u(s) := L - 1.,. 1 ~-t: - 1 -t t s~ U(8) = 8+1 Aufgabe 3 (15 Punkte)

Größe: px
Ab Seite anzeigen:

Download "u(s) := L - 1.,. 1 ~-t: - 1 -t t s~ U(8) = 8+1 Aufgabe 3 (15 Punkte)"

Transkript

1 Regelungstechnik Februar 2 Aufgabe 3 (5 Punkte) Seite 9 a) (3 Punkte) Berechnen Sie die inverse Laplacetransformierte u(t) der Funktion U(8) = ( ). u(s) := L -., s~ ~-t: - -t t

2 Regelungstechnik Februar 2 b) (4 Punkte) Ein PT Tt-System wird durch die ifferenzialgleichung Seite 2 beschrieben. Geben Sie das Ein-/Ausgangsverhalten des Systems in Form einer Übertragungsfunktion an. Bestimmen Sie, abhängig von den Parametern K, Tl, T, T und T t, die Eckfrequenzen unter Berücksichtigung der Bedingungen T < 4T und T > JTTr' TT Skizzieren Sie qualitativ das sich ergebene Bodediagramm und kennzeichnen Sie die Steigungen sowie die Eckfrequenzen des approximierten Verlaufes. 6(6) == k (is -rto T: sz.. ) ~S(f+T,~) - 7!:./7i:" - 4Tc Tl. ' 2 'r ; >, Ti < '-t Ti) =) T;t -l.f~ rl:, <. ~ S(),O~ ker?j..(j'e:-kerrfjleke )lultl5j.et::. (CmJ{J ~ek C8Y?iu~Q &c 2erOS) Wk freq U f! t; (wt-o{l fte9(jenc~) -, -r;

3 Regelungstechnik Februar 2 Seite 2 J _

4 Regelungstechnik Februar 2 Seite 22 c) (2 Punkte) Ein (Tbertragungselement mit PT-Verhalten werde mit einem Übertragungselement mit P Verhalten als Regler in Mitkopplung (positive Rückführung) geschaltet. Bestimmen Sie die Übertragungsfunktion des offenen Regelkreises Go (s). Gi ~,k ("..L) P; 7i-s G PT: :. ~ Go = k, kl. J~ + 7s lttjs (7T '$)( + t;),... 7j~ d) (3 Punkte) Ein Regelungssystem mit Gegenkopplung (negative Rückführung) soll untersucht werden. Es besteht aus einem stabilen PT 2 -System mit einem konjugiert-konplexen Polpaar sowie einem Regler mit PT-Verhalten. Begründen Sie an Hand der qualitativ gezeichneten Wurzelortskurve des Systems, dass das System für große Reglerverstärkungen instabil wird.,~ G _ k. ('Ti $ t ).PT:. T;:s (;S t,) ~ - _.L 2 R>le(pole&): S =) --2."'"., )Julls/(J,~ r. (WO).,;)- ~ PT;-SUSvn : POlpQOi ft,f~ (pair of poles) ~ ) kot:; ;.s;- ~ff RG(Jetkff.ß jf)$tab/l (WOk vejlqlaf-c,n rief ~M s-h-etlbelo-ulej

5 ~/-?_-::-_~? ---_ " Root Locus Root Loc:us , ~---., , , r-~-----, "'T"""':<.---, 5 ~ : i 's, j ' ' Real Axis _L L '------'------L--L L :a Real Axis RootLoc:us r , ,_---, 2 Root Locus , ~---.,... --_r_--..., 5 Root Loc:us r , r r , - -2 _ J l L--...L L Real Axis _2L ' ' _ Real Axis _...--_-'-_---'-_---.._ _...--_...-_ RealAxis RootLoc:us 4 -~-..., _- r----,... -,..._-_r_--, 3 Root Locus ,----,...-- r , , Root Loc:us ,---- r----._ , ~ _-'-_---'-_----'-_----' L...-_...-_...-_...J RealAxis Root Loc:us r------r--._-~ ,.2 L '- ----'- L J 25 ~2-5 5 _ l L L RealAxls 2 Root Locus Root Loc:us ,...--.,--., r ~---,_--..,..,----, RealAxls _ l l----l-_.l...-_...-_...l..._...3l RealAxis -5 L l '-.l l..j""--_--j Root Locus Root Loc:us 5r ,.----.,----r--.-~-.-..., , ( : r-- ~ '--_--'-_---J'--_...-_ _----L l RealAxis J l---J---l_----._----._----'-_---L_---.._-L_--J RüTJl.xis

6 Regelungstechnik Februar 2 Seite 23 e) (3 Punkte) Ein Regelungssystem in Gegenkopplung (negative Rückführung) bestehend aus einem stabilen PT 2 -System mit einem konjugiert-komplexen Polpaar sowie einem Regler mit T-Verhalten soll untersucht werden. Begründen Sie an Hand der qualitativ gezeichneten Wurzelortskurve des Systems welches Stabilitätsverhalten (instabil, grenzstabil, asymptotisch stabil) das geregelte System für sehr große Reglerverstärkungen aufweist. m, ~ ~ pr;. -S~o~ : PoLpaQ, (po. jr- of po/es ) G = k)s T., J;s-tl Pole (poles): }luu6~/m (~): pr. {J, (f)en~ k -) ~ wtäml-t N OK OYV m -,4-~ ~b arenu-sl;;qb/l

7 Lehrstuhl Steuerung, Regelung und Systemdynanik Regelungstechnik Februar 2 Seite 24 Aufgabe 4 (2 Punkte) Für einen Elektromotor soll eine Regelung für die Position <p des Rotors entworfen werden. ie Winkelgeschwindigkeit w(t) == <'p(t) des Rotors kann in Abhängigkeit der anliegenden Klemmenspannung u(t) näherungsweise durch T2 w(t) dt dt+t w(t) dt+w(t) = ku(t) dt+ k2 u(t) dt dt angegeben werden. ie Positionsregelung soll mit Hilfe eines Reglers mit dem Übertragungsverhalten ~ u(t) dt = kr <p(t) realisiert werden. er Regler wird in Gegenkopplung (egative Rückführung) zum Elektromotor verschaltet. a) (6 Punkte) Klassifizieren Sie das Übertragungsverhalten Gs(s) = ~i:? und GR(s) = ~i:~ von Strecke und Regler. Geben Sie die Übertragungsfunktion Go (s) des offenen Regelkreises an und klassifizieren Sie das resultierende Übertragungsverhalten..., PT~ ;. r..t -t V; y t 7f = Kot U "t' k":l. Ju. -=t> i lk :=. k{< <p =t;) -- G (S);:; <P~) - fk 2 t k, S t«(s) 4 7i " ~s + s ~~) G~ (5): <PCs) = kk 7 s Go(S) - (k 7 $ f <2.) Ti- k~ 5~ t Ti s -t 7,

