(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s)

Größe: px
Ab Seite anzeigen:

Download "(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s)"

Transkript

1 Aufgabe : LAPLACE-Transformation Die Laplace-Transformierte der Sprungantwort ist: Y (s) = 0.5 s + (s + 3).5 (s + 4) Die Sprungantwort ist die Reaktion auf den Einheitssprung: w(t) = σ(t) W (s) = s Die Übertragungsfunktion des Kreises lautet: G(s) = F w (s) = G (s)g 2 (s) + G (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) W (s) Bis auf G 2 (s) sind alle Laplace-Funktionen bekannt; somit ergibt sich: Daraus folgt eingesetzt: G 2 (s) = Y (s) W (s)g (s) Y (s)g (s)g 3 (s)g 4 (s) G 2 (s) = s + 2

2 Aufgabe 2: Ortskurve a) ( + 3s) F 0 (s) = k 3s(2 + s)( + s) F 0 (jω) = k 3 Aufspaltung in Betrag und Phase: ( + 3jω) jω(2 + jω)( + jω) F 0 (jω) = k ( + 9ω 2 ) 3 ω 2 (4 + ω 2 )( + ω 2 ) F 0 (jω) = arctan(3ω) arctan( ω 2 ) arctan(ω) π 2. Grenzverhalten ω = 0 : ω : 2. Phasendrehung F 0 (jω) F 0 (jω) = π 2 F 0 (jω) 0 F 0 (jω) = π (F 0 (j0) F 0 (j )) = π 2 Skizze Ortskurve (siehe unten). Kein Schnittpunkt mit der negativen reellen Achse (ausser im Ursprung). Aufspaltung in Real- und Imaginärteil = k 3 F 0 (jω) = k 3 = k 3 ( + 3jω) jω(2 + 3jω ω 2 ) ( + 3jω) 3jω 2 + jω(2 ω 2 ) ( + 3jω)( 3jω 2 jω(2 ω 2 )) 9ω 4 + ω 2 (2 ω 2 ) 2 Re{F 0 (jω)} = k 3 (+3 3ω 2 ) 9ω 2 + (2 ω 2 ) 2

3 Re{F 0 (j0)} = k = k 4 ImF 0 (jω) Ortskurve siehe unten b) Neue Ortkurve und Stabilität F 0 (jω) = k( + 3jω)e( 2jw) 3jω(2 + jω)( + jω) Zusätzliche Phasendrehung führt auf mindestens einen echten Schnittpunkt mit der negativen reellen Achse. Phasenbedingungen: numerisch: ω = 0.85 F 0 (jω) = arctan(3ω) arctan( ω 2 ) arctan(ω) π 2 2ω eingesetzt in Betragsgleichung für k = : F 0 (j0.85) = = 3.33 = k.0 k 2.65

4

5 Aufgabe 3: Stabilitätsnachweise a) Aus dem HURWITZ-Polynom Notwendige Bedingungen: s 3 + (4 b ) s 2 + b s + b 2 = 0 a 0 = b 2, a = b, a 2 = 4 b, a 3 = Hinreichende Bedingungen: D 2 = a a 3 a 0 a 2 = b (4 b ) (b 2 ) > 0 ergibt nach geeigneter Umformung: 5 (b 2) 2 > b 2 Dies wird nachfolgend im Stabilitätsdiagramm dargestellt. 5 b b b) Originalpolynom P (s) = s 3 + s s + 75

6 . Analyse: alle Nullstellen λ i < 2. Zu untersuchendes Polynom: P (s 2) = (s 2) 3 + (s 2) (s 2) + 75 = s 3 + 5s 2 + 7s + 3 Auswertung der notwendigen und hinreichenden Hurwitz-Bedingungen sämtliche Nullstellen sind kleiner als ( 2). 2. Analyse: alle Nullstellen λ i > 5. Zu untersuchendes Polynom: P ( [s + 5]) = P ( s 5) P ( s 5) = ( s 5) 3 + ( s 5) ( s 5) + 75 = ( )(s 3 + 4s 2 + 4s + 20) Auswertung der notwendigen und hinreichenden Hurwitz-Bedingungen sämtliche Nullstellen sind größer als ( 5). 3. Analyse: alle Nullstellen λ i > im Winkelbereich ±45 um die negative reelle Achse. Durch Drehung sämtlicher Pole sowohl um +45 wie auch um 45 (und anschließender multiplikativer Verknüpfung) kann der schraffierte Winkelbereich auf die negative Halbebene abgebildet werden. Zu untersuchendes Polynom: P (s e +j45 ) P (s e j45 ) = [ s 3 e +j35 + s 2 e +j se +j ] [ s 3 e j35 + s 2 e j se j ] = s 6 + 2s 5 + 2s s s s Auswertung der notwendigen und hinreichenden Hurwitz-Bedingungen sämtliche Nullstellen liegen auch im schraffierten Winkelbereich.

7 Aufgabe 4: Wurzelortskurve a) Der PID-Regler kompensiert die Polstelle s = 3 der Regelstrecke, deshalb lautet die Übertragungsfunktion des offenen Regelkreises: (s + a) F 0 (s) = G R (s)g S (s) = K s(s 2 + s + ) Der offene Regelkreis hat also drei Polstellen (s,2 = 0.5 ± 3/2j, s 3 = 0) und eine Nullstelle (s 4 = a), deshalb gilt: n = 3 und m =. Im ersten Schritt muss der Reglerparameter a so entworfen werden, dass der resultierende Regelkreis für alle Werte von K stabil ist. Um diese Bediengung zu erfüllen, dürfen keine Teile der WOK rechts von der j-achse liegen. Aus der Übertragungsfunktion ist erkennbar, dass ein Teil der WOK bestimmt auf der reelen Achse (zwischen der Polstelle s 3 und der Nullstelle s 4 ) liegt und dass zwei Äste aus den Polstellen s,2 ins Unendlich führen werden. Die Winkel der Asymptoten werden daher ±90 betragen, wie aus dem Regel III auch leicht zu berechnen ist. Damit die WOK keine Schnittpunkte mit der j-achse besitzt (Stabilität!), muss der Wurzelschwerpunkt links von der j-achse liegen. Für den Wurzelschwerpunkt gilt nach dem Regel II: δ W = Daraus folgt für den Wert der Nullstelle: a ( ) 2 = a + 2 a. Die Nullstelle s 4 muss also im Bereich (0, ) liegen, damit der Regelkreis für alle Werte der Verstärkung K stabil bleibt. b) Die WOK hängt selbstverständlich von der konkreten Wahl der Nullstelle a, im folgenden Beispiel wird sie als s 4 = 0.5 gewählt. Die Regel I zu den Ästen der WOK auf der realen Achse, sowie die Regel III über die Asymptotenwinkel wurden bereits besprochen. Der Wurzelschwerpunkt ergibt sich für a = 0.5 als δ W = = 0.25 Die Regeln IV und V sind für die WOK aus dem Beispiel nicht relevant, da diese gar keine Verzweigungspunkte besitzt. Weil zudem der Kompensationsregler derartig

