Lösungen Serie 4 (Komplexe Zahlen: Ortskurven)

Größe: px
Ab Seite anzeigen:

Download "Lösungen Serie 4 (Komplexe Zahlen: Ortskurven)"

Transkript

1 Fachhochschule Nordwestschweiz FHNW Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lösungen Serie 4 Komplexe Zahlen: Ortskurven Dozent: oger Burkhardt Klasse: Studiengang ST. Aufgabe Büro: 4.63 Semester: Modul: Algebra Datum: FS00 a Bestimme die Gleichung der Geraden z t a + it durch die Punkte z i und z + i. Die komplexe Zahl a bezeichnet den kürzesten Zeiger auf die Gerade. Mit Hilfe der Vektorgeometrie lässt sich dieser einfach berechnen: Gerade parametrisiert: r r r +t r +t Normalenvektor ichtungsvektor um 90 Grad drehen: n Normalform Koordinatengleichung: n r r Hesse sche Normalform: x y 0 x + y x + y t Kürzeste Entfernung: D Ortsvektor zum nächsten Punkt: D a n n Die gesuchte komplexe Zahl kürzester Zeiger lautet somit: a 6 i3 Ein Parametrisierung der gesuchten Geraden: z t a + it 6 i3 + it

2 Algebra Lösungen Serie 4 Komplexe Zahlen: Ortskurven FS 00 b Stelle die gefundene Gerade mit MATLAB graphisch dar. MATLAB: >>syms t >>ortskurve6/-i*3/*+i*t, t,[-6,6],[-,-3,-,0,,3,],0,0 Skizze: c Bestimme Gleichung, Mittelpunkt und adius des Kreises, welcher durch Inversion der Geraden entsteht. Inversion: w t z t 6 i 3 + it Kreisdaten: w M 3 eia tan it tan eia i w eia tan + it Seite /

3 Algebra Lösungen Serie 4 Komplexe Zahlen: Ortskurven FS 00. Aufgabe a Gegeben sei der Kreis mit Mittelpunkt M, 4 und adius. Besschreibe den Kreis in der Form: z t a + it + b Kreis mit Mittelpunkt M, 0 und adius : z t a + it 4 + it Verschiebung des Kreises, so dass der Mittelpunkt an der richtigen Stelle liegt: z t z t + + 4i i + it b Bestimme Gleichung, Mittelpunkt und adius des invertierten Kreises. Inversion: Am einfachsten ist es den nächsten und entferntesten Punkt zu invertieren: Nächster Punkt: z N w E z N 4i 7 Entferntester Punkt: z E + w N z E 4i 7 zm + 4i z M zm i zm + + 4i z M zm i Neuer Mittelpunkt Mitte zwischen nächstem und entferntestem Punkt: + w M w N + w E + + 4i 7 + zm i Seite 3 /

4 Algebra Lösungen Serie 4 Komplexe Zahlen: Ortskurven FS 00 Neuer adius: w w E w N zm Aufgabe Gegeben sei folges aster: 3 y x Bestimme die Inversion des asters und der dargestellten schraffierten Fläche. Inversion aster: Vertikale Geraden a ergeben Kreise durch den Ursprung mit Mittelpunkt auf der reellen Achse ausser die x-achse, welche als Gerade durch den Ursprung auf sich selbst abgebildet wird!: z t a + it w t a + it a + it M a, 0, a Seite 4 /

5 Algebra Lösungen Serie 4 Komplexe Zahlen: Ortskurven FS 00 3 y x Horizontale Geraden a ia, a ergeben Kreise durch den Ursprung mit Mittelpunkt auf der imaginären Achse ausser die y-achse, welche auf sich selbst abgebildet wird!: z t ia + it w t ia + it a e i signa M 0,, a a π + it 3 y x Seite /

6 Algebra Lösungen Serie 4 Komplexe Zahlen: Ortskurven FS 00 Überlagerung und Schraffur: A y 3 B G D E C D C F G F E x A B 4. Aufgabe Gegeben sei die folge Schaltung 0Ω, L 0mH und C mf : A L C B a Bestimme die kreisfrequenzabhängige Gesamptimpedanz und stelle diese mit MATLAB graphisch dar. Serieschaltung -L Gerade nicht durch Ursprung: Z ser + iωl Parallelschaltung Kreis nicht durch Ursprung: Z par + +iωl + iωl + iωl Gesamptimpedanz keine bekannte Kurve: MATLAB: Z ges + iωl + iωl i ωc Seite 6 /

7 Algebra Lösungen Serie 4 Komplexe Zahlen: Ortskurven FS 00 %Ortskurven mit MATLAB: % %Parameter: syms omega %Bereich für den Parameter: DB omega_r [00,000]; %Feste Parameterwerte für die Beschriftung: omega_w [00,300,00,700,900]; %Ortskurve serie: z_s0+i*omega*0.0 %Skizze: ezplotrealz_s,imagz_s,omega_r; hold on %Ortskurve parallel: z_p//0+/0+i*omega*0.0 %Skizze: ezplotrealz_p,imagz_p,omega_r; hold on %Ortskurve gesamt: z_g//0+/0+i*omega*0.0-i/omega/0.00 %Skizze: ezplotrealz_g,imagz_g,omega_r; hold on %Beschriftung: for k:lengthomega_w zzsubsz_g,omega,omega_wk; xxrealzz; yyimagzz; plotxx,yy, r* textxx,yy,strcat \leftarrow \omega,numstromega_wk Skizze: Seite 7 /

8 Algebra Lösungen Serie 4 Komplexe Zahlen: Ortskurven FS 00 b Stelle den Betrag und das Argument des Gesamtwiderstandes graphisch dar. Betrag: Argument: c Für welche Kreisfrequenz ist die Gesamptimpedanz reell? Argument: Z ges + iωl + iωl i ωc + iωl iωl 4 + ω L 3 + ω L + i ωl + i 4 + ω L ωc ωc 3 + ω L + i ω LC 4 ω L ωc 4 + ω L im Zges arg Z ges atan re Z ges ω LC 4 ω L atan 3 ωc + ω 3 L C + i ωc Seite 8 /