8 Regelungstechnik Februar' 2 Seite 25 b) (2 Punkte) Geben Sie die Übertragungsfunktion G(s) für das Gesamtsystem (Elektromotor mit Positionsregelung in Gegenkopplung (negative Rückführung)) an und klassifizieren Sie das Übertragungsverhaten. ;. k~ (k f S + (~ 2 _ G(5).:: s2. t (; rl< r., k~) s + (Tz l' kz 7 k~) =l> PT L

9 Regelungstechnik Februar 2 Seite 26 c) (6 Punkte) rei Systeme werden jeweils mit einem P-Regler in Gegenkopplung (negative Rückführung) geschaltet. Für die Übertragungsfunktionen der offenen Regelkreise wurden folgende Pole und Nullstellen bestimmt: System : Nullstellen: 8 = -3 + i; 82 = -3 - i; 83 = 2 Polstellen: 8 = - + i; 82=--i; 83 =, System 2: Nullstellen: 8 = i; 82 = -2-2i Polstellen: 8 = + i; 82 = - i; 83 = -,; 84 =- System 3: Nullstellen: 8 = -2; 82 = - Polstellen: 8 = 2 + i; 82 = 2 - i Begründen Sie an Hand von qualitativ gezeichneten Wurzelortskurven, welches dieser Systeme im Hinblick auf Stabilität und ämpfungsmaximierung zu bevorzugen ist und stellen Sie für das entsprechende System die Übertragungsfunktion G(8) auf.. t 5ysJtm kann stp,bjt 9&t' l,.)ecj.ut., (S/,s!-tm G(s) = lan be. stab/l"~, ) s2 t 3.s t2. s2 -Lt~ S

10 Regelungstechnik Februar 2 d) (6 Punkte) Eine Regelstrecke GS(8) mit dem dynamischen Übertragungsverhalten Seite 27 G (8) - 4+ S soll mit einem Regler mit der gegebenen Übertragungsfunktion 4 GR(8) = durch negative Rückführung geregelt werden. Bestimmen Sie für das resultierende offene System die Übertragungsfunktion und geben Sie die zugehörigen Null- und Polstellen sowie qualitativ das Bodediagramm und die dazugehörige Ortskurve an. Bestimmen Sie im Bodediagramm grafisch den Phasen- und Amplitudenrand für das gegebene System. G(S) :;: l.t + lbs 2s~.,. t-s 3 + 7~t 2 S - -.J...5 = S == - LoS'" - ~= ,,) ) ~ Z. J:3 8nde diaqffjff,'tm) : s

11 Regelungstechnik Februar 2 Aufgabe 5 (25 Punkte) Ein Hydraulikmotor wird mit einer Verstärkereinheit in Reihe geschaltet (siehe Abb. 5.). Seite 29 u, ~_e_rs_t_är_k_er --Y-l---l~~ Hydraulikmotor r----y-2---~.. Abbildung 5.: System as Verhalten des Hydraulikmotors kann näherungsweise durch G (8) - H beschrieben werden. as Übertragungsverhalten des Verstärkers kann durch s beschrieben werden. Gv(s) = a) (9 Punkte) Geben Sie für das resultierende Gesamtsystem die Zustandsraumdarstelll.Jng sowie die Eigenwerte und mindestens zwei Eigenvektoren an., X.. N -, i lf } ~(~ :;::; - -~ -(, -4 ~ ~.. %.' X, ~tq) t J-, [S" OJ ~ ~=c,hor, pol~. ; l( At~ + '" ~3t b'a/ T lfl.,.,) == ~=O t ':.,., ~ :;~ - ;(,s ~ \

12 Regelungstechnik Februar 2 ~:=O o :::>.-=:: 4 = o t r ~ b ~ Seite 3 ~ :. -( \)2. :: ;-;) 'l.= -7 -: - ' b 3 ~ z.

13 Regelungstechnik Februar 2 Seite 3 Für die folgenden Betrachtungen wird eine vereinfachte Beschreibung der gegebenen Regelstrecke + _ G( ) TS 8 == T angenommen. Zur Regelung der Regelstrecke soll nun ein Regler in Gegenkopplung (negative Rückführung) mit dem Übertragungsverhalten GR(8) == K R(8 + 2) verwendet werden. b) (4 Punkte) Geben Sie für KR ==,2 und Tl == 3 die Hurwitz-Matrix für das geschlossene System an. Z S 2 t (4 t ~) S.,. M. Ge. (5):= 7i "Ti: 6'-t 'iss (6 r.2 ).5 t.q.'f ~ ::, 6+.2 ~ H= ~ ~ S- i ~ 6-t~ i 5'.2lL Ti:

14 Regelungstechnik Februar 2 Seite 33 d) (8 Punkte) er in b) beschriebene offene Regelkreis soll durch einen zusätzlichen P-Regler mit der Reglerverstärkung KRegler in negativer Rückkopplung geregelt werden. Für die Systemparameter gilt Tl == 5, T ==, und KR ==,. Zeichnen Sie für das resultierende System die Wurzelortskurve und bestimnen Sie i) für welchen Wertebereich für KRegler die Stabilität des geschlossenen Kreises garantiert werden kann und ii) für welchen Wertebereich für KRegler der geschlossene Kreis die maximale Systemdämpfung besitzt. s2t3~ t2 6(6) = - S" t ~ 6 3 t SoS'). t '2 s So, = - SO,:: - l 5, :: s = - Stt :' - -J Z;3 ),-r WOK (txjl;-- Loc.uS) t) t{~je,r > ( K(J)V)tro ier >) ü) "'t: VeJ~3U7'JSPV.Y q = - O.s (breakawaj fjyj'n:) KeB'ff (-O.S) ::. ~ =) KreßJ.er ~ ' O(l.J)Vr/yo[kJ) (~(Jmtro[leJ ) :