8 entworfen wurde, dass die WOK die j-achse nicht schneidet, hat auch die Regel VI keine Bedeutung mehr. Zuletzt muss der Anstieg der WOK aus den komplexen Polstellen s,2 berechnet werden: Der Anstiegwinkel aus dem Pol s ist: ϕ s = Für die Winkel gilt: ( (s s 2 ) (s s 3 ) + (s s 4 )) + π Damit ist der Anstiegwinkel ϕ s : (s s 2 ) = π 2 ( (s s 3 ) = π + atan 2 (s s 4 ) = π 2 ) 3 ϕ s = π 2 atan ( 3 ) π =.047 rad = 60 Der Anstiegwinkel ϕ s2 aus der Polstelle s 2 ist 60. Die resultierende WOK ist in der folgenden Abbildung dargestellt: 4 Root Locus 3 2 s Imag Axis 0 s 4 δ W s 3 s Real Axis

9 c) Die Verstärkung des Regelkreises K muss jetzt so eingestellt werden, dass der resultierende Regelkreis das gewünschte dynamische Verhalten aufweist. Die vorgegebenen Anforderungen sind: Die maximale Überschwingweite betrage mo = 0.3. Die maximale Übergangszeit betrage t uo = 5 s. Beim Entwurf des Verstärkungsfaktors K des Reglers hilft uns am Anfang die Analyse der WOK aus der Lösung b): Der geschlossene Regelkreis besitzt bekanntlich drei Polstellen, wobei für K = 0 diese Polstellen gleich der Polstellen des offenen Regelkreises sind. Für steigende K-Werte verschiebt sich die Polstelle s 3 nach links zu der auf der realen Achse liegenden Nullstelle s 4. Die konjugiert-komplexen Polstellen s,2 verschieben sich dabei nach rechts entlang der WOK-Äste. Für kleine Verstärkungen K ist die Polstelle s 3 damit dominant, und sie bestimmt das Verhalten der Ausgangsgröße. Je mehr sich die Polstellen einander nähern, desto größeren Einfluss haben dann die konjugiert-komplexen Polstellen. Jene Verstärkung K g, bei welcher alle Polstellen den gleichen reellen Teil p haben, kann aus dem Vergleich der charakteristischen Polynome berechnet werden: (s p)(s p jq)(s p + jq) = s 3 + s 2 + s + K g (s + a) Für unser Beispiel mit a = 0.5 ergibt sich: p = 3, K g =.555 Für K << K g verhält sich der Regelkreis als ein PT -Glied, und deshalb ist die Überschwingung der Ausgangsgröße gleich Null. Die dominante Zeitkonstante des Regelkreises kann dann entsprechend der zweiten Bedingung (t uo 5 s) gewählt werden, beispielsweise ergibt sich für s 4 = 0. s eine Zeitkonstante des PT -Gliedes zu 0 s. Interessanter ist jedoch der Fall, wenn K > K g gilt und damit das Verhalten des Regelkreises durch das konjugiert komplexes Polpaar bestimmt wird. In einem solchen Fall kann der Regelkreis durch folgende Übertragungsfunktion beschrieben werden: G(s) = K T 2 s 2 + 2dT s + Mit den Werten für die maximale Überschwingweite mo und für die maximale Übergangszeit t uo kann man die Parameter d o und ω o berechnen. Diese Parameter grenzen ein Gebiet der WOK ab, aus dem man die Polstellen des geschlossenen Regelkreises wählen muss, damit der Regelkreis die angegebenen Anforderungen erfüllt:

10 d o = L + L 2, wobei, L = lg mo.363 = Damit ist d o = Für ω o gilt: ω o = 3.5 lg ( d2 ) d t uo = rads, Die Polstellen des geschlossen Regelkreises müssen damit aus dem durch die Geraden mit der Steigung ψ = arccos d o abgegrenzten Teil der WOK, ausserhalb des Kreises mit dem Radius ω o ausgewählt werden. Diese Situation ist in der nächsten Abbildung dargestellt. 2 Root Locus.5 s 0.5 Imag Axis 0 s 4 s s Real Axis

11 Aufgabe 5: Reglerentwurf a) Führungsübertragungsfunktion: F w (s) = G (s)g 2 (s)g 3 (s) + G (s)g 2 (s)g 3 (s)g 4 (s) Störübertragungsfunktion: F z (s) = G 3 (s) + G (s)g 2 (s)g 3 (s)g 4 (s) b) Vorliegender geschlossener Regelkreis: F w (s) = = 20k R ( + 4s)(a 2 s 2 + s + a 0 ) + 20k R 20k R 4a 2 s 3 + (4 + a 2 )s 2 + ( + 4a 0 )s + (a k R ) Erfüllung der drei Anforderungen: Für VZ2-Verhalten muss gelten: a 2 = 0. Für stationäre Genauigkeit muss der verwendete Regler ein I-Verhalten besitzen: a 0 = 0. Der Endwertsatz liefert dazu den Nachweis. Stabilität ist an der nunmehr genauer spezifizierten Übertragungsfunktion des geschlossenen Kreises zu untersuchen: F w (s) = 20k R 4s 2 + s + 20k R Ein Stabilitätsnachweis (z.b. Hurwitz) liefert, dass Stabilität für alle k R > 0 vorliegt. c) Für eine Kreisverstärkung k R = 0. ergibt sich die Übertragungsfunktion des geschlossenen Kreises: F w (s) = 2s s + Ein Vergleich mit der allgemeinen Übertragungsfunktion für VZ2-Glieder liefert: T = 2, d 0.7 (Die Sprungantwort besitzt dann ein starkes Überschwingverhalten und klingt nur langsam ab.)

