ) = y 0, y(t) = y T (5.2b) zu gegebener Funktion f und Werten y 0, y T. 5 Randwertprobleme Bei den bisher betrachteten Problemen handelte es sich um Anfangswertprobleme. In der Praxis treten, insbesondere bei Differentialgleichungen höherer Ordnung, auch Randwertprobleme auf.

Mehr

Vektor und Matrixnormen Vorlesung vom

Vektor und Matrixnormen Vorlesung vom Vektor und Matrixnormen Vorlesung vom 20.12.13 Grundlagen: Matrix Vektor und Matrixprodukt. Lineare Räume. Beispiele. Problem: Berechne die Lösung x von Ax = b zu gegebenem A R n,n und b R n. Ziele: Konditionsanalyse

Mehr

Wirtschaftsmathematik Formelsammlung

Wirtschaftsmathematik Formelsammlung Wirtschaftsmathematik Formelsammlung Binomische Formeln Stand März 2019 (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) (a b) = a 2 b 2 Fakultät (Faktorielle) n! = 1 2 3 4 (n 1) n Intervalle

Mehr

f(x) dx soll numerisch approximiert werden durch eine

f(x) dx soll numerisch approximiert werden durch eine NumaMB H4 Verständnisfragen-Teil (4 Punkte) Es gibt zu jeder der Aufgaben vier Teilaufgaben. Diese sind mit bzw. zu kennzeichnen (hinschreiben). Bewertung: Vier Fragen richtig beantwortet ergibt Punkte.

Mehr

UE Numerische Mathematik für LA

UE Numerische Mathematik für LA 06.986 UE Numerische Mathematik für LA Übungsbeispiele zur VO 06.942 Numerische Math für LA G. Schranz-Kirlinger Kapitel : Fehlerbetrachtungen. Berechnen Sie sinx dx mit Hilfe der Trapezregel für verschiedene

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

Iterative Verfahren, Splittingmethoden

Iterative Verfahren, Splittingmethoden Iterative Verfahren, Splittingmethoden Theodor Müller 19. April 2005 Sei ein lineares Gleichungssystem der Form Ax = b b C n, A C n n ( ) gegeben. Es sind direkte Verfahren bekannt, die ein solches Gleichungssystem

Mehr

1.4 Stabilität der Gauß-Elimination

1.4 Stabilität der Gauß-Elimination KAPIEL 1. LINEARE GLEICHUNGSSYSEME 18 1.4 Stabilität der Gauß-Elimination Bezeichne x die exakte Lösung von Ax = b bzw. ˆx die mit einem (zunächst beliebigen Algorithmus berechnete Näherungslösung (inklusive

Mehr

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit A Analysis, Woche 9 Mehrdimensionale Differentialrechnung I A 9. Differenzierbarkeit A3 =. (9.) Definition 9. Sei U R m offen, f : U R n eine Funktion und a R m. Die Funktion f heißt differenzierbar in

Mehr

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle.

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle. 10 Funktionen mit mehreren Variablen www.mathematik-fuer-ingenieure.de 2010 und, Esslingen Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 26/7 (2.3.27). (a) Bestimmen Sie die kartesische Form von z = 5i 2i und z 2 = ( ) 9 3 2 2 i. (b) Bestimmen Sie sämtliche

Mehr

Formelsammlung Numerik

Formelsammlung Numerik Formelsammlung Numerik Fachbereich Design und Informatik Fachhochschule Trier University of Applied Sciences - 1-1 Grundlagen 1. Festlegungen: x - exakter Wert x - Näherungswert 2. Wahrer Fehler: 3. Absoluter

Mehr

Zusammenfassung Numerische Mathematik für Elektrotechniker

Zusammenfassung Numerische Mathematik für Elektrotechniker Zusammenfassung Numerische Mathematik für Elektrotechniker RWTH Aachen, SS 2006, Prof. Dr. W. Dahmen c 2006 by Sebastian Strache, Ralf Wilke Korrekturen bitte an Ralf.Wilke@rwth-aachen.de 27. August 2006

Mehr

Multiplikationen und Divisionen Hauptarbeit des Algorithmus liegt somit in der Berechnung der LR-Zerlegung. (n 1)n(2n 1) 6. = n3 3 n2.