9 Algebra Lösungen Serie 4 Komplexe Zahlen: Ortskurven FS 00 Nullstelle: Die Arkustangensfunktion wird Null, wenn das Argument Null ist. Zähler des Bruches muss somit Null sein: ω LC 4 ω L 0 ω LC L 4 ω 4 LC L ω LC L s. Aufgabe In der egelungstechnik wird zur Untersuchung von egelstrecken und zum Einstellen der egelparameter oft die sogenannte Wurzelortskurve eingesetzt. Sei die offene egelstrecke durch die Übertragungsfunktion G 0 s beschrieben, so versteht man unter der Wurzelortskurve WOK die Darstellung in der Gauss schen Zahlenebene aller Lösungen Wurzeln für s der Gleichung kg 0 s + 0 Die gefundenen Lösungen sind dabei abhängig vom reellen Parameter k. a Bestimme von der folgen Übertragungsfunktion die WOK k [0, 30]. G 0 s + 0s + 3s + s MATLAB: function wokf,va,va_range,va_werte %WOK skizziert zur angegebenen Übertragungsfunktion %die Wurzelortskurve. %f Übertragungsfunktion der offenen Strecke %va unabhängige Variable %va_range Bereich für die unabhängige Variable %va_werte Werte wo die wok beschriftet werden soll. % %Bsp.: %>>syms s %>>g_0/+0*s/+3*s/+s %>>wokg_0,s,[0,0000],[0:000:0000] c[ r, g, k, b, y, c, m ]; hold off anz00; kw[va_range:va_range-va_range/anz:va_range]; for kk:lengthkw Seite 9 /

10 Algebra Lösungen Serie 4 Komplexe Zahlen: Ortskurven FS 00 kkwkk; lsgsolvek+/f,va; for pp:lengthlsg if isrealdoublelsgpp plotdoublelsgpp,0,.m \%strcat.,cpp else if realdoublelsgpp>0 plotdoublelsgpp,.b \%strcat.,cpp else if absimagdoublelsgpp<0.00 plotdoublelsgpp,.m \%strcat.,cpp else plotdoublelsgpp,.r \%strcat.,cpp hold on %Beschriftung: for kk:lengthva_werte kva\_wertekk; lsgsolvek+/f,va; for pp:lengthlsg textrealdoublelsgpp,imagdoublelsgpp,... strcat k,numstrva_wertekk Skizze: b Für welche k-werte ist der ealteil der Nullstellen grösser Null aufschaukelnde Schwingung! Seite 0 /

11 Algebra Lösungen Serie 4 Komplexe Zahlen: Ortskurven FS 00 der ealteil gleich Null Schwingung mit konstanter Amplitude! der ealteil kleiner Null und der Imaginärteil ungleich Null gedämpfte Schwingung! der ealteil negativ und der Imaginärteil gleich Null keine Schwingung! Diese Fragen lassen sich nur numerisch beantworten. Es gilt: der ealteil der Nullstellen grösser Null aufschaukelnde Schwingung!: k > der ealteil gleich Null Schwingung mit konstanter Amplitude!: k der ealteil kleiner Null und der Imaginärteil ungleich Null gedämpfte Schwingung!: 0.36 < k < der ealteil negativ und der Imaginärteil gleich Null keine Schwingung!: 0 < k 0.36 Seite /

Algebra. Roger Burkhardt Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft

Algebra. Roger Burkhardt Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft FS 2010 Roger Burkhardt roger.burkhardt@fhnw.ch 1/39 3 Roger Burkhardt

Mehr

Algebra - Komplexe Zahlen - Ortskurven. Roger Burkhardt (FHNW)

Algebra - Komplexe Zahlen - Ortskurven. Roger Burkhardt (FHNW) Algebra - Komplexe Zahlen - Ortskurven Roger Burkhardt (FHNW) FS 2008 Contents Einführung 2 Kurven in der Gauss schen Zahlenebene 3 2. DieGeraden... 3 2.2 DerKreis... 5 3 Inversionen 9 3. InversioneinerGeradendurchdenUrsprung...

Mehr

Lösungen Test 1 Algebra. Ohne el. Hilfsmittel

Lösungen Test 1 Algebra. Ohne el. Hilfsmittel Fachhochschule Nordwestschweiz FHNW) Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lösungen Test Algebra Dozent: Roger Burkhardt Klasse: Studiengang ST Büro: 4.6 Semester: Modul: Algebra

Mehr

TEIL 1 (ohne Rechner)

TEIL 1 (ohne Rechner) Fachhochschule Nordwestschweiz FHNW) Hochschule für Technik Institut für Geistes- und Naturwissenschaft Dozent: Roger Burkhardt Klasse: Studiengang ST Lösungen Test 2 Algebra Büro: 4.63 Semester: 2 Modul:

Mehr

TEIL 1 (ohne Rechner)

TEIL 1 (ohne Rechner) Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Geistes- und Naturwissenschaft Dozent: Roger Burkhardt Klasse: Studiengang ST Lösungen Repetition Algebra Büro:.63 Semester: 2 Modul:

Mehr

Lössungen Serie 3 (Komplexe Zahlen in der Elektrotechnik)

Lössungen Serie 3 (Komplexe Zahlen in der Elektrotechnik) Fachhochschule Nordwestschweiz FHNW) Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lössungen Serie 3 Komplexe Zahlen in der Elektrotechnik) Dozent: Roger Burkhardt Klasse: Studiengang

Mehr

Lösung Serie 5 (Polynome)

Lösung Serie 5 (Polynome) Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Geistes- und Naturwissenschaft Dozent: Roger Burkhardt Klasse: Studiengang ST Lösung Serie 5 (Polynome) Büro: 4613 Semester: 2