12 Aperiodisches Einschwingverhalten ( d =.0 ) ergibt sich für: kann man dann (unter der Vorgabe d =.0) gleichset- Mit T = zen: 5k R und 2dT = 20k R F w (s) = = 20k R 4s 2 + s + 20k R + 20k R s + 5k R s 2 5k R = 40k R und erhält daraus: k R = 320

Die Sprungantwort ist die Reaktion auf den Einheitssprung: G 2 (s) = 2 (s +1)(s +6) 3 (s +7)(s +2)

Die Sprungantwort ist die Reaktion auf den Einheitssprung: G 2 (s) = 2 (s +1)(s +6) 3 (s +7)(s +2) Aufgabe 1: Die Laplace-Transformierte der Sprungantwort ist: Y (s) = 1 s + (s +3) 3 (s +4) Die Sprungantwort ist die Reaktion auf den Einheitssprung: w(t) =σ(t) W (s) = 1 s Die Übertragungsfunktion des

Mehr

ka (s + c 0 )(s + c 1 )s 1 c 0 (c 0 c 1 ) e c 0t + lim = k R k max = π 4T t b2) und aus der Hauptlösung der Phasenbedingung die Reglerverstärkung

ka (s + c 0 )(s + c 1 )s 1 c 0 (c 0 c 1 ) e c 0t + lim = k R k max = π 4T t b2) und aus der Hauptlösung der Phasenbedingung die Reglerverstärkung Aufgabe 1: Systemanalyse a) Sprungantwort des Übertragungssystems: X(s) = ka (s + c 0 )(s + c 1 )s a1) Zeitlicher Verlauf der Sprungantwort: [ 1 x(t) = ka + c 0 c 1 a2) Man erhält dazu den Endwert: 1 c

Mehr

Grundlagen der Regelungstechnik

Grundlagen der Regelungstechnik Grundlagen der Regelungstechnik Dr.-Ing. Georg von Wichert Siemens AG, Corporate Technology, München Termine Nächste Termine: 28.., 4.2. Wiederholung vom letzten Mal Regelkreis Geschlossener Regelkreis

Mehr

Prüfungsklausur. Grundlagen der Regelungstechnik I, II (PNR 2155) am von 10:00 13:00 Uhr

Prüfungsklausur. Grundlagen der Regelungstechnik I, II (PNR 2155) am von 10:00 13:00 Uhr Prüfungsklausur Grundlagen der Regelungstechnik I, II am 03.09.016 von 10:00 13:00 Uhr Aufgabe 1 3 4 5 Summe Erreichbare Punkte 15 1 14 5 5 100 Erreichte Punktzahl Wichtig: Bitte beachten Sie! 1. Namen

Mehr

Aufgabe 1: Laplace-Transformation

Aufgabe 1: Laplace-Transformation Aufgabe 1: Laplace-Transformation (25 Punkte) a) Teilaufgabe: 15 Punkte Gegeben sei die folgende Differenzialgleichung dritter Ordnung: mit den Anfangswerten: y (3) (t) + 4 ÿ(t) + ẏ(t) 6 y(t) = 12 u(t)

Mehr

Prüfungsklausur. Grundlagen der Regelungstechnik I, II (PNR 2155) am von 10:00 12:00 Uhr

Prüfungsklausur. Grundlagen der Regelungstechnik I, II (PNR 2155) am von 10:00 12:00 Uhr Prüfungsklausur Grundlagen der Regelungstechnik I, II am 02.09.2017 von 10:00 12:00 Uhr Aufgabe 1 2 3 4 Summe Erreichbare Punkte 30 30 30 10 100 Erreichte Punktzahl Wichtig: Bitte beachten Sie! 1. Bitte

Mehr

handelt es sich um einen Einheitssprung. mit Hilfe der Laplace- Rücktransformation, wenn alle Anfangswerte zu Null gesetzt werden:

handelt es sich um einen Einheitssprung. mit Hilfe der Laplace- Rücktransformation, wenn alle Anfangswerte zu Null gesetzt werden: Aufgabe 1: Laplace-Transformation (10 Punkte) Gegeben sei ein System, dessen dynamisches Verhalten durch folgende Differentialgleichung beschrieben wird: y ( 1y ( 3y( 3u(. Bei der Eingangsgröße u ( handelt

Mehr

Grundlagen der Regelungstechnik

Grundlagen der Regelungstechnik Grundlagen der Regelungstechnik Dr.-Ing. Georg von Wichert Siemens AG, Corporate Technology, München Termine Dies ist der letzte Termin in diesem Jahr 17.12.2004 fällt aus Nächste Termine: 14.1., 28.1.,

Mehr

a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes.

a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes. 144 Minuten Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes. b) Was ist ein Mehrgrößensystem?

Mehr

K T 1 s + 1. G S (s) = G S (s) = 1 2s + 1. T n s + 1 T n s. G R (s) = K R. G R (s) = 2s + 1 s. F ω (s) = 1/s 1 + 1/s = 1

K T 1 s + 1. G S (s) = G S (s) = 1 2s + 1. T n s + 1 T n s. G R (s) = K R. G R (s) = 2s + 1 s. F ω (s) = 1/s 1 + 1/s = 1 Aufgabe : a) Au und K = und T = 2 folgt: Mit und K R = 2, T n = 2 : G S () = K T G S () = 2 G R () = K R T n T n G R () = 2 G 0 () = G R ()G S () = F ω () = / + / = b) Y () = F ω ()W() Die Sprungantwort

Mehr

Lösungsvorschläge zur 3. Übung

Lösungsvorschläge zur 3. Übung Systemdynamik und Regelungstechnik II, SoSe 26 Prof. Dr. Ing. J. Adamy M.Sc. M. Bühler Lösungsvorschläge zur. Übung Aufgabe 2.2- a) Aus der Aufgabenstellung ergibt sich eine Übertragungsfunktion,5z +2

Mehr

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Regelungs- und Systemtechnik - Übung 6 Sommer 26 Vorbereitung Wiederholen Sie Vorlesungs- und Übungsinhalte zu folgenden Themen: Standardregelkreis

Mehr

Seite 1 NAME VORNAME MATRIKEL-NR. Achtung: Schreiben Sie Ihre Antworten für die Aufgaben 1 bis 2 direkt unter den Fragen in den Fragebogen.