15 Regelungstechnik Februar 2 Seite 32 Nehmen Sie für das Übertragungsverhalten des geschlossenen Kreises im Folgenden die vereinfachte allgemeine Übertragungsfunktion an. G s _ los + ( ) - S4 + 4s 3 + 5s 2 + Tl S + c) (4 Punkte) Geben Sie an, für welche Werte für Tl der geschlossene Kreis stabil ist. (Hinweis: 9 < J84 < ) Q~ C, - H-4 a Ql. Cf 4t O qj a, q!f Ql qo ~ > Jf, > Htl > l.o-~ > =) ; < W }-l-3) > : -fii( < ; < tlf'i +') :::pt3 J ~ stab'-l J ~n (st:able ftjr)

16

17 Lehrstuhl Steuerug, Regelung und Systemdynamik Regelungstechnik Februar 2 Seite 34 Aufgabe 6 (2 Punkte) Gegeben sei das folgende Blockschaltbild eines Gleichstromantriebes mit den Parametern K == 5, Tl ==,5 sowie K 2 == 2, T 2 ==,2 und T == 2, die im Folgenden zu verwenden sind. F s r l M : K, Tl K 2, T 2 L : W(s) ~ Y(s) ---. Abbildung 6.: Blockschaltbild eines Gleichstromantriebes a) (3 Punkte) Geben Sie das Übertragungsverhalten der Regelstrecke Fs(s) an (M L == ) und berechnen Sie die Pol- und Nullstellen ~S F;= ) ( +, OOSS ) (, 25.s keine CV}f7e) Pole (po/es)" S,.: - 2J7 ) Sl-=- SO J s..!::.

18 UNVERSTÄT USBURG-ESSEN Regelungstechnik Februar 2 b) (3 Punkte) Seite 35. o -.' -.2' j m -.3' -.4'...,.. '.. ",.., -.5' ~~,,:., -.6',,'.,.,,'...,',..,',. ".",.,..,...,'... ".,.,..,,.,',...",..., -.7' -.8'... :- < : : o Re Abbildung 6.2: Ortskurve des offenen Systems Als Regler FR für das System in a) wird ein Element mit P-Übertragungsverhalten mit KR == 4 eingesetzt. Bestimmen Sie grafisch (durch Eizeichnen) aus der in Abb. 6.2 gegebenen Ortskurve des offenen Systems die Amplitudenreserve AR, die Phasenreserve epr sowie die Schnittfrequenz Ws. Geben Sie die jeweilig zugehörigen Werte an. ~ c}k '" 3 =J> Ae~ l,s ---- ~ ~' Jt( ~-c SO

19 Regelungstechnik Februar 2 Seite 36 c) (4 Punkte) Zeichnen Sie qualitativ das Bodediagramm des in a) bis b) gegebenen Systems und kennzeichnen Sie hierin die Amplitudenreserve AR und die Phasenreserve <PR sowie die Schnittfrequenz Ws. Geben Sie zusätzlich die Steigungen des Amplitudenganges entsprechend der Abschnitte an. -7J) dßbelt -/fo Q ~... \,

20 Regelungstechnik Februar 2 Seite 37 d) (5 Punkte) ie Strecke Fs aus a) soll nun mit einem Element mit PT Übertragungsverhalten mit T ==,2 sowie T ==, und K in Gegenkopplung (negative Rückführung) geregelt werden. Geben Sie die Übertragungsfunktionen für den Regler sowie für den offen Regelkreis an. Skizzieren Sie Clualitativ die Wurzelortskurve für das Gesamtsystem und zeichnen Sie K krit ein. P.7j : ~=J< +75 $. k!-to.c'2.s ", l+ts t,5 J~

21 Regelungstechnik Februar 2 Seite 38 e) (5 Punkte) Nehmen Sie für das Übertragungsverhalten des offenen Kreises im Folgenden die vereinfachte allgemeine Übertragungsfunktion Fo(s) = lok ( +,58)( +,8),28 an und bestimmen Sie K krit mit Hilfe der Hurwitz-Matrix. F; f = ~ tu? H", = :3 J2 e2. 'er k' le,s',> 2- le r k :=t> le.- K \ H-~.) > ~:...> \ l-~ :> \ e =tt k' > o <: k ~ 2~

180 Minuten Seite 1 Einlesezeit

180 Minuten Seite 1 Einlesezeit 18 Minuten Seite 1 Einlesezeit Für die urchsicht der Klausur wird eine Einlesezeit von 1 Minuten gewährt. Während dieser Zeitdauer ist es hnen nicht gestattet, mit der Bearbeitung der Aufgaben zu beginnen.

Mehr

180 Minuten Seite 1. Einlesezeit

180 Minuten Seite 1. Einlesezeit 180 Minuten Seite 1 Einlesezeit Für die Durchsicht der Klausur wird eine Einlesezeit von 10 Minuten gewährt. Während dieser Zeitdauer ist es Ihnen nicht gestattet, mit der Bearbeitung der Aufgaben zu beginnen.

Mehr

Seite 1 NAME VORNAME MATRIKEL-NR. Achtung: Schreiben Sie Ihre Antworten für die Aufgaben 1 bis 2 direkt unter den Fragen in den Fragebogen.

Seite 1 NAME VORNAME MATRIKEL-NR. Achtung: Schreiben Sie Ihre Antworten für die Aufgaben 1 bis 2 direkt unter den Fragen in den Fragebogen. 144 Minuten Seite 1 NAME VORNAME MATRIKEL-NR. Achtung: Schreiben Sie Ihre Antworten für die Aufgaben 1 bis 2 direkt unter den Fragen in den Fragebogen. Aufgabe 1 (je 2 Punkte) a) Definieren Sie die Begriffe

Mehr

90 Minuten Seite 1. Einlesezeit

90 Minuten Seite 1. Einlesezeit 90 Minuten Seite 1 Einlesezeit Für die Durchsicht der Klausur wird eine Einlesezeit von 10 Minuten gewährt. Während dieser Zeitdauer ist es Ihnen nicht gestattet, mit der Bearbeitung der Aufgaben zu beginnen.

Mehr

b) Stellen Sie die Funktion u(t) = 1(t 1) + 2(t 2) 3(t 3) grafisch dar.

b) Stellen Sie die Funktion u(t) = 1(t 1) + 2(t 2) 3(t 3) grafisch dar. 120 Minuten Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Definieren Sie die Begriffe Stellgröße und Führungsgröße. b) Stellen Sie die Funktion u(t) = 1(t 1) + 2(t 2) 3(t 3) grafisch dar.