Mehr

BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education. Höhere Mathematik II. Übungen. Komplexe Zahlen. i e π + 1=

BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education. Höhere Mathematik II. Übungen. Komplexe Zahlen. i e π + 1= BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education Höhere Mathematik II Übungen Komplexe Zahlen i e π + 0 8 R. Mohr FK Blatt Komplexe Zahlen I WS 004/ Aufgabe : Gegeben sind die komplexen

Mehr

Lösung Serie 6 (Polynome)

Lösung Serie 6 (Polynome) Fachhochschule Nordwestschweiz FHNW Hochschule für Techni Institut für Geistes- und Naturwissenschaft Dozent: Roger Burhardt Klasse: Studiengang ST Lösung Serie 6 Polynome Büro: 4.6 Semester: Modul: Algebra

Mehr

5.5 Ortskurven höherer Ordnung

5.5 Ortskurven höherer Ordnung 2 5 Ortskurven 5.5 Ortskurven höherer Ordnung Ortskurve Parabel Die Ortskurvengleichung für die Parabel lautet P A + p B + p 2 C. (5.) Sie kann entweder aus der Geraden A + p B und dem Anteil p 2 C oder

Mehr

Lösungen Serie 2 (Lineare Gleichungssysteme, Matrizen)

Lösungen Serie 2 (Lineare Gleichungssysteme, Matrizen) Fachhochschule Nordwestschwei (FHNW Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lösungen Serie 2 (Lineare Gleichungsssteme, Matrien Doent: Roger Burkhardt Klasse: Studiengang ST

Mehr

Lösung Arbeitsblatt Vektoren

Lösung Arbeitsblatt Vektoren Fachhochschule Nordwestschweiz FHNW Hochschule für Technik Institut für Mathematik und Naturwissenschaften IMN Dozent: - Brückenkurs Mathematik Lösung Arbeitsblatt Vektoren Modul: Mathematik Datum:. Aufgabe

Mehr

Komplexe Zahlen. Darstellung

Komplexe Zahlen. Darstellung Komplexe Zahlen Die Zahlenmengen, mit denen wir bis jetzt gearbeitet haben lassen sich zusammenfassen als N Z Q R Die natürlichen Zahlen sind abgeschlossen bezüglich der Operation des Addierens. Das heisst

Mehr

12 3 Komplexe Zahlen. P(x y) z = x + jy

12 3 Komplexe Zahlen. P(x y) z = x + jy 2 3 Komplexe Zahlen 3 Komplexe Zahlen 3. Grundrechenoperationen Definition Die Menge C = {z = a + jb a, b IR; j 2 = } heißt Menge der komplexen Zahlen; j heißt imaginäre Einheit. (andere Bezeichnung: i)

Mehr

02. Komplexe Zahlen. a = Re z ist der Realteil von z, b = Im z der Imaginärteil von z.

02. Komplexe Zahlen. a = Re z ist der Realteil von z, b = Im z der Imaginärteil von z. 0. Komplexe Zahlen Da für alle x R gilt dass x 0, hat die Gleichung x +1 = 0 offenbar keine reellen Lösungen. Rein formal würden wir x = ± 1 erhalten, aber dies sind keine reellen Zahlen. Um das Problem

Mehr

A Die Menge C der komplexen Zahlen

A Die Menge C der komplexen Zahlen A Die Menge C der komplexen Zahlen (Vgl. auch Abschnitt C) A.1 Definition Wir erweitern R um eine Zahl i / R (genannt imaginäre Einheit) mit der Eigenschaft i 2 i i = 1. (653) Unter einer komplexen Zahl

Mehr

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen Komplexe Zahlen Allgemeines Definition Eine komplexe Zahl z x + y i besteht aus einem Realteil Re(z) x und einem Imaginärteil Im(z) y. Der Imaginärteil wird mit der Imaginären-Einheit i multipliziert.

Mehr

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s)

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s) Aufgabe : LAPLACE-Transformation Die Laplace-Transformierte der Sprungantwort ist: Y (s) = 0.5 s + (s + 3).5 (s + 4) Die Sprungantwort ist die Reaktion auf den Einheitssprung: w(t) = σ(t) W (s) = s Die

Mehr

FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK

FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK Sommersemester 006 Zahl der Blätter: 5 Blatt 1 s. unten Hilfsmittel: Literatur, Manuskript, keine Taschenrechner und sonstige elektronische Rechner Zeit:

Mehr

/U Wie groß ist den beiden unter 6. genannten Fällen der von der Spannungsquelle U 1 gelieferte Strom? als Formel. 1 + jωc = R 2.

/U Wie groß ist den beiden unter 6. genannten Fällen der von der Spannungsquelle U 1 gelieferte Strom? als Formel. 1 + jωc = R 2. Aufgabe Ü6 Gegeben ist die angegebene Schaltung:. Berechnen Sie allgemein (als Formel) /. 2. Wie groß ist der Betrag von /? R 3. Um welchen Winkel ist gegenüber phasenverschoben? 4. Skizzieren Sie die

Mehr

Grundlagen der Elektrotechnik II Duale Hochschule Baden Württemberg Karlsruhe Dozent: Gerald Oberschmidt

Grundlagen der Elektrotechnik II Duale Hochschule Baden Württemberg Karlsruhe Dozent: Gerald Oberschmidt DHBW Karlsruhe Grundlagen der Elektrotechnik II Grundlagen der Elektrotechnik II Duale Hochschule Baden Württemberg Karlsruhe Dozent: Gerald Oberschmidt 5 Hoch und Tiefpässe 5. L--Hoch und Tiefpass Abbildung

Mehr

Lösung Serie 1 (Differentialgleichungen 1-ter Ordnung)