Seite 1 NAME VORNAME MATRIKEL-NR. Achtung: Schreiben Sie Ihre Antworten für die Aufgaben 1 bis 2 direkt unter den Fragen in den Fragebogen. 144 Minuten Seite 1 NAME VORNAME MATRIKEL-NR. Achtung: Schreiben Sie Ihre Antworten für die Aufgaben 1 bis 2 direkt unter den Fragen in den Fragebogen. Aufgabe 1 (je 2 Punkte) a) Definieren Sie die Begriffe

Mehr

Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s)

Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s) 1. Teilklausur SS 16 Gruppe A Name: Matr.-Nr.: Für beide Aufgaben gilt: Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s) y Aufgabe 1 (6

Mehr

Beantworten Sie die folgenden Fragen bitte kurz und präzise. Es sind keine längeren Ausführungen erforderlich!

Beantworten Sie die folgenden Fragen bitte kurz und präzise. Es sind keine längeren Ausführungen erforderlich! Aufgabe 1: Verständnisfragen (14 Punkte) Beantworten Sie die folgenden Fragen bitte kurz und präzise Es sind keine längeren Ausführungen erforderlich! Erläutern Sie die Begriffe Regelabweichung und Steuergröße

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 31.03.017 Arbeitszeit: 150 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

b) Stellen Sie die Funktion u(t) = 1(t 1) + 2(t 2) 3(t 3) grafisch dar.

b) Stellen Sie die Funktion u(t) = 1(t 1) + 2(t 2) 3(t 3) grafisch dar. 120 Minuten Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Definieren Sie die Begriffe Stellgröße und Führungsgröße. b) Stellen Sie die Funktion u(t) = 1(t 1) + 2(t 2) 3(t 3) grafisch dar.

Mehr

1 Reglerentwurf nach dem Betragsoptimum

1 Reglerentwurf nach dem Betragsoptimum Reglerentwurf nach dem Betragsoptimum Für einfache d.h. einschleifige, lineare Regelungen mit ausgesprägtem Tiefpassverhalten ist der Entwurf nach dem Betragsoptimum relativ leicht anwendbar. w G K (s)

Mehr

L s K s z 1 s z 2 s z m s p 1 s p 2 s p n

L s K s z 1 s z 2 s z m s p 1 s p 2 s p n apitel 6 Das Wurzelortsverfahren Wie wir in apitel 3 gesehen haben, ist eine notwendige und hinreichende Bedingung für die Stabilität von linearen Eingrößensystemen, dass die Polstellen der Übertragungsfunktion

Mehr

Lösungen zur 7. Übung

Lösungen zur 7. Übung Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Vladislav Nenchev M.Sc. Arne Passon Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte

Mehr

Steuer- und und Regelungstechnik II

Steuer- und und Regelungstechnik II Steuer- und und Regelungstechnik II II Vorlesung: Dozent: Professor Ferdinand Svaricek Ort: Ort: 33/03 Zeit: Zeit: Mi Mi 8.5 8.5 9.45 9.45 Uhr Uhr Seminarübungen: Dozent: Dr. Dr. Klaus-Dieter Otto Otto

Mehr

Aufgabe 1: Sprungantwort und Ortskurve

Aufgabe 1: Sprungantwort und Ortskurve Aufgabe 1: Sprungantwort und Ortskurve Gegeben sei ein Übertragungssystem mit der Eingangsgröße u(t) und der Ausgangsgröße x(t): u(t) Übertragungssystem x(t) Der Zusammenhang zwischen Eingangsgröße u(t)

Mehr

mit unbekannter Systemmatrix A. Die Transitionsmatrix zu obigem System lautet e t. 2 e t u(s) =

mit unbekannter Systemmatrix A. Die Transitionsmatrix zu obigem System lautet e t. 2 e t u(s) = 1. Teilklausur SS 18 Betrachten Sie folgendes mathematische Modell mit der Eingangsgröße u, der Ausgangsgröße und dem Zustandsvektor x [ ] dx 1 = Ax + bu = Ax + u = c T x + du = [ 1 0 ] x dt 0 mit unbekannter

Mehr

Gegeben sei folgender Regelkreis mit der Führungsgröße r, der Stellgröße u und der Ausgangsgröße. q r u y. R(s)

Gegeben sei folgender Regelkreis mit der Führungsgröße r, der Stellgröße u und der Ausgangsgröße. q r u y. R(s) 2. Teilklausur WS 17/18 Gruppe A Name: Matr.-Nr.: Aufgabe 1 (6 Punkte) Gegeben sei folgender Regelkreis mit der Führungsgröße r, der Stellgröße u und der Ausgangsgröße y: q r u y V (s) P (s) R(s) Auf den

Mehr

b) Ist das System zeitvariant oder zeitinvariant? (Begründung!) c) Bestimmen Sie mit Hilfe der LAPLACE-Transformation die Übertragungsfunktion

b) Ist das System zeitvariant oder zeitinvariant? (Begründung!) c) Bestimmen Sie mit Hilfe der LAPLACE-Transformation die Übertragungsfunktion Aufgabe 1: Systemanalyse Ein dynamisches System mit der Eingangsgröße u(t) und der Ausgangsgröße y(t) werde durch die folgenden gekoppelten Gleichungen beschrieben, wobei y 1 (t) eine Zwischengröße ist:

Mehr

Schriftliche Prüfung aus Control Systems 2 am

Schriftliche Prüfung aus Control Systems 2 am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Control Sstems 2 am 23.01.2014 Name / Vorname(n): Kennzahl / Matrikel-Nummer: Bonuspunkte aus den MATLAB-Übungen:

Mehr

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Regelungs- und Systemtechnik - Übung 6 Sommer 26 Vorbereitung Wiederholen Sie Vorlesungs- und Übungsinhalte zu folgenden Themen: Zeitkonstantenform

Mehr

G S. p = = 1 T. =5 K R,db K R

G S. p = = 1 T. =5 K R,db K R TFH Berlin Regelungstechnik Seite von 0 Aufgabe 2: Gegeben: G R p =5 p 32ms p 32 ms G S p = p 250 ms p 8 ms. Gesucht ist das Bodediagramm von G S, G R und des offenen Regelkreises. 2. Bestimmen Sie Durchtrittsfrequenz