Mehr

a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes.

a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes. 144 Minuten Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes. b) Was ist ein Mehrgrößensystem?

Mehr

Abt. Maschinenbau, Lehrstuhl Steuerung, Regelung und Systemdynamik

Abt. Maschinenbau, Lehrstuhl Steuerung, Regelung und Systemdynamik Regelungstechnik (Bachelor Wirtschaftsingenieurwesen) 120 Minuten Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Beschreiben Sie den Unterschied zwischen der Behandlung eines Signales im

Mehr

UNIVERSITÄT DUISBURG - ESSEN Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau, Professur für Steuerung, Regelung und Systemdynamik

UNIVERSITÄT DUISBURG - ESSEN Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau, Professur für Steuerung, Regelung und Systemdynamik Regelungstechnik I (PO95), Regelungstechnik (PO02 Schiffstechnik), Regelungstechnik (Bachelor Wi.-Ing.) (180 Minuten) Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Erläutern Sie anhand eines

Mehr

Aufgabe 1: Laplace-Transformation

Aufgabe 1: Laplace-Transformation Aufgabe 1: Laplace-Transformation (25 Punkte) a) Teilaufgabe: 15 Punkte Gegeben sei die folgende Differenzialgleichung dritter Ordnung: mit den Anfangswerten: y (3) (t) + 4 ÿ(t) + ẏ(t) 6 y(t) = 12 u(t)

Mehr

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s)

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s) Aufgabe : LAPLACE-Transformation Die Laplace-Transformierte der Sprungantwort ist: Y (s) = 0.5 s + (s + 3).5 (s + 4) Die Sprungantwort ist die Reaktion auf den Einheitssprung: w(t) = σ(t) W (s) = s Die

Mehr

x 1 + u y 2 = 2 0 x 2 + 4u 2.

x 1 + u y 2 = 2 0 x 2 + 4u 2. 3. Übung: Regelkreis Aufgabe 3.1. Gegeben sind die beiden linearen zeitkontinuierlichen Systeme 3 2 2 ẋ 1 = 6 5 x 1 + 1 u 1 6 2 3 [ ] y 1 = 2 x 1 (3.1a) (3.1b) und [ ] [ ] 8 15 1 ẋ 2 = x 2 + 6 1 4 [ ]

Mehr

Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik

Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik Brandenburgische Technische Universität Cottbus-Senftenberg Fakultät 1 Professur Systemtheorie Prof. Dr.-Ing. D. Döring Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik

Mehr

Prüfungsklausur. Grundlagen der Regelungstechnik I, II (PNR 2155) am von 10:00 12:00 Uhr

Prüfungsklausur. Grundlagen der Regelungstechnik I, II (PNR 2155) am von 10:00 12:00 Uhr Prüfungsklausur Grundlagen der Regelungstechnik I, II am 02.09.2017 von 10:00 12:00 Uhr Aufgabe 1 2 3 4 Summe Erreichbare Punkte 30 30 30 10 100 Erreichte Punktzahl Wichtig: Bitte beachten Sie! 1. Bitte

Mehr

Aufgabe 1: Sprungantwort und Ortskurve

Aufgabe 1: Sprungantwort und Ortskurve Aufgabe 1: Sprungantwort und Ortskurve Gegeben sei ein Übertragungssystem mit der Eingangsgröße u(t) und der Ausgangsgröße x(t): u(t) Übertragungssystem x(t) Der Zusammenhang zwischen Eingangsgröße u(t)

Mehr

Grundlagen der Regelungstechnik

Grundlagen der Regelungstechnik Grundlagen der Regelungstechnik Dr.-Ing. Georg von Wichert Siemens AG, Corporate Technology, München Termine Nächste Termine: 28.., 4.2. Wiederholung vom letzten Mal Regelkreis Geschlossener Regelkreis

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 8.5.5 Arbeitszeit: min Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3 4

Mehr

Schriftliche Prüfung aus Regelungstechnik am

Schriftliche Prüfung aus Regelungstechnik am U Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Regelungstechnik am 18. 10. 01 Name / Vorname(n): Matrikel-Nummer: Bonuspunkte aus den MALAB-Übungen: O ja O nein

Mehr

Regelungs- und Systemtechnik 1 - Übungsklausur 7

Regelungs- und Systemtechnik 1 - Übungsklausur 7 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Bearbeitungszeit: 12 Minuten Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben Sie mit dokumentenechtem Schreibgerät

Mehr

Schriftliche Prüfung aus Regelungstechnik 1 am

Schriftliche Prüfung aus Regelungstechnik 1 am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Regelungstechnik 1 am 24.01.2017 Name / Vorname(n): Matrikel-Nummer: Aufgabe A1 A2 A3 A4 A5 A6 A7 A8 Summe erreichbare

Mehr

Die Sprungantwort ist die Reaktion auf den Einheitssprung: G 2 (s) = 2 (s +1)(s +6) 3 (s +7)(s +2)

Die Sprungantwort ist die Reaktion auf den Einheitssprung: G 2 (s) = 2 (s +1)(s +6) 3 (s +7)(s +2) Aufgabe 1: Die Laplace-Transformierte der Sprungantwort ist: Y (s) = 1 s + (s +3) 3 (s +4) Die Sprungantwort ist die Reaktion auf den Einheitssprung: w(t) =σ(t) W (s) = 1 s Die Übertragungsfunktion des

Mehr

Zusammenfassung der 3. Vorlesung

Zusammenfassung der 3. Vorlesung Zusammenfassung der 3. Vorlesung Nyquist-Verfahren Motivation Ein mathematisches Modell der Strecke ist nicht notwendig Aussagen über die Stabilität des geschlossenen Regelkreises anhand des Frequenzgangs

Mehr

Lösungen zur 7. Übung

Lösungen zur 7. Übung Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Vladislav Nenchev M.Sc. Arne Passon Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte

Mehr

Regelungs- und Systemtechnik 1 - Übungsklausur 10

Regelungs- und Systemtechnik 1 - Übungsklausur 10 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Bearbeitungszeit: 2 Min Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben Sie mit dokumentenechtem Schreibgerät (Tinte

Mehr

Lösungen zur 8. Übung

Lösungen zur 8. Übung Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Vladislav Nenchev M.Sc. Arne Passon Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte

Mehr

Prüfungsklausur. Grundlagen der Regelungstechnik I, II (PNR 2155) am von 10:00 13:00 Uhr

Prüfungsklausur. Grundlagen der Regelungstechnik I, II (PNR 2155) am von 10:00 13:00 Uhr Prüfungsklausur Grundlagen der Regelungstechnik I, II am 03.09.016 von 10:00 13:00 Uhr Aufgabe 1 3 4 5 Summe Erreichbare Punkte 15 1 14 5 5 100 Erreichte Punktzahl Wichtig: Bitte beachten Sie! 1. Namen

Mehr

mit unbekannter Systemmatrix A. Die Transitionsmatrix zu obigem System lautet e t. 2 e t u(s) =

mit unbekannter Systemmatrix A. Die Transitionsmatrix zu obigem System lautet e t. 2 e t u(s) = 1. Teilklausur SS 18 Betrachten Sie folgendes mathematische Modell mit der Eingangsgröße u, der Ausgangsgröße und dem Zustandsvektor x [ ] dx 1 = Ax + bu = Ax + u = c T x + du = [ 1 0 ] x dt 0 mit unbekannter

Mehr

Regelungs- und Systemtechnik 1 - Übungsklausur 2

Regelungs- und Systemtechnik 1 - Übungsklausur 2 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Bearbeitungszeit: 12 Min Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben Sie mit dokumentenechtem Schreibgerät (Tinte

Mehr

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Regelungs- und Systemtechnik - Übung 6 Sommer 26 Vorbereitung Wiederholen Sie Vorlesungs- und Übungsinhalte zu folgenden Themen: Zeitkonstantenform

Mehr

x 1 + u y 2 = 2 0 x 2 + 4u 2.

x 1 + u y 2 = 2 0 x 2 + 4u 2. 3. Übung: gelkreis Aufgabe 3.. Gegeben sind die beiden linearen zeitkontinuierlichen Systeme 3 ẋ = 6 x + u 6 3 [ ] y = x (3.a) (3.b) und [ ] [ ] 8 ẋ = x + 6 4 [ ] y = x + 4u. u (3.a) (3.b) Berechnen Sie

Mehr

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Regelungs- und Systemtechnik - Übung 6 Sommer 26 Vorbereitung Wiederholen Sie Vorlesungs- und Übungsinhalte zu folgenden Themen: Standardregelkreis

Mehr

ka (s + c 0 )(s + c 1 )s 1 c 0 (c 0 c 1 ) e c 0t + lim = k R k max = π 4T t b2) und aus der Hauptlösung der Phasenbedingung die Reglerverstärkung

ka (s + c 0 )(s + c 1 )s 1 c 0 (c 0 c 1 ) e c 0t + lim = k R k max = π 4T t b2) und aus der Hauptlösung der Phasenbedingung die Reglerverstärkung Aufgabe 1: Systemanalyse a) Sprungantwort des Übertragungssystems: X(s) = ka (s + c 0 )(s + c 1 )s a1) Zeitlicher Verlauf der Sprungantwort: [ 1 x(t) = ka + c 0 c 1 a2) Man erhält dazu den Endwert: 1 c

Mehr

INSTITUT FÜR REGELUNGSTECHNIK

INSTITUT FÜR REGELUNGSTECHNIK Aufgabe 9: Regler mit schaltendem Stellglied führen auf besonders einfache technische Lösungen. Durch pulsbreitenmoduliertes Schalten mit genügend hoher Frequenz ist auch hier eine angenähert lineare Betriebsweise

Mehr

Lösungsvorschläge zur 3. Übung

Lösungsvorschläge zur 3. Übung Systemdynamik und Regelungstechnik II, SoSe 26 Prof. Dr. Ing. J. Adamy M.Sc. M. Bühler Lösungsvorschläge zur. Übung Aufgabe 2.2- a) Aus der Aufgabenstellung ergibt sich eine Übertragungsfunktion,5z +2

Mehr

Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen)

Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen) Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen) TU Bergakademie Freiberg Institut für Automatisierungstechnik Prof. Dr.-Ing. Andreas Rehkopf 27. Januar 2014 Übung 1 - Vorbereitung zum Praktikum

Mehr

Schriftliche Prüfung aus Regelungstechnik am

Schriftliche Prüfung aus Regelungstechnik am U Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Regelungstechnik am 1.10. 011 Name / Vorname(n): Kennzahl / Matrikel-Nummer: Bonuspunkte aus den MALAB-Übungen: O

Mehr

Bearbeitungszeit: 120 Min

Bearbeitungszeit: 120 Min 4 6 Fachgebiet gelungstechnik Leiter: Prof. Dr.-Ing. Johann ger gelungs- und Systemtechnik - Übungsklausur 9 Bearbeitungszeit: Min Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben Sie

Mehr

Regelungstechnik I (WS 13/14) Klausur ( )

Regelungstechnik I (WS 13/14) Klausur ( ) Regelungstechnik I (WS 13/14) Klausur (13.03.2014) Prof. Dr. Ing. habil. Thomas Meurer Lehrstuhl für Regelungstechnik Name: Matrikelnummer: Bitte beachten Sie: a) Diese Klausur enthält 4 Aufgaben auf den

Mehr

60 Minuten Seite 1. Einlesezeit

60 Minuten Seite 1. Einlesezeit 60 Minuten Seite 1 Einlesezeit Für die Durchsicht der Klausur wird eine Einlesezeit von 10 Minuten gewährt. Während dieser Zeitdauer ist es Ihnen nicht gestattet, mit der Bearbeitung der Aufgaben zu beginnen.

Mehr

MAS Automation Management

MAS Automation Management MAS Automation Management Modul: A-NLE Winterthur, 27.1./ 3.2.217 Ruprecht Altenburger, altb@zhaw.ch Lineare Regelung an einem einfachen Beispiel erstellt für das Frühlingssemester 215; Version vom 12.