Lösung Serie 1 (Differentialgleichungen 1-ter Ordnung) Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lösung Serie 1 (Differentialgleichungen 1-ter Ordnung) Dozent: Roger Burkhardt Klasse: Studiengang

Mehr

LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN

LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN Fakultät Mathematik Institut für Numerische Mathematik LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN 6. Komplexe Zahlen Prof. Dr. Gunar Matthies Wintersemester 2017/18 G. Matthies Lineare

Mehr

Die komplexen Zahlen. 1. Einführung. A) Erweiterung des Zahlenkörpers. Def. 1 (imaginäre Einheit)

Die komplexen Zahlen. 1. Einführung. A) Erweiterung des Zahlenkörpers. Def. 1 (imaginäre Einheit) Die komplexen Zahlen 1. Einführung A) Erweiterung des Zahlenkörpers Def. 1 (imaginäre Einheit) Die Gl. x 2 + 1 = 0 hat zwei Lösungen, nämlich i und - i. Es soll also gelten: i 2 = -1 und ( - i ) 2 = -1.

Mehr

RE Elektrische Resonanz

RE Elektrische Resonanz RE Elektrische Resonanz Blockpraktikum Herbst 27 (Gruppe 2b) 24. Oktober 27 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Impedanz...................................... 2 1.2 Phasenresonanz...................................

Mehr

Lösung Serie 3 (Modellieren (SIMULINK + MATLAB))

Lösung Serie 3 (Modellieren (SIMULINK + MATLAB)) Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lösung Serie 3 (Modellieren (SIMULINK + MATLAB Dozent: Roger Burkhardt Klasse: Studiengang ST Büro:

Mehr

Serie 6: Komplexe Zahlen

Serie 6: Komplexe Zahlen D-ERDW, D-HEST, D-USYS Mathematik I HS 15 Dr. Ana Cannas Serie 6: Komplexe Zahlen Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom 26. und 28. Oktober. Es gibt zwei Darstellungsformen

Mehr

Lösungen Serie 6 (Vektorräume, Skalarprodukt)

Lösungen Serie 6 (Vektorräume, Skalarprodukt) Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lösungen Serie 6 (Vektorräume, Skalarprodukt Dozent: Roger Burkhardt Klasse: Studiengang ST Büro:

Mehr

Lösungen Serie 9 (Vektorgeometrie)

Lösungen Serie 9 (Vektorgeometrie) Fachhochchule Nordwetchweiz (FHNW Hochchule für Technik Intitut für Geite- und Naturwienchaft Dozent: Roger Burkhardt Klae: Studiengang ST. Aufgabe Löungen Serie 9 (Vektorgeometrie Büro:.6 Semeter: Modul:

Mehr

3 Ortskurven. 3.1 Einleitung. 3.2 Spannungs-/Widerstandsdiagramme in der Reihenschaltung

3 Ortskurven. 3.1 Einleitung. 3.2 Spannungs-/Widerstandsdiagramme in der Reihenschaltung C. FEPEL 3 Ortskurven 3. Einleitung Durch ein Zeigerbild wird ein bestimmter Betriebszustand eines Wechselstromnetzes bei konstanten Parametern (Amplitude und Frequenz der einspeisenden sinusförmigen Quellspannungen

Mehr

Tutorium Mathematik I, M Lösungen

Tutorium Mathematik I, M Lösungen Tutorium Mathematik I, M Lösungen 9. Oktober 202 *Aufgabe. Ein Fischauge ist ein Objektiv in der Photographie, welches einen sehr großen Bildwinkel (gewöhnlich 80 ) abbilden kann. Hierfür muss das Bild

Mehr

Komplexe Zahlen und Funktionen

Komplexe Zahlen und Funktionen Komplexe Zahlen und Funktionen 1. komplexes Gleichungssystem z 1 iz 2 = i 2 z 2 + 3z 3 = 6 6i 2iz 1 3iz 3 = 1 8i 2. komplexe Gleichung Welche z C erfüllen die Gleichung 4z 2 4 z + 1 = 0? 3. konjugiert-komplexe

Mehr

Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4

Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4 anu donat.adams@fhnw.ch www.adams-science.com Serie 9, Musterlösung Klasse: Ub Semester: Datum: 3. Mai 17 1. Die komplee Zahlenebene Stelle die Zahlen als Punkte in der kompleen Zahlenebene dar. Berechne

Mehr

Praktikum EE2 Grundlagen der Elektrotechnik. Name: Testat : Einführung

Praktikum EE2 Grundlagen der Elektrotechnik. Name: Testat : Einführung Fachbereich Elektrotechnik Ortskurven Seite 1 Name: Testat : Einführung 1. Definitionen und Begriffe 1.1 Ortskurven für den Strom I und für den Scheinleistung S Aus den Ortskurven für die Impedanz Z(f)

Mehr

Lösungen Test 1 - Lineare Algebra

Lösungen Test 1 - Lineare Algebra Name: Seite: Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Lösungen Test - Lineare Algebra Dozent: R. Burkhardt Büro: 4. Klasse:. Studienjahr Semester: Datum: HS 8/9 Bemerkung Alle Aufgaben

Mehr

Ergänzung zu komplexe Zahlen

Ergänzung zu komplexe Zahlen Juli 2015 Übersicht 1 Ortskurven 2 Wechselstromkreis mit ohmschem und kapazitivem Widerstand (Parallelschaltung) i(t) u(t) R C Bei festen Werten für den ohmschen Widerstand R und die Kapazität C ergibt

Mehr

Komplexe Zahlen (Seite 1)

Komplexe Zahlen (Seite 1) (Seite 1) (i) Motivation: + 5 = 3 hat in N keine Lösung Erweiterung zu Z = 2 3 = 2 hat in Z keine Lösung Erweiterung zu Q = 2 / 3 ² = 2 hat in Q keine Lösung Erweiterung zu R = ± 2 ² + 1 = 0 hat in R keine

Mehr

Beantworten Sie die folgenden Fragen bitte kurz und präzise. Es sind keine längeren Ausführungen erforderlich!