Mehr

x 1 + u y 2 = 2 0 x 2 + 4u 2.

x 1 + u y 2 = 2 0 x 2 + 4u 2. 3. Übung: Regelkreis Aufgabe 3.1. Gegeben sind die beiden linearen zeitkontinuierlichen Systeme 3 2 2 ẋ 1 = 6 5 x 1 + 1 u 1 6 2 3 [ ] y 1 = 2 x 1 (3.1a) (3.1b) und [ ] [ ] 8 15 1 ẋ 2 = x 2 + 6 1 4 [ ]

Mehr

Schriftliche Prüfung aus Regelungssysteme am

Schriftliche Prüfung aus Regelungssysteme am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Regelungssysteme am 12.10.2018 Name / Vorname(n): Matrikel-Nummer: Aufgabe A1 A2 A3 A4 A5 A6 A7 A8 Summe erreichbare

Mehr

Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen)

Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen) Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen) TU Bergakademie Freiberg Institut für Automatisierungstechnik Prof. Dr.-Ing. Andreas Rehkopf 27. Januar 2014 Übung 1 - Vorbereitung zum Praktikum

Mehr

Regelungs- und Systemtechnik 1 - Übungsklausur 10

Regelungs- und Systemtechnik 1 - Übungsklausur 10 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Bearbeitungszeit: 2 Min Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben Sie mit dokumentenechtem Schreibgerät (Tinte

Mehr

Labor RT Versuch RT1-1. Versuchsvorbereitung. Prof. Dr.-Ing. Gernot Freitag. FB: EuI, FH Darmstadt. Darmstadt, den

Labor RT Versuch RT1-1. Versuchsvorbereitung. Prof. Dr.-Ing. Gernot Freitag. FB: EuI, FH Darmstadt. Darmstadt, den Labor RT Versuch RT- Versuchsvorbereitung FB: EuI, Darmstadt, den 4.4.5 Elektrotechnik und Informationstechnik Rev., 4.4.5 Zu 4.Versuchvorbereitung 4. a.) Zeichnen des Bode-Diagramms und der Ortskurve

Mehr

Regelungs- und Systemtechnik 1 - Übungsklausur 2

Regelungs- und Systemtechnik 1 - Übungsklausur 2 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Bearbeitungszeit: 12 Min Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben Sie mit dokumentenechtem Schreibgerät (Tinte

Mehr

Übung 5: Routh-Hurwitz und Nyquist Stabilitätskriterien

Übung 5: Routh-Hurwitz und Nyquist Stabilitätskriterien Übungsaufgaben zur Vorlesung Regelsysteme Herbstsemester 25 Übung 5: Routh-Hurwitz und Nyquist Stabilitätskriterien Prof. Dr. Manfred Morari, Prof. Dr. Florian Dörfler Institut für Automatik, ETH Zürich

Mehr

SYNTHESE LINEARER REGELUNGEN

SYNTHESE LINEARER REGELUNGEN Synthese Linearer Regelungen - Formelsammlung von 8 SYNTHESE LINEARER REGELUNGEN FORMELSAMMLUNG UND MERKZETTEL INHALT 2 Grundlagen... 2 2. Mathematische Grundlagen... 2 2.2 Bewegungsgleichungen... 2 2.3

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 8.5.5 Arbeitszeit: min Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3 4

Mehr

Abt. Maschinenbau, Lehrstuhl Steuerung, Regelung und Systemdynamik

Abt. Maschinenbau, Lehrstuhl Steuerung, Regelung und Systemdynamik Regelungstechnik (Bachelor Wirtschaftsingenieurwesen) 120 Minuten Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Beschreiben Sie den Unterschied zwischen der Behandlung eines Signales im

Mehr

Lösungen zur 8. Übung

Lösungen zur 8. Übung Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Vladislav Nenchev M.Sc. Arne Passon Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte

Mehr

Aufgabe 1: Laplace-Transformation

Aufgabe 1: Laplace-Transformation Aufgabe 1: Laplace-Transformation (15 Punkte) Ein technisches System sei gegeben durch folgende Differentialgleichung 3.Ordnung: y (t)+6ÿ(t)+12ẏ(t)+8y(t) =2ü(t)+1 u(t)+8u(t). Dieses System wird eingangsseitig

Mehr

Zusammenfassung der 3. Vorlesung

Zusammenfassung der 3. Vorlesung Zusammenfassung der 3. Vorlesung Nyquist-Verfahren Motivation Ein mathematisches Modell der Strecke ist nicht notwendig Aussagen über die Stabilität des geschlossenen Regelkreises anhand des Frequenzgangs

Mehr

A. Modellierung: Standardstrecken anhand der Gleichstrommaschine

A. Modellierung: Standardstrecken anhand der Gleichstrommaschine Bewegungssteuerung durch geregelte elektrische Antriebe Übung 1 (WS17/18) Alle Abbildungen und Übungsunterlagen (Einführungsfolien, Übungsblätter, Musterlösungen, MATLAB-Übungen/Lösungen und Formelsammlung)

Mehr

Reglerentwurf anhand des PN-Bildes des geschlossenen Kreises

Reglerentwurf anhand des PN-Bildes des geschlossenen Kreises 0 Reglerentwurf anhand des P-Bildes des geschlossenen Kreises Der Reglerentwurf anhand des Pol-ullstellen-Bildes des geschlossenen Kreises beruht auf der Konstruktion der Wurzelortskurve, die die Abhängigkeit

Mehr

x 1 + u y 2 = 2 0 x 2 + 4u 2.

x 1 + u y 2 = 2 0 x 2 + 4u 2. 3. Übung: gelkreis Aufgabe 3.. Gegeben sind die beiden linearen zeitkontinuierlichen Systeme 3 ẋ = 6 x + u 6 3 [ ] y = x (3.a) (3.b) und [ ] [ ] 8 ẋ = x + 6 4 [ ] y = x + 4u. u (3.a) (3.b) Berechnen Sie