Mehr

Aufgabe 1: Laplace-Transformation

Aufgabe 1: Laplace-Transformation Aufgabe 1: Laplace-Transformation (15 Punkte) Ein technisches System sei gegeben durch folgende Differentialgleichung 3.Ordnung: y (t)+6ÿ(t)+12ẏ(t)+8y(t) =2ü(t)+1 u(t)+8u(t). Dieses System wird eingangsseitig

Mehr

Bearbeitungszeit: 120 Min

Bearbeitungszeit: 120 Min 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Regelungs- und Systemtechnik 1 - Übungsklausur 6 Bearbeitungszeit: 120 Min Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben

Mehr

Regelungs- und Systemtechnik 1 - Übungsklausur 16

Regelungs- und Systemtechnik 1 - Übungsklausur 16 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Bearbeitungszeit: Min Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben Sie mit dokumentenechtem Schreibgerät (Tinte

Mehr

Name: Vorname(n): Matrikelnummer: Aufgabe erreichbare Punkte erreichte Punkte Punkte aus Übungsmitarbeit Gesamtpunktanzahl

Name: Vorname(n): Matrikelnummer: Aufgabe erreichbare Punkte erreichte Punkte Punkte aus Übungsmitarbeit Gesamtpunktanzahl Universität des Saarlandes, Lehrstuhl für Systemtheorie und Regelungstechnik SCHRIFTLICHE PRÜFUNG aus SYSTEMTHEORIE UND REGELUNGSTECHNIK I am 3.0.007 Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3 4

Mehr

Lösungen zur 8. Übung

Lösungen zur 8. Übung Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Vladislav Nenchev M.Sc. Arne Passon Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte

Mehr

() 2. K I Aufgabe 5: x(t) W(s) - X(s) G 1 (s) Z 1 (s) Z 2 (s) G 3 (s) G 2 (s) G 4 (s) X(s)

() 2. K I Aufgabe 5: x(t) W(s) - X(s) G 1 (s) Z 1 (s) Z 2 (s) G 3 (s) G 2 (s) G 4 (s) X(s) Seite 1 von 2 Name: Matr. Nr.: Note: Punkte: Aufgabe 1: Ermitteln Sie durch grafische Umwandlung des dargestellten Systems die Übertragungsfunktion X () G s =. Z s 2 () W(s) G 1 (s) G 2 (s) Z 1 (s) G 3

Mehr

Name: Vorname(n): Matrikelnummer: Aufgabe erreichbare Punkte erreichte Punkte Punkte aus Übungsmitarbeit Gesamtpunktanzahl

Name: Vorname(n): Matrikelnummer: Aufgabe erreichbare Punkte erreichte Punkte Punkte aus Übungsmitarbeit Gesamtpunktanzahl Universität des Saarlandes, Lehrstuhl für Systemtheorie und Regelungstechnik SCHRIFTLICHE PRÜFUNG aus SYSTEMTHEORIE UND REGELUNGSTECHNIK I am 28.7.26 Name: Vorname(n): Matrikelnummer: Note: Aufgabe 2 3

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 3..7 Arbeitszeit: 5 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3

Mehr

Regelungs- und Systemtechnik 1 - Übungsklausur 1

Regelungs- und Systemtechnik 1 - Übungsklausur 1 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Bearbeitungszeit: 1 Min Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben Sie mit dokumentenechtem Schreibgerät (Tinte

Mehr

b) Ist das System zeitvariant oder zeitinvariant? (Begründung!) c) Bestimmen Sie mit Hilfe der LAPLACE-Transformation die Übertragungsfunktion

b) Ist das System zeitvariant oder zeitinvariant? (Begründung!) c) Bestimmen Sie mit Hilfe der LAPLACE-Transformation die Übertragungsfunktion Aufgabe 1: Systemanalyse Ein dynamisches System mit der Eingangsgröße u(t) und der Ausgangsgröße y(t) werde durch die folgenden gekoppelten Gleichungen beschrieben, wobei y 1 (t) eine Zwischengröße ist:

Mehr

SYNTHESE LINEARER REGELUNGEN

SYNTHESE LINEARER REGELUNGEN Synthese Linearer Regelungen - Formelsammlung von 8 SYNTHESE LINEARER REGELUNGEN FORMELSAMMLUNG UND MERKZETTEL INHALT 2 Grundlagen... 2 2. Mathematische Grundlagen... 2 2.2 Bewegungsgleichungen... 2 2.3

Mehr

Regelungs- und Systemtechnik 1 - Übung 5 Sommer 2016

Regelungs- und Systemtechnik 1 - Übung 5 Sommer 2016 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Regelungs- und Systemtechnik 1 - Übung 5 Sommer 216 Vorbereitung Wiederholen Sie Vorlesungs- und Übungsinhalte zu folgenden Themen: Skizzieren

Mehr

Beantworten Sie die folgenden Fragen bitte kurz und präzise. Es sind keine längeren Ausführungen erforderlich!

Beantworten Sie die folgenden Fragen bitte kurz und präzise. Es sind keine längeren Ausführungen erforderlich! Aufgabe 1: Verständnisfragen (14 Punkte) Beantworten Sie die folgenden Fragen bitte kurz und präzise Es sind keine längeren Ausführungen erforderlich! Erläutern Sie die Begriffe Regelabweichung und Steuergröße

Mehr

Schriftliche Prüfung aus Regelungstechnik am

Schriftliche Prüfung aus Regelungstechnik am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Regelungstechnik am 25.09.2014 Name / Vorname(n): Matrikel-Nummer: Bonuspunkte aus den Matlab-Übungen: ja nein 1

Mehr

Zusammenfassung der 7. Vorlesung

Zusammenfassung der 7. Vorlesung Zusammenfassung der 7. Vorlesung Steuer- und Erreichbarkeit zeitdiskreter Systeme Bei zeitdiskreten Systemen sind Steuer-und Erreichbarkeit keine äquivalente Eigenschaften. Die Erfüllung des Kalmankriteriums

Mehr

3. Beschreibung dynamischer Systeme im Frequenzbereich

3. Beschreibung dynamischer Systeme im Frequenzbereich 3. Laplace-Transformation 3. Frequenzgang 3.3 Übertragungsfunktion Quelle: K.-D. Tieste, O.Romberg: Keine Panik vor Regelungstechnik!.Auflage, Vieweg&Teubner, Campus Friedrichshafen --- Regelungstechnik

Mehr

Zusammenfassung der 3. Vorlesung

Zusammenfassung der 3. Vorlesung Zusammenfassung der 3. Vorlesung Nyquist-Verfahren Motivation Ein mathematisches Modell der Strecke ist nicht notwendig Aussagen über die Stabilität des geschlossenen Regelkreises anhand des Frequenzgangs

Mehr

Schriftliche Prüfung aus Regelungssysteme am

Schriftliche Prüfung aus Regelungssysteme am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Regelungssysteme am 12.10.2018 Name / Vorname(n): Matrikel-Nummer: Aufgabe A1 A2 A3 A4 A5 A6 A7 A8 Summe erreichbare

Mehr

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Regelungstechnik B. Prof. Dr. techn. F. Gausch Dipl.-Ing. C.