Beantworten Sie die folgenden Fragen bitte kurz und präzise. Es sind keine längeren Ausführungen erforderlich! Aufgabe 1: Verständnisfragen (14 Punkte) Beantworten Sie die folgenden Fragen bitte kurz und präzise Es sind keine längeren Ausführungen erforderlich! Erläutern Sie die Begriffe Regelabweichung und Steuergröße

Mehr

2 Komplexe Zahlen. 2.1 Grundlagen. Aufgabe Aufgabe Aufgabe 2.1.3

2 Komplexe Zahlen. 2.1 Grundlagen. Aufgabe Aufgabe Aufgabe 2.1.3 2 Komplexe Zahlen 2.1 Grundlagen Aufgabe 2.1.1 Sei z 1 = 2 + und =. Stellen Sie a) z 1 +, b) z 1, c) z 1. zeichnerisch dar und berechnen Sie die Werte. Aufgabe 2.1.2 Berechnen Sie die folgenden Werte,

Mehr

Mathematischer Vorbereitungskurs für das MINT-Studium

Mathematischer Vorbereitungskurs für das MINT-Studium Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet b.hallouet@mx.uni-saarland.de WS 2016/2017 Vorlesung 11 MINT Mathkurs WS 2016/2017 1 / 21 Partialbruchzerlegung (Partial fraction decomposition)

Mehr

Seite 1 NAME VORNAME MATRIKEL-NR. Achtung: Schreiben Sie Ihre Antworten für die Aufgaben 1 bis 2 direkt unter den Fragen in den Fragebogen.

Seite 1 NAME VORNAME MATRIKEL-NR. Achtung: Schreiben Sie Ihre Antworten für die Aufgaben 1 bis 2 direkt unter den Fragen in den Fragebogen. 144 Minuten Seite 1 NAME VORNAME MATRIKEL-NR. Achtung: Schreiben Sie Ihre Antworten für die Aufgaben 1 bis 2 direkt unter den Fragen in den Fragebogen. Aufgabe 1 (je 2 Punkte) a) Definieren Sie die Begriffe

Mehr

Lösungen Serie 5 (Determinante)

Lösungen Serie 5 (Determinante) Name: Seite: Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Lösungen Serie 5 (Determinante) Dozent: R Burkhardt Büro: 463 Klasse: Studienjahr Semester: Datum: HS 2008/09 Aufgabe Bestimme

Mehr

Die Sprungantwort ist die Reaktion auf den Einheitssprung: G 2 (s) = 2 (s +1)(s +6) 3 (s +7)(s +2)

Die Sprungantwort ist die Reaktion auf den Einheitssprung: G 2 (s) = 2 (s +1)(s +6) 3 (s +7)(s +2) Aufgabe 1: Die Laplace-Transformierte der Sprungantwort ist: Y (s) = 1 s + (s +3) 3 (s +4) Die Sprungantwort ist die Reaktion auf den Einheitssprung: w(t) =σ(t) W (s) = 1 s Die Übertragungsfunktion des

Mehr

Musterlösung zur. Klausur Grundlagen der Elektrotechnik I im SoSe 18. Aufgabe 1. Die Lösungen zu Aufgabe 1 folgen zum Ende des Dokuments.

Musterlösung zur. Klausur Grundlagen der Elektrotechnik I im SoSe 18. Aufgabe 1. Die Lösungen zu Aufgabe 1 folgen zum Ende des Dokuments. Musterlösung zur Klausur Grundlagen der Elektrotechnik I im SoSe 18 Aufgabe 1 Die Lösungen zu Aufgabe 1 folgen zum Ende des Dokuments. Aufgabe 2 1. R 1 = R a und R b = R 2 R L R 2 +R L 2. R 1 + R 2 = 1

Mehr

Übungsblatt 3 (Vektorgeometrie)

Übungsblatt 3 (Vektorgeometrie) Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Mathematik- und Naturwissenschaft Übungsblatt (Vektorgeometrie Roger Burkhardt 08 Mathematik. Aufgabe Gegeben seien die Vektoren

Mehr

Übungen Mathematik I, M

Übungen Mathematik I, M Übungen Mathematik I, M Übungsblatt, Lösungen (Stoff aus Mathematik 0).0.0. Berechnen Sie unter Verwendung des binomischen Lehrsatzes ( x + y) 7 Lösung: Nach dem binomischen Lehrsatz ist ( x + y) 7 = 7

Mehr

x 1 + u y 2 = 2 0 x 2 + 4u 2.

x 1 + u y 2 = 2 0 x 2 + 4u 2. 3. Übung: Regelkreis Aufgabe 3.1. Gegeben sind die beiden linearen zeitkontinuierlichen Systeme 3 2 2 ẋ 1 = 6 5 x 1 + 1 u 1 6 2 3 [ ] y 1 = 2 x 1 (3.1a) (3.1b) und [ ] [ ] 8 15 1 ẋ 2 = x 2 + 6 1 4 [ ]

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 Komplexe Zahlen Das Auffinden aller Nullstellen von algebraischen Gleichungen ist ein Grundproblem, das in der Physik

Mehr

Lösung zu Serie 2. D-ERDW, D-HEST, D-USYS Dr. Ana Cannas. Mathematik II FS März 2016

Lösung zu Serie 2. D-ERDW, D-HEST, D-USYS Dr. Ana Cannas. Mathematik II FS März 2016 Mathematik II FS 6. März 6 Lösung zu Serie Bemerkung: Die Aufgaben der Serie sind der Fokus der Übungsstunden vom./3. März.. a y = x und es wird die ganze Parabel einmal durchlaufen, denn x nimmt alle

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mathematik und Naturwissenschaften Arbeitsblatt Mathematik 3 (Diverses) Dozent: - Brückenkurs Mathematik / Physik 2016 Lineare