Mehr

von der Straßenkoordinate r zur Fahrzeugkoordinate x. Straßenoberfläche Initiale Referenz

von der Straßenkoordinate r zur Fahrzeugkoordinate x. Straßenoberfläche Initiale Referenz Regelungstechnik Klausur vom 9.2.23 Zoltán Zomotor Versionsstand: 3. Januar 24, 2:59 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3. Germany License. To view a

Mehr

Zusammenfassung der 3. Vorlesung

Zusammenfassung der 3. Vorlesung Zusammenfassung der 3. Vorlesung Nyquist-Verfahren Motivation Ein mathematisches Modell der Strecke ist nicht notwendig Aussagen über die Stabilität des geschlossenen Regelkreises anhand des Frequenzgangs

Mehr

4. Standardübertragungsglieder

4. Standardübertragungsglieder 4. PT-Glied : Verzögerungsglied. Ordnung 4. P-Glied : Proportionalglied 4.3 I-Glied: Integrator 4.4 D-Glied: Differenzierer (ideal/real) 4.5 PT-Glied: Verzögerungsglied. Ordnung 4.6 Totzeitglied Campus

Mehr

Optimierung von Regelkreisen. mit P-, PI und PID Reglern

Optimierung von Regelkreisen. mit P-, PI und PID Reglern mit P-, PI und PID Reglern Sollwert + - Regler System Istwert Infos: Skript Regelungstechnisches Praktikum (Versuch 2) + Literatur Seite 1 Ziegler und Nichols Strecke: Annäherung durch Totzeit- und PT1-Glied

Mehr

Systemtheorie. Vorlesung 16: Interpretation der Übertragungsfunktion. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 16: Interpretation der Übertragungsfunktion. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 16: Interpretation der Übertragungsfunktion Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Übertragungsfunktion Bedeutung der Nullstellen Bei der Interpretation

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 4.3.11 Arbeitszeit: 1 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Schriftliche Prüfung aus Regelungstechnik am

Schriftliche Prüfung aus Regelungstechnik am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Regelungstechnik am 29.06.2016 Name / Vorname(n): Matrikel-Nummer: Aufgabe A1 A2 A3 A4 A5 A6 A7 A8 Summe erreichbare

Mehr

(2) Definition der Übertragungsfunktionen des Standardregelkreises. Die Regelstrecke möge folgende Form besitzen: = n.

(2) Definition der Übertragungsfunktionen des Standardregelkreises. Die Regelstrecke möge folgende Form besitzen: = n. Kap 6 64 Entwurf des Reglers mit Kürzung von Pol- und Nullstellen der Regelstrecke () Vorbemerkungen Dieses Verfahren ist die Erweiterung des algebraischen Reglerentwurfsverfahrens nach Abschnitt 64 Bei

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 8.7.211 Arbeitszeit: 12 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik

Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik Brandenburgische Technische Universität Cottbus-Senftenberg Fakultät 1 Professur Systemtheorie Prof. Dr.-Ing. D. Döring Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik

Mehr

Regelungs- und Systemtechnik 1 - Übungsklausur 1

Regelungs- und Systemtechnik 1 - Übungsklausur 1 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Bearbeitungszeit: 1 Min Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben Sie mit dokumentenechtem Schreibgerät (Tinte

Mehr

Schriftliche Prüfung aus Regelungstechnik 1 am

Schriftliche Prüfung aus Regelungstechnik 1 am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Regelungstechnik 1 am 24.01.2017 Name / Vorname(n): Matrikel-Nummer: Aufgabe A1 A2 A3 A4 A5 A6 A7 A8 Summe erreichbare

Mehr

Ergänzung zur Regelungstechnik

Ergänzung zur Regelungstechnik Ergänzung zur Regelungstechnik mathematische Erfassung Weil die einzelnen Regelkreisglieder beim Signaldurchlauf ein Zeitverhalten haben, muss der Regler den Wert der Regelabweichung verstärken und gleichzeitig

Mehr

Lösungen zur 8. Übung

Lösungen zur 8. Übung Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Vladislav Nenchev M.Sc. Arne Passon Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte

Mehr

Schriftliche Prüfung aus Regelungstechnik am

Schriftliche Prüfung aus Regelungstechnik am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Regelungstechnik am 25.09.2014 Name / Vorname(n): Matrikel-Nummer: Bonuspunkte aus den Matlab-Übungen: ja nein 1

Mehr

Bearbeitungszeit: 120 Min

Bearbeitungszeit: 120 Min 4 6 Fachgebiet gelungstechnik Leiter: Prof. Dr.-Ing. Johann ger gelungs- und Systemtechnik - Übungsklausur 9 Bearbeitungszeit: Min Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben Sie

Mehr

Schriftliche Prüfung aus Regelungstechnik am

Schriftliche Prüfung aus Regelungstechnik am U Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Regelungstechnik am 18. 10. 01 Name / Vorname(n): Matrikel-Nummer: Bonuspunkte aus den MALAB-Übungen: O ja O nein

Mehr

UNIVERSITÄT DUISBURG - ESSEN Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau, Professur für Steuerung, Regelung und Systemdynamik

UNIVERSITÄT DUISBURG - ESSEN Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau, Professur für Steuerung, Regelung und Systemdynamik Regelungstechnik I (PO95), Regelungstechnik (PO02 Schiffstechnik), Regelungstechnik (Bachelor Wi.-Ing.) (180 Minuten) Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Erläutern Sie anhand eines

Mehr

Regelungs- und Systemtechnik 1 - Übungsklausur 16

Regelungs- und Systemtechnik 1 - Übungsklausur 16 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Bearbeitungszeit: Min Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben Sie mit dokumentenechtem Schreibgerät (Tinte

Mehr

INSTITUT FÜR REGELUNGSTECHNIK

INSTITUT FÜR REGELUNGSTECHNIK Lösung Übung 3 Aufgabe: Kaskadenregelung a Berechnung der Teilübertragungsfunktion G 3 s: V4 G 3 s Y 3s Xs T 4 s + + V 5 V 3 T 5 s + T 3 s + V4 T 5 s + T 4 s + V 5 V 3 T 4 s +T 5 s + T 3 s + V 3 [V 4 T

Mehr

Reglerentwurf mit dem Frequenzkennlinienverfahren

Reglerentwurf mit dem Frequenzkennlinienverfahren Kapitel 5 Reglerentwurf mit dem Frequenzkennlinienverfahren 5. Synthese von Regelkreisen Für viele Anwendungen genügt es, Standard Regler einzusetzen und deren Parameter nach Einstellregeln zu bestimmen.