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Regelungstechnik B. Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Institut für Elektrotechnik und Informationstechnik Aufgabensammlung zur Regelungstechnik B Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Balewski 10.03.2011 Übungsaufgaben zur Regelungstechnik B Aufgabe 0

Mehr

Klausur im Fach: Regelungs- und Systemtechnik 1

Klausur im Fach: Regelungs- und Systemtechnik 1 (in Druckschrift ausfüllen!) Univ.-Prof. Dr.-Ing. habil. Ch. Ament Name: Vorname: Matr.-Nr.: Sem.-Gr.: Anzahl der abgegebenen Blätter: 3 Klausur im Fach: Prüfungstermin: 26.03.2013 Prüfungszeit: 11:30

Mehr

Gegeben sei folgender Regelkreis mit der Führungsgröße r, der Stellgröße u und der Ausgangsgröße. q r u y. R(s)

Gegeben sei folgender Regelkreis mit der Führungsgröße r, der Stellgröße u und der Ausgangsgröße. q r u y. R(s) 2. Teilklausur WS 17/18 Gruppe A Name: Matr.-Nr.: Aufgabe 1 (6 Punkte) Gegeben sei folgender Regelkreis mit der Führungsgröße r, der Stellgröße u und der Ausgangsgröße y: q r u y V (s) P (s) R(s) Auf den

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 26.06.2015 Arbeitszeit: 120 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

handelt es sich um einen Einheitssprung. mit Hilfe der Laplace- Rücktransformation, wenn alle Anfangswerte zu Null gesetzt werden:

handelt es sich um einen Einheitssprung. mit Hilfe der Laplace- Rücktransformation, wenn alle Anfangswerte zu Null gesetzt werden: Aufgabe 1: Laplace-Transformation (10 Punkte) Gegeben sei ein System, dessen dynamisches Verhalten durch folgende Differentialgleichung beschrieben wird: y ( 1y ( 3y( 3u(. Bei der Eingangsgröße u ( handelt

Mehr

Fachgebiet Mess- und Regelungstechnik

Fachgebiet Mess- und Regelungstechnik Letzte Aktualisierung Gesamtseitenanzahl 13.03.13 11 Dokument Titel: Repetitorium zur Vorlesung Mess- und Version: V1 Autor: Alexander Schrodt, Andreas Geiger Repetitorium: Aufgabe 1: Bode-Diagramm Gegeben

Mehr

Grundlagen der Regelungstechnik

Grundlagen der Regelungstechnik Grundlagen der Regelungstechnik Dr.-Ing. Georg von Wichert Siemens AG, Corporate Technology, München Termine Dies ist der letzte Termin in diesem Jahr 17.12.2004 fällt aus Nächste Termine: 14.1., 28.1.,

Mehr

8. Übung. 1 (s+1) 3 beschrieben. Der geschlossene Regelkreis soll folgende Anforderungen erfüllen: (i) asymptotische Stabilität

8. Übung. 1 (s+1) 3 beschrieben. Der geschlossene Regelkreis soll folgende Anforderungen erfüllen: (i) asymptotische Stabilität Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Anne-Kathrin Hess Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte Lehrveranstaltung

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am 04.02.20 Arbeitszeit: 20 min Name: Vorname(n): Matrikelnummer: Note:

Mehr

Stellen Sie für das im folgenden Signalflussbild dargestellte dynamische System ein Zustandsraummodell K

Stellen Sie für das im folgenden Signalflussbild dargestellte dynamische System ein Zustandsraummodell K Aufgaben Aufgabe : Stellen Sie für das im folgenden Signalflussbild dargestellte dnamische Sstem ein Zustandsraummodell auf. u 2 7 5 Aufgabe 2: Wir betrachten das folgende Regelsstem vierter Ordnung: r

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 8.7.211 Arbeitszeit: 12 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Regelung einer Luft-Temperatur-Regelstrecke

Regelung einer Luft-Temperatur-Regelstrecke Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Fachgebiet Regelungssysteme Leitung: Prof. Dr.-Ing. Jörg Raisch Praktikum Grundlagen der Regelungstechnik Regelung einer Luft-Temperatur-Regelstrecke

Mehr

von der Straßenkoordinate r zur Fahrzeugkoordinate x. Straßenoberfläche Initiale Referenz

von der Straßenkoordinate r zur Fahrzeugkoordinate x. Straßenoberfläche Initiale Referenz Regelungstechnik Klausur vom 9.2.23 Zoltán Zomotor Versionsstand: 3. Januar 24, 2:59 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3. Germany License. To view a

Mehr

Vorlesung 13. Die Frequenzkennlinien / Frequenzgang

Vorlesung 13. Die Frequenzkennlinien / Frequenzgang Vorlesung 3 Die Frequenzkennlinien / Frequenzgang Frequenzkennlinien geben das Antwortverhalten eines linearen Systems auf eine harmonische (sinusförmige) Anregung in Verstärkung (Amplitude) und Phasenverschiebung

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Name: Vorname(n): Matrikelnummer: Bitte... Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 3.11.18 Arbeitszeit: 15 min Aufgabe

Mehr

Übung 8 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN

Übung 8 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Übung 8 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Übungsleiter: Dr.-Ing. H.-D. Ribbecke

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am 10.12.2010 Arbeitszeit: 120 min Name: Vorname(n): Matrikelnummer:

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 08.07.016 Arbeitszeit: 10 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 4.3.11 Arbeitszeit: 1 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

NANO III - MSR. Steuern Regeln Regelkreis PID-Regler Dimensionierung eines PID Reglers. Themen: Nano III MSR Physics Basel, Michael Steinacher 1

NANO III - MSR. Steuern Regeln Regelkreis PID-Regler Dimensionierung eines PID Reglers. Themen: Nano III MSR Physics Basel, Michael Steinacher 1 NANO III - MSR Themen: Steuern Regeln Regelkreis PID-Regler Dimensionierung eines PID Reglers Nano III MSR Physics Basel, Michael Steinacher 1 Ziele 1. Unterschied Steuern Regeln 2. Was ist ein Regelkreis

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am..9 Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3 4 erreichbare

Mehr

Regelungstechnik I (WS 12/13) Klausur ( )