Mehr

VII Komplexe Zahlen. Propädeutikum Holger Wuschke. 24. September 2018

VII Komplexe Zahlen. Propädeutikum Holger Wuschke. 24. September 2018 Propädeutikum 2018 24. September 2018 Darstellung Rechengesetze Erweiterung der reellen Zahlen um eine imaginäre Einheit. Ursprung: Lösung der Gleichung x 2 + 1 = 0 Komplexe Zahlen C := {a + i b a, b R}

Mehr

Algebra. Roger Burkhardt Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft

Algebra. Roger Burkhardt Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft Algebra Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft FS 2010 Roger Burkhardt roger.burkhardt@fhnw.ch Algebra

Mehr

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen Komplexe Zahlen Lösungshinweise. Sei z = + i und z = i. Berechnen Sie z + z, z z, z z, z z, z /z, z + z, z z, z z, z

Mehr

= 2 i 2= 2 2 i, z 4. = 1.5, z 8

= 2 i 2= 2 2 i, z 4. = 1.5, z 8 Mathematik 1 - Übungsblatt 11 Aufgabe 1 (komplexe Zahlen) Gegeben sind folgende komplexe Zahlen in der Darstellung als Normalform mit Real- und Imaginärteil z=x i y - oder wegen der Vertauschbarkeit von

Mehr

Kapitel 5 Komplexe Zahlen

Kapitel 5 Komplexe Zahlen Kapitel 5 Komplexe Zahlen 5 5 5 Komplexe Zahlen.................................... 191 5.1 Darstellung komplexer Zahlen... 194 5.1.1 Algebraische Normalform... 194 5.1.2 Trigonometrische Normalform...

Mehr

Lösungen Übungsblatt 3 (Vektorgeometrie)

Lösungen Übungsblatt 3 (Vektorgeometrie) Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Mathematik- und Naturwissenschaft Lösungen Übungsblatt (Vektorgeometrie Roger Burkhardt Mathematik. Aufgabe Gegeben seien die Vektoren

Mehr

Musterlösung Grundlagen der Elektrotechnik B

Musterlösung Grundlagen der Elektrotechnik B Prof. Dr.-Ing. Joachim Böcker Musterlösung Grundlagen der Elektrotechnik B 06.0.206 06.0.206 Musterlösung Grundlagen der Elektrotechnik B Seite von 3 Aufgabe : Gleichstrommaschine (20 Punkte) In dieser

Mehr

Urs Wyder, 4057 Basel Funktionen. f x x x x 2

Urs Wyder, 4057 Basel Funktionen. f x x x x 2 Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4

Mehr

Abitur Mathematik Baden-Württemberg 2012

Abitur Mathematik Baden-Württemberg 2012 Abitur Mathematik: Baden-Württemberg 2012 Im sind keine Hilfsmittel zugelassen. Aufgabe 1 1. SCHRITT: STRUKTUR DER FUNKTION BESCHREIBEN Der Funktionsterm von f ist die Verkettung der Potenzfunktion g(x)

Mehr

Filter. Ortsverband Pulheim G40

Filter. Ortsverband Pulheim G40 Filter Ortsverband Pulheim G40 Filter, Einführung 16.02.2018 Filter 2 Vierpol I e I a U e Vierpol U a Übertragungsverhalten bei I a = 0 ist A(jω) A jω = U a U e 16.02.2018 Filter 3 Streuparameter it wissen.de

Mehr

handelt es sich um einen Einheitssprung. mit Hilfe der Laplace- Rücktransformation, wenn alle Anfangswerte zu Null gesetzt werden:

handelt es sich um einen Einheitssprung. mit Hilfe der Laplace- Rücktransformation, wenn alle Anfangswerte zu Null gesetzt werden: Aufgabe 1: Laplace-Transformation (10 Punkte) Gegeben sei ein System, dessen dynamisches Verhalten durch folgende Differentialgleichung beschrieben wird: y ( 1y ( 3y( 3u(. Bei der Eingangsgröße u ( handelt

Mehr

Klassische Theoretische Physik I WS 2013/ Komplexe Zahlen ( = 35 Punkte)

Klassische Theoretische Physik I WS 2013/ Komplexe Zahlen ( = 35 Punkte) Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 013/014 Prof. Dr. J. Schmalian Blatt 8 Dr. P. P. Orth Abgabe 0.1.013 1. Komplexe Zahlen (5 + 5 + 5 + 5 + 5

Mehr

RE - Elektrische Resonanz Praktikum Wintersemester 2005/06

RE - Elektrische Resonanz Praktikum Wintersemester 2005/06 RE - Elektrische Resonanz Praktikum Wintersemester 5/6 Philipp Buchegger, Johannes Märkle Assistent Dr. Torsten Hehl Tübingen, den 8. November 5 Einführung Ziel dieses Versuches ist es, elektrische Resonanz

Mehr

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz wwwmathe-aufgabencom September 6 Abituraufgaben (Haupttermin) Aufgabe

Mehr

Serie 3 - Komplexe Zahlen II

Serie 3 - Komplexe Zahlen II Analysis D-BAUG Dr. Meike Akveld HS 2015 Serie - Komplexe Zahlen II 1. Wir betrachten die komplexe Gleichung z 6 = 4 4i. a) Bestimmen Sie alle en z C dieser Gleichung. b) Zeichnen Sie die en in die komplexe

Mehr

Grundlagen komplexe Zahlen. natürliche Zahlen

Grundlagen komplexe Zahlen. natürliche Zahlen Grundlagen komplexe Zahlen Die Zahlenbereichserweiterungen von den natürlichen Zahlen hin zu den reellen Zahlen waren dadurch motiviert, bestimmte Rechenoperationen uneingeschränkt ausführen zu können.