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 26.06.2015 Arbeitszeit: 120 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Name: Vorname(n): Matrikelnummer: Aufgabe erreichbare Punkte erreichte Punkte Punkte aus Übungsmitarbeit Gesamtpunktanzahl

Name: Vorname(n): Matrikelnummer: Aufgabe erreichbare Punkte erreichte Punkte Punkte aus Übungsmitarbeit Gesamtpunktanzahl Universität des Saarlandes, Lehrstuhl für Systemtheorie und Regelungstechnik SCHRIFTLICHE PRÜFUNG aus SYSTEMTHEORIE UND REGELUNGSTECHNIK I am 28.7.26 Name: Vorname(n): Matrikelnummer: Note: Aufgabe 2 3

Mehr

1 Allgemein. Formelzettel Automatisierungstechnik

1 Allgemein. Formelzettel Automatisierungstechnik Diese Zusammenstellung von wichtigen Formeln und Regeln habe ich im Zuge des Lernens für Automatisierungstechnik geschrieben. Zum Lernen kann ich folgende Literatur empfehlen: Signale-&-Systeme, PROF.

Mehr

3. Beschreibung dynamischer Systeme im Frequenzbereich

3. Beschreibung dynamischer Systeme im Frequenzbereich 3. Laplace-Transformation 3. Frequenzgang 3.3 Übertragungsfunktion Quelle: K.-D. Tieste, O.Romberg: Keine Panik vor Regelungstechnik!.Auflage, Vieweg&Teubner, Campus Friedrichshafen --- Regelungstechnik

Mehr

Stellen Sie für das im folgenden Signalflussbild dargestellte dynamische System ein Zustandsraummodell K

Stellen Sie für das im folgenden Signalflussbild dargestellte dynamische System ein Zustandsraummodell K Aufgaben Aufgabe : Stellen Sie für das im folgenden Signalflussbild dargestellte dnamische Sstem ein Zustandsraummodell auf. u 2 7 5 Aufgabe 2: Wir betrachten das folgende Regelsstem vierter Ordnung: r

Mehr

Regelungs- und Systemtechnik 1 - Übungsklausur 7

Regelungs- und Systemtechnik 1 - Übungsklausur 7 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Bearbeitungszeit: 12 Minuten Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben Sie mit dokumentenechtem Schreibgerät

Mehr

Bearbeitungszeit: 120 Min

Bearbeitungszeit: 120 Min 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Regelungs- und Systemtechnik 1 - Übungsklausur 6 Bearbeitungszeit: 120 Min Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben

Mehr

Bildmaterial zur Vorlesung Regelungstechnik Teil III Der Regelkreis. Wintersemester 2014 Prof. Dr.-Ing. habil. Klaus-Peter Döge

Bildmaterial zur Vorlesung Regelungstechnik Teil III Der Regelkreis. Wintersemester 2014 Prof. Dr.-Ing. habil. Klaus-Peter Döge Bildmaterial zur Vorlesung Regelungstechnik Teil III Der Regelkreis Wintersemester 04 Prof. Dr.-Ing. habil. Klaus-Peter Döge Regelkreis nach DIN 96 Teil 5 Vereinfachter Regelkreis 3 Einführendes Beispiel

Mehr

Regelsysteme Tutorial: Stabilitätskriterien. George X. Zhang HS Institut für Automatik ETH Zürich

Regelsysteme Tutorial: Stabilitätskriterien. George X. Zhang HS Institut für Automatik ETH Zürich Regelsysteme 1 5. Tutorial: Stabilitätskriterien George X. Zhang Institut für Automatik ETH Zürich HS 2015 George X. Zhang Regelsysteme 1 HS 2015 5. Tutorial: Stabilitätskriterien Gliederung 5.1. Stabilität

Mehr

Formelsammlung zum Skriptum

Formelsammlung zum Skriptum Systemtheorie und Regelungstechnik I - WS08/09 Formelsammlung zum Skriptum Kapitel 2 Satz 23 (Lokale Existenz und Eindeutigkeit) Es sei f (x, t) stückweise stetig in t und genüge der Abschätzung (Lipschitz-Bedingung)

Mehr

1 Gegenkopplung und Stabilität S107

1 Gegenkopplung und Stabilität S107 Regelungstechnik - Formelsammlung (Revision : 044 - powered by LATEX) Seite von 6 Gegenkopplung und Stabilität S07. LTI-Grundglieder Typ Symbol Gleichung, Dgl Sprungantwort Frequenzgang, Betrag und Argument

Mehr

() 2. K I Aufgabe 5: x(t) W(s) - X(s) G 1 (s) Z 1 (s) Z 2 (s) G 3 (s) G 2 (s) G 4 (s) X(s)

() 2. K I Aufgabe 5: x(t) W(s) - X(s) G 1 (s) Z 1 (s) Z 2 (s) G 3 (s) G 2 (s) G 4 (s) X(s) Seite 1 von 2 Name: Matr. Nr.: Note: Punkte: Aufgabe 1: Ermitteln Sie durch grafische Umwandlung des dargestellten Systems die Übertragungsfunktion X () G s =. Z s 2 () W(s) G 1 (s) G 2 (s) Z 1 (s) G 3

Mehr

Autonome Mobile Systeme

Autonome Mobile Systeme Autonome Mobile Systeme Teil II: Systemtheorie für Informatiker Dr. Mohamed Oubbati Institut für Neuroinformatik Universität Ulm SS 2007 Wiederholung vom letzten Mal! Die Übertragungsfunktion Die Übertragungsfunktion

Mehr

Lösungen Serie 4 (Komplexe Zahlen: Ortskurven)

Lösungen Serie 4 (Komplexe Zahlen: Ortskurven) Fachhochschule Nordwestschweiz FHNW Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lösungen Serie 4 Komplexe Zahlen: Ortskurven Dozent: oger Burkhardt Klasse: Studiengang ST. Aufgabe