Regelungstechnik I (WS 12/13) Klausur ( ) Regelungstechnik I (WS 12/13) Klausur (05.03.2013) Prof. Dr. Ing. habil. Thomas Meurer Lehrstuhl für Regelungstechnik Name: Matrikelnummer: Bitte beachten Sie: a) Diese Klausur enthält 4 Aufgaben auf den

Mehr

Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s)

Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s) 1. Teilklausur SS 16 Gruppe A Name: Matr.-Nr.: Für beide Aufgaben gilt: Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s) y Aufgabe 1 (6

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 04 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 3.11.218 Arbeitszeit: 15 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 9.4.23 Arbeitszeit: 2 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Diplomhauptprüfung / Masterprüfung

Diplomhauptprüfung / Masterprüfung Diplomhauptprüfung / Masterprüfung "Regelung linearer Mehrgrößensysteme" 6. März 2009 Aufgabenblätter Die Lösungen sowie der vollständige und nachvollziehbare Lösungsweg sind in die dafür vorgesehenen

Mehr

Bildmaterial zur Vorlesung Regelungstechnik Teil III Der Regelkreis. Wintersemester 2014 Prof. Dr.-Ing. habil. Klaus-Peter Döge

Bildmaterial zur Vorlesung Regelungstechnik Teil III Der Regelkreis. Wintersemester 2014 Prof. Dr.-Ing. habil. Klaus-Peter Döge Bildmaterial zur Vorlesung Regelungstechnik Teil III Der Regelkreis Wintersemester 04 Prof. Dr.-Ing. habil. Klaus-Peter Döge Regelkreis nach DIN 96 Teil 5 Vereinfachter Regelkreis 3 Einführendes Beispiel

Mehr

Übung 5: Routh-Hurwitz und Nyquist Stabilitätskriterien

Übung 5: Routh-Hurwitz und Nyquist Stabilitätskriterien Übungsaufgaben zur Vorlesung Regelsysteme Herbstsemester 25 Übung 5: Routh-Hurwitz und Nyquist Stabilitätskriterien Prof. Dr. Manfred Morari, Prof. Dr. Florian Dörfler Institut für Automatik, ETH Zürich

Mehr

Klausur: Regelungs- und Systemtechnik 2

Klausur: Regelungs- und Systemtechnik 2 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Klausur: Regelungs- und Systemtechnik 2 Humboldt-Hörsaal Dienstag, den 07. 02. 2012 Beginn: 10.30 Uhr Bearbeitungszeit: 120 Minuten Modalitäten

Mehr

G S. p = = 1 T. =5 K R,db K R

G S. p = = 1 T. =5 K R,db K R TFH Berlin Regelungstechnik Seite von 0 Aufgabe 2: Gegeben: G R p =5 p 32ms p 32 ms G S p = p 250 ms p 8 ms. Gesucht ist das Bodediagramm von G S, G R und des offenen Regelkreises. 2. Bestimmen Sie Durchtrittsfrequenz

Mehr

Schriftliche Prüfung aus Control Systems 2 am

Schriftliche Prüfung aus Control Systems 2 am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Control Sstems 2 am 23.01.2014 Name / Vorname(n): Kennzahl / Matrikel-Nummer: Bonuspunkte aus den MATLAB-Übungen:

Mehr

6. Übung zur Vorlesung Steuer- und Regelungstechnik

6. Übung zur Vorlesung Steuer- und Regelungstechnik 6. Übung zur Vorlesung Steuer- und Regelungstechnik Einführung in die Blockschaltbild-Algebra Korbinian Figel Institut für Steuer- und Regelungstechnik Fakultät für Luft- und Raumfahrttechnik Universität

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 31.03.017 Arbeitszeit: 150 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Steuer- und und Regelungstechnik II

Steuer- und und Regelungstechnik II Steuer- und und Regelungstechnik II II Vorlesung: Dozent: Professor Ferdinand Svaricek Ort: Ort: 33/03 Zeit: Zeit: Mi Mi 8.5 8.5 9.45 9.45 Uhr Uhr Seminarübungen: Dozent: Dr. Dr. Klaus-Dieter Otto Otto

Mehr

2. VORDIPLOMPRÜFUNG / D-MAVT Musterlösung. Um die Note 6 zu erlangen, genügen 6 vollständig und richtig gelöste Aufgaben.

2. VORDIPLOMPRÜFUNG / D-MAVT Musterlösung. Um die Note 6 zu erlangen, genügen 6 vollständig und richtig gelöste Aufgaben. Institut für Mess- und Regeltechnik. VORDIPLOMPRÜFUNG / D-MAVT 8.. 3 REGELUNGSTECHNIK I Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: Zur Beachtung: Erlaubte Hilfsmittel: Minuten 8 (gleich

Mehr

14 Übungen zu Regelung im Zustandsraum Teil 2

14 Übungen zu Regelung im Zustandsraum Teil 2 Zoltán Zomotor Versionsstand: 9. März 25, :32 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3. Germany License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3./de/

Mehr

PRAKTIKUM REGELUNGSTECHNIK 2

PRAKTIKUM REGELUNGSTECHNIK 2 FACHHOCHSCHULE LANDSHUT Fachbereich Elektrotechnik Prof. Dr. G. Dorn PRAKTIKUM REGELUNGSTECHNIK 2 1 Versuch 4: Lageregelung eines Satelitten 1.1 Einleitung Betrachtet werde ein Satellit, dessen Lage im

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 205 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

Nr Prof. Dr. S. Zacher. Stabilitätsprüfung und Regler-Einstellung nach dem Zwei-Bode-Plots-Verfahren

Nr Prof. Dr. S. Zacher. Stabilitätsprüfung und Regler-Einstellung nach dem Zwei-Bode-Plots-Verfahren Automation-Letter Nr. 38 04.03.2018 Prof. Dr. S. Zacher Stabilitätsprüfung und Regler-Einstellung nach dem Zwei-Bode-Plots-Verfahren Die Konstruktion der negativ inversen Ortskurve ist recht unhandlich.

Mehr

Einführung in die Regelungstechnik

Einführung in die Regelungstechnik Heinz Mann f Horst Schiffelgen f Rainer Froriep Einführung in die Regelungstechnik Analoge und digitale Regelung, Fuzzy-Regler, Regler-Realisierung, Software 11., neu bearbeitete Auflage Mit 356 Bildern

Mehr