Mehr

Vorbereitungsaufgaben zur Klausur Mathematik I für Studierende des Studienganges Elektrotechnik und Informationssystemtechnik

Vorbereitungsaufgaben zur Klausur Mathematik I für Studierende des Studienganges Elektrotechnik und Informationssystemtechnik Vorbereitungsaufgaben zur Klausur Mathematik I für Studierende des Studienganges Elektrotechnik und Informationssystemtechnik (Aufgaben aus Klausuren). Bestimmen und skizzieren Sie in der Gaußschen Zahlenebene

Mehr

Mathematik. Komplexe Zahlen

Mathematik. Komplexe Zahlen K- Gegeben ist die Gleichung. öst man diese Gleichung nach auf, so erhält man mit Hilfe der pq-formel: 6 / / / 6 Wenn diese Gleichung etzt lautet, dann erhält man einen negativen adikanden: 6 / / / / {

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 1 Einführung Lineare Gleichungen Definition

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 8

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 8 D-MAVT/D-MATL Analysis I HS 017 Dr. Andreas Steiger Lösung - Serie 8 1. MC-Aufgaben Online-Abgabe) 1. Sei z := exp π 6 i) 5 + b i). Für welches b R ist z eine reelle Zahl? a) 1 b) c) 1 5 d) 5 e) Keines

Mehr

Klasse WI06b MLAN2 zweite-klausur 13. Juni 2007

Klasse WI06b MLAN2 zweite-klausur 13. Juni 2007 Klasse WI6b MLAN zweite-klausur 3. Juni 7 Name: Aufgabe Gegeben sind die beiden harmonischen Schwingungen ( y = f (t) = +3 sin ωt + π ) (), ( 4 y = f (t) = 8 cos ωt + π ) (). 4 a) Bestimmen Sie mit Hilfe

Mehr

Menge der irrationalen Zahlen C = {z z = a + bi; a, b R, i 2 = 1} Menge der komplexen Zahlen R C Somit ergibt sich: N N Z Q R C

Menge der irrationalen Zahlen C = {z z = a + bi; a, b R, i 2 = 1} Menge der komplexen Zahlen R C Somit ergibt sich: N N Z Q R C 1 Komplexe Zahlen 1.1 Übersicht N = {1, 2, 3,... } Menge der natürlichen Zahlen ohne 0 N = {0, 1, 2, 3,... } Menge der natürlichen Zahlen mit 0 N N Z = {..., 2, 1, 0, 1, 2,... } Menge der ganzen Zahlen

Mehr

Die komplexen Zahlen werden definiert als die geordneten Paare z = (x, y) reeller Zahlen x, y R, zusammen mit den Rechenoperationen

Die komplexen Zahlen werden definiert als die geordneten Paare z = (x, y) reeller Zahlen x, y R, zusammen mit den Rechenoperationen 2 Komplexe Zahlen 2.1 Definition Die omplexen Zahlen werden definiert als die geordneten Paare z = (x, y) reeller Zahlen x, y R, zusammen mit den Rechenoperationen z 1 + z 2 (x 1, y 1 ) + (x 2, y 2 ) :=

Mehr

Projektaufgabe Mathematik II Der passive RC-Tiefpaß

Projektaufgabe Mathematik II Der passive RC-Tiefpaß Projektaufgabe Mathematik II Der passive RC-Tiefpaß Messtechnik II / Mathematik II für KEB, TFH Berlin, Gruppe D 22. Dezember 2006 Torben Zech 738845 Martin Henning 73650 Abdurrahman Namdar 739068 Inhaltsverzeichnis

Mehr

Erste Schularbeit Mathematik Klasse 7A G am

Erste Schularbeit Mathematik Klasse 7A G am Erste Schularbeit Mathematik Klasse 7A G am 12.11.2015 Korrekturversion Aufgabe 1. (2P) Zahlenmengen. Es folgen Aussage über Zahlenmengen. Kreuzen Sie die beiden zutreffenden Aussagen an! 2 10 3 ist eine

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 6. Komplexe Zahlen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen

Mehr

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

Lösungsvorschläge zur 3. Übung

Lösungsvorschläge zur 3. Übung Systemdynamik und Regelungstechnik II, SoSe 26 Prof. Dr. Ing. J. Adamy M.Sc. M. Bühler Lösungsvorschläge zur. Übung Aufgabe 2.2- a) Aus der Aufgabenstellung ergibt sich eine Übertragungsfunktion,5z +2

Mehr

12 Übungen zu Gauß-Algorithmus

12 Übungen zu Gauß-Algorithmus Aufgaben zum Vorkurs B S. 2 Übungen zu Gauß-Algorithmus 2x x 2 = 7x +, 5x 2 = 7 Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: 2x x 2 = x +2x 2 = 2 2x x 2 = 7x +, 5x 2 =, 5 x 2x 2 = x +x 2 = 5 2x +x 2 = 4

Mehr

Erste Schularbeit Mathematik Klasse 7D WIKU am

Erste Schularbeit Mathematik Klasse 7D WIKU am Erste Schularbeit Mathematik Klasse 7D WIKU am 12.11.2014 ANTWORTVORLAGE Achtung: Teil 2 war noch in einem anderen Modus, daher muss man die Punkte umrechnen P unkte wirkliche P unkte =. Kompensationspunkte

Mehr

Zusatzmaterial zur Mathematik I für E-Techniker Übung 2

Zusatzmaterial zur Mathematik I für E-Techniker Übung 2 Mathematik I für E-Techniker C. Erdmann WS 011/1, Universität Rostock,. Vorlesungswoche Zusatzmaterial zur Mathematik I für E-Techniker Übung Wiederholung - Theorie: Komplexe Zahlen (a Wir definieren mit

Mehr

RE - Elektrische Resonanz Blockpraktikum - Herbst 2005

RE - Elektrische Resonanz Blockpraktikum - Herbst 2005 E - Elektrische esonanz, Blockpraktikum - Herbst 25 13. Oktober 25 E - Elektrische esonanz Blockpraktikum - Herbst 25 Tobias Müller,Alexander Seizinger Assistent: Dr. Thorsten Hehl Tübingen, den 13. Oktober