Multiplikationen und Divisionen Hauptarbeit des Algorithmus liegt somit in der Berechnung der LR-Zerlegung. (n 1)n(2n 1) 6. = n3 3 n2. KAPITEL LINEARE GLEICHUNGSSYSTEME 7 Rechenaufwand der LR-Zerlegung: A A : n Divisionen, n 2 Multiplikationen und Additionen A L, R: Also insgesamt n j= j2 + j = n3 3 n 3 Multiplikationen und Divisionen

Mehr

Leseprobe. Michael Knorrenschild. Numerische Mathematik. Eine beispielorientierte Einführung. ISBN (Buch):

Leseprobe. Michael Knorrenschild. Numerische Mathematik. Eine beispielorientierte Einführung. ISBN (Buch): Leseprobe Michael Knorrenschild Numerische Mathematik Eine beispielorientierte Einführung ISBN (Buch): 978-3-446-45161-2 ISBN (E-Book): 978-3-446-45261-9 Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-45161-2

Mehr

6 Polynominterpolation

6 Polynominterpolation Vorlesungsskript HM-Numerik (SS 2014): Kapitel 6 Version: 1 Juli 2014 6 Polynominterpolation Gegeben: Wertepaare { (x i,f i ) R 2 i = 0,,n } Gesucht: Einfache Funktion g : R R mit g(x i ) = f i i {0,1,,n}

Mehr

Computergestützte Mathematik zur Linearen Algebra

Computergestützte Mathematik zur Linearen Algebra Computergestützte Mathematik zur Linearen Algebra Pivotwahl und Gleitkommaarithmetik Achim Schädle 3. und 20. Dezember 208 Achim Schaedle (HHU) CompLinA 3. und 20. Dezember 208 Instabilitäten bei Gauß-Elimination

Mehr

Klassische Polynom Interpolation.

Klassische Polynom Interpolation. Klassische Polynom Interpolation. Bestimme ein Polynom (höchstens) n ten Grades p n (x) = a 0 + a 1 x + a 2 x 2 +... + a n x n, das die gegebenen Daten interpoliert, d.h. p n (x i ) = f i, 0 i n. Erster

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Betrachtet wird eine (n,n)-matrix A. Eine Zahl λ heißt Eigenwert von A, wenn ein Vektor v existiert, der nicht der Nullvektor ist und für den gilt: A v = λ v.

Mehr

Unter den endlich vielen Maschinenzahlen gibt es zwangsläufig eine größte und eine kleinste:

Unter den endlich vielen Maschinenzahlen gibt es zwangsläufig eine größte und eine kleinste: 1.1 Grundbegriffe und Gleitpunktarithmetik 11 Aufgaben 1.4 Bestimmen Sie alle dualen 3-stelligen Gleitpunktzahlen mit einstelligem Exponenten sowie ihren dezimalen Wert. Hinweis: Sie sollten 9 finden.

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 2 Nichtlineare Gleichungssysteme Problem: Für vorgegebene Abbildung f : D R n R n finde R n mit oder ausführlicher f() = 0 (21) f 1 ( 1,, n ) = 0, f n ( 1,, n ) = 0 Einerseits führt die mathematische

Mehr

Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Eine kurze Einführung in Quasi Newton Verfahren

Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Eine kurze Einführung in Quasi Newton Verfahren Ergänzungen zu dem Buch Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben von Carl Geiger und Christian Kanzow (Springer Verlag, 1999) Eine kurze Einführung in Quasi Newton Verfahren

Mehr

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b.

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b. NumaMB F14 Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Bewertung: Vier Fragen richtig beantwortet

Mehr

Lösung Semesterendprüfung

Lösung Semesterendprüfung MNUM Mathematik: Numerische Methoden Herbstsemester 17 Dr Christoph Kirsch ZHAW Winterthur Aufgabe 1 : Lösung Semesterendprüfung Wir schreiben zuerst die Gleichungen f(x i ; a, a 1, a y i, i 1,,, 1, als

Mehr

Kapitel 4: Interpolation Sei U eine Klasse von einfach strukturierten Funktionen, z.b.

Kapitel 4: Interpolation Sei U eine Klasse von einfach strukturierten Funktionen, z.b. Kapitel 4: Interpolation Sei U eine Klasse von einfach strukturierten Funktionen, z.b. - Polynome, - rationale Funktionen, - trigonometrische Polynome, - Splines. Interpolationsproblem 4: Sei f : [a,b]

Mehr

6. Numerische Lösung des. Nullstellenproblems

6. Numerische Lösung des. Nullstellenproblems 6. Numerische Lösung des Nullstellenproblems 1 Problemstellung Zwischenwertsatz: Sei f : [a,b] R stetig und c R mit f(a) c f(b) oder f(b) c f(a). Dann gibt es ein x [a,b] mit f(x) = c. Frage: Wie lässt

Mehr

Numerische Mathematik

Numerische Mathematik Michael Knorrenschild Mathematik-Studienhilfen Numerische Mathematik Eine beispielorientierte Einführung 5., aktualisierte Auflage Michael Knorrenschild Numerische Mathematik Mathematik - Studienhilfen

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

MODULPRÜFUNG MODUL MA 1302 Einführung in die Numerik

MODULPRÜFUNG MODUL MA 1302 Einführung in die Numerik ................ Note Name Vorname 1 I II Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Obige Angaben sind richtig: Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT

Mehr

Lineare Gleichungssysteme, Teil 2

Lineare Gleichungssysteme, Teil 2 Lineare Gleichungssysteme, Teil 2 11. Vorlesung 27.1.12 Lineare Gleichungssysteme Problem: Berechne die Lösung x von Ax = b zu gegebenem A R n,n und b R n. Ziele: Konditionsanalyse dieses Problems Stabilitätsanalyse