Mehr

BSc PRÜFUNGSBLOCK 2 / D-MAVT VORDIPLOMPRÜFUNG / D-MAVT. Musterlösung

BSc PRÜFUNGSBLOCK 2 / D-MAVT VORDIPLOMPRÜFUNG / D-MAVT. Musterlösung Institut für Mess- und Regeltechnik BSc PRÜFUNGSBLOCK / D-MAVT.. 005. VORDIPLOMPRÜFUNG / D-MAVT REGELUNGSTECHNIK I Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: Zur Beachtung: Erlaubte

Mehr

8. Übung. 1 (s+1) 3 beschrieben. Der geschlossene Regelkreis soll folgende Anforderungen erfüllen: (i) asymptotische Stabilität

8. Übung. 1 (s+1) 3 beschrieben. Der geschlossene Regelkreis soll folgende Anforderungen erfüllen: (i) asymptotische Stabilität Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Anne-Kathrin Hess Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte Lehrveranstaltung

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 3.11.218 Arbeitszeit: 15 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Name: Vorname(n): Matrikelnummer: Bitte... Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 3.11.18 Arbeitszeit: 15 min Aufgabe

Mehr

Systemtheorie. Vorlesung 25: Butterworth-Filter. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 25: Butterworth-Filter. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 5: Butterworth-Filter Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Übersicht Für den Filterentwurf stehen unterschiedliche Verfahren zur Verfügung Filter mit

Mehr

Schriftliche Prüfung aus Systemtechnik am

Schriftliche Prüfung aus Systemtechnik am TU Graz, Institut für Regelungs- und Automatisierungstechni Schriftliche Prüfung aus Systemtechni am 29.0.206 Name / Vorname(n): Matriel-Nummer: Aufgabe A A2 A3 A4 A5 A6 A7 A8 Summe erreichbare Punte 2

Mehr

Schriftliche Prüfung aus Regelungstechnik am

Schriftliche Prüfung aus Regelungstechnik am U Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Regelungstechnik am 1.10. 011 Name / Vorname(n): Kennzahl / Matrikel-Nummer: Bonuspunkte aus den MALAB-Übungen: O

Mehr

Diplomhauptprüfung / Masterprüfung

Diplomhauptprüfung / Masterprüfung Diplomhauptprüfung / Masterprüfung "Regelung linearer Mehrgrößensysteme" 6. März 2009 Aufgabenblätter Die Lösungen sowie der vollständige und nachvollziehbare Lösungsweg sind in die dafür vorgesehenen

Mehr

Umsetzung des neuen EL-Lehrplans

Umsetzung des neuen EL-Lehrplans Umsetzung des neuen EL-Lehrplans... für Maschinenbauer... Dipl.-Ing. Dr.techn. Michael Schwarzbart scb@htlwrn.ac.at Salzburg 09.Dezember 2015 Der Weg zu dynamischen Systemen Festigkeitslehre Statik Hydromechanik

Mehr

U 2 F 2 = U r, U 2 = F a (U 1 + U r ) U 2 U 1. = V u R (337) 1 + jωτ. (1 + jωτ)(1 + jωτ) 1. Vgl. mit Gl. (317) und (322) liefert die Definition:

U 2 F 2 = U r, U 2 = F a (U 1 + U r ) U 2 U 1. = V u R (337) 1 + jωτ. (1 + jωτ)(1 + jωτ) 1. Vgl. mit Gl. (317) und (322) liefert die Definition: Kapitel 6: Stabilität linearer Schaltungen 50 Anwendungsbeispiel (Verstärker mit SP-Kopplung) Für den dargestellten Verstärker mit einem frequenzabhängigen ückkopplungsnetzwerk läßt sich die Schleifenverstärkung

Mehr

1. Laborpraktikum. Abbildung 1: Gleichstrommotor Quanser QET

1. Laborpraktikum. Abbildung 1: Gleichstrommotor Quanser QET Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Stephanie Geist Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte Lehrveranstaltung Grundlagen der Regelungstechnik

Mehr

Formelsammlung. Regelungstechnik I. Basierend auf Arbeit von Florian Beermann Letzte Änderung am : Frank Bättermann

Formelsammlung. Regelungstechnik I. Basierend auf Arbeit von Florian Beermann Letzte Änderung am : Frank Bättermann Formelsammlung Regelungstechnik I Basierend auf Arbeit von Florian Beermann Letzte Änderung am 29.04.2008: Frank Bättermann 1 Inhaltsverzeichnis 1. Steuerung und Regelung...3 1.3 Vorteile der Regelung...3

Mehr

Projektaufgabe Mathematik II Der passive RC-Tiefpaß

Projektaufgabe Mathematik II Der passive RC-Tiefpaß Projektaufgabe Mathematik II Der passive RC-Tiefpaß Messtechnik II / Mathematik II für KEB, TFH Berlin, Gruppe D 22. Dezember 2006 Torben Zech 738845 Martin Henning 73650 Abdurrahman Namdar 739068 Inhaltsverzeichnis

Mehr

MAS Automation Management

MAS Automation Management MAS Automation Management Modul: A-NLE Winterthur, 27.1./ 3.2.217 Ruprecht Altenburger, altb@zhaw.ch Lineare Regelung an einem einfachen Beispiel erstellt für das Frühlingssemester 215; Version vom 12.

Mehr

Dr. Ing. Wilfried Dankmeier Eppstein im Taunus, RT2

Dr. Ing. Wilfried Dankmeier Eppstein im Taunus, RT2 Fragen zur Klausurvorbereitung mit Lösungen (aber erst selbst bearbeiten, dann nachsehen, umgekehrt ist es nutzlos...) Die Seitenangaben beziehen sich auf die Stichworte zu. Die beiden folgenden Diagramme

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d + c d + c uk d + + yk d + c d + c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 8 Musterlösung Frequengang eitdiskreter Systeme...

Mehr

5. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

5. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 5. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: e jωt -Funktionen sind sinusförmige, komplexe Funktionen. Sie sind

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d 0 d c d c uk d 0 yk d c d c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 9 Musterlösungen Zeitdiskrete pproximation zeitkontinuierlicher

Mehr

Regelung einer Luft-Temperatur-Regelstrecke

Regelung einer Luft-Temperatur-Regelstrecke Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Fachgebiet Regelungssysteme Leitung: Prof. Dr.-Ing. Jörg Raisch Praktikum Grundlagen der Regelungstechnik Regelung einer Luft-Temperatur-Regelstrecke

Mehr