Mehr

Prüfungsklausur. Grundlagen der Regelungstechnik I, II (PNR 2155) am von 10:00 13:00 Uhr

Prüfungsklausur. Grundlagen der Regelungstechnik I, II (PNR 2155) am von 10:00 13:00 Uhr Prüfungsklausur Grundlagen der Regelungstechnik I, II am 03.09.016 von 10:00 13:00 Uhr Aufgabe 1 3 4 5 Summe Erreichbare Punkte 15 1 14 5 5 100 Erreichte Punktzahl Wichtig: Bitte beachten Sie! 1. Namen

Mehr

Matur-/Abituraufgaben Analysis

Matur-/Abituraufgaben Analysis Matur-/Abituraufgaben Analysis 1. Tropfen Die folgende Skizze zeigt die Kurve k mit der Gleichung y = (1 ) im Intervall 1. Die Kurve k bildet zusammen mit ihrem Spiegelbild k eine zur -Achse symmetrische

Mehr

D-MAVT Lineare Algebra I HS 2018 Prof. Dr. N. Hungerbühler. Lösungen 7

D-MAVT Lineare Algebra I HS 2018 Prof. Dr. N. Hungerbühler. Lösungen 7 D-MAVT Lineare Algebra I HS 8 Prof. Dr. N. Hungerbühler Lösungen 7. Gegeben seien: A := ( ), A := 5 ( ) 3 4. 4 3 Welche der folgenden Aussagen gelten? (a) A ist orthogonal. (b) A ist orthogonal. Lösung.

Mehr

] ( )

] ( ) Fachhochschule Nordwestschweiz FHNW) Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lösung Arbeitsblatt Gleichungen / Ungleichungen Dozent: Roger Burkhardt Klasse: Brückenkurs 0 Büro:

Mehr

Kapitel 6: Grundlagen der Wechselstromtechnik

Kapitel 6: Grundlagen der Wechselstromtechnik Inhalt Kapitel 6: Grundlagen der technik Sinusförmige Signale Zeigerdarstellung Darstellung mit komplexen Zahlen komplexe Widerstände Grundschaltungen Leistung im kreis Ortskurven Übertragungsfunktion

Mehr

2. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013. z 3 + 4z 2 + z 26 z 2. = z 2 + 6z i und 2

2. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013. z 3 + 4z 2 + z 26 z 2. = z 2 + 6z i und 2 O. Alaya, S. Demirel M. Fetzer, B. Krinn M. Wied. Gruppenübung zur Vorlesung Höhere Mathematik Wintersemester 0/0 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungshinweise zu den Hausaufgaben: Aufgabe H 4. Komplexe

Mehr

Arbeitsblatt Mathematik 2 (Vektoren)

Arbeitsblatt Mathematik 2 (Vektoren) Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Mathematik und Naturwissenschaften Arbeitsblatt Mathematik (Vektoren Dozent: - Brückenkurs Mathematik / Physik 6. Aufgabe Gegeben

Mehr

Aufgabe 1: Laplace-Transformation

Aufgabe 1: Laplace-Transformation Aufgabe 1: Laplace-Transformation (25 Punkte) a) Teilaufgabe: 15 Punkte Gegeben sei die folgende Differenzialgleichung dritter Ordnung: mit den Anfangswerten: y (3) (t) + 4 ÿ(t) + ẏ(t) 6 y(t) = 12 u(t)

Mehr

3. Kinematik und Schwingungen

3. Kinematik und Schwingungen 3. Kinematik und Schwingungen 1 3.1. Kinematik Als Nächstes wollen wir Bewegungen beschreiben z.b. die einer Cataglyphis 2 Zuallererst brauchen wir ein Koordinatensystem um die Positionen überhaupt zu

Mehr

x 1 + u y 2 = 2 0 x 2 + 4u 2.

x 1 + u y 2 = 2 0 x 2 + 4u 2. 3. Übung: gelkreis Aufgabe 3.. Gegeben sind die beiden linearen zeitkontinuierlichen Systeme 3 ẋ = 6 x + u 6 3 [ ] y = x (3.a) (3.b) und [ ] [ ] 8 ẋ = x + 6 4 [ ] y = x + 4u. u (3.a) (3.b) Berechnen Sie

Mehr

Inhalt der Lösungen zur Prüfung 2012:

Inhalt der Lösungen zur Prüfung 2012: Inhalt der Lösungen zur Prüfung : Pflichtteil... Wahlteil Analsis... 8 Wahlteil Analsis... Wahlteil Analsis... 4 Wahlteil Analtische Geometrie... 8 Wahlteil Analtische Geometrie... Pflichtteil Lösungen

Mehr

Kosinusfunktion: graphische Darstellung und Interpretation. 1-E Vorkurs, Mathematik

Kosinusfunktion: graphische Darstellung und Interpretation. 1-E Vorkurs, Mathematik Kosinusfunktion: graphische Darstellung und Interpretation 1-E Vorkurs, Mathematik Kosinusfunktion: Erklärung der Aufgabe 1 Aufgabe 1: Zeichnen Sie die trigonometrische Kosinusfunktion g (x) = a cos x.

Mehr

1.1. Geradengleichung aus Steigung und y-achsenabschnitt

1.1. Geradengleichung aus Steigung und y-achsenabschnitt Version vom 4. Januar 2007 Gleichungen von Geraden in der Ebene 1999 Peter Senn * 1.1. Geradengleichung aus Steigung und y-achsenabschnitt In dieser Form lautet die Gleichung der Geraden wie folgt: g:

Mehr

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29 Dynamische Systeme und Zeitreihenanalyse Komplexe Zahlen Kapitel 3 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.0/29 Motivation Für die

Mehr