Mehr

(x x j ) R m [x] (3) x x j x k x j. R m [x]. (4)

(x x j ) R m [x] (3) x x j x k x j. R m [x]. (4) 33 Interpolation 147 33 Interpolation In vielen praktischen Anwendungen der Mathematik treten Funktionen f auf, deren Werte nur näherungsweise berechnet werden können oder sogar nur auf gewissen endlichen

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

Klausur Numerisches Rechnen ( ) (Musterlösung)

Klausur Numerisches Rechnen ( ) (Musterlösung) Rheinisch-Westfälische Technische Hochschule Aachen Institut für Geometrie und Praktische Mathematik Numerisches Rechnen WS 01/013 Prof. Dr. M. Grepl J. Berger, P. Esser, L. Zhang Klausur Numerisches Rechnen

Mehr

8 Interpolation. 8.1 Problemstellung. Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen. x 0 < x 1 <... < x n.

8 Interpolation. 8.1 Problemstellung. Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen. x 0 < x 1 <... < x n. 8 Interpolation 81 Problemstellung Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen x 0 < x 1 < < x n Eingabedaten: (x 0, f 0 ),(x 1, f 1 ),,(x n, f n ) Gegebene Daten (x j, f j ) Analysis

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

(a), für i = 1,..., n.

(a), für i = 1,..., n. .4 Extremwerte Definition Sei M R n eine Teilmenge, f : M R stetig, a M ein Punkt. f hat in a auf M ein relatives (oder lokales) Maximum bzw. ein relatives (oder lokales) Minimum, wenn es eine offene Umgebung

Mehr

Numerische Verfahren

Numerische Verfahren Numerische Verfahren Jens-Peter M. Zemke zemke@tu-harburg.de Institut für Numerische Simulation Technische Universität Hamburg-Harburg 08.04.2008 TUHH Jens-Peter M. Zemke Numerische Verfahren 1 / 68 Übersicht

Mehr

38 Iterative Verfahren für lineare Gleichungssysteme

38 Iterative Verfahren für lineare Gleichungssysteme 38 Iterative Verfahren für lineare Gleichungssysteme 38.1 Motivation Viele praktische Probleme führen auf sehr große lineare Gleichungssysteme, bei denen die Systemmatrix dünn besetzt ist, d. h. nur wenige

Mehr

Vorkurs Mathematik (Allgemein) Übungsaufgaben

Vorkurs Mathematik (Allgemein) Übungsaufgaben Justus-Liebig-Universität Gießen Fachbereich 07 Mathematisches Institut Vorkurs Mathematik (Allgemein) Übungsaufgaben PD Dr. Elena Berdysheva Aufgabe. a) Schreiben Sie die folgenden periodischen Dezimalzahlen

Mehr

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p Wiederholungsaufgaben Algorithmische Mathematik Sommersemester Prof. Dr. Beuchler Markus Burkow Übungsaufgaben Aufgabe. (Jacobi-Verfahren) Gegeben sei das lineare Gleichungssystem Ax b = für A =, b = 3.

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 5 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 21 Prof. Dr. Klaus Höllig (IMNG)

Mehr

Übungen zu Splines Lösungen zu Übung 20

Übungen zu Splines Lösungen zu Übung 20 Übungen zu Splines Lösungen zu Übung 20 20.1 Gegeben seien in der (x, y)-ebene die 1 Punkte: x i 6 5 4 2 1 0 1 2 4 5 6 y i 1 1 1 1 1 + 5 1 + 8 4 1 + 8 1 + 5 1 1 1 1 (a) Skizzieren Sie diese Punkte. (b)

Mehr

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 6. Juni 0 Prof. Dr. H. Brenner Mathematik für Anwender II Testklausur mit Lösungen Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Ein Skalarprodukt

Mehr

Einführung in die Numerik

Einführung in die Numerik Institut für Angewandte Mathematik Universität Heidelberg http://www.numerik.uni-hd.de/ lehre/ss10/numerik0/ Zahldarstellung Normalisierte Gleitkommazahl: x = ±[m 1 b 1 + + m r b r ] b ±[es 1bs 1 + +e

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München WiSe 07 / 08 Institut für Informatik Univ-Prof Dr Hans-Joachim Bungartz Michael Obersteiner Philipp Samfass Numerisches Programmieren, Übungen Musterlösung 3 Übungsblatt:

Mehr

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012)

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Technische Universität München Zentrum Mathematik, M1 Prof. Dr. Boris Vexler Dr. Ira Neitzel Dipl.-Math. Alana Kirchner 7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Diese Auswahl

Mehr

Mathematik für Anwender. Testklausur mit Lösungen

Mathematik für Anwender. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 4. Januar 0 Prof. Dr. H. Brenner Mathematik für Anwender Testklausur mit en Dauer: Zwei volle Stunden + 0 Minuten Orientierung, in denen noch nicht geschrieben werden

Mehr