Lineare Gleichungssysteme
|
|
|
- Benedikt Burgstaller
- vor 8 Jahren
- Abrufe
Transkript
1 Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mathematik und Naturwissenschaften Arbeitsblatt Mathematik 3 (Diverses) Dozent: - Brückenkurs Mathematik / Physik 2016 Lineare Gleichungssysteme Modul: Physik Datum: 2016 Lineare Gleichungssysteme (hier für ein 2 x 2- (2 Gleichungen mit 2 Unbekannten) und 3 x 3-System) lassen sich mit der Cramer schen Regel lösen 12. a { 11x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 L = D1 D, D } b 1 a 12 2 b 2 a 22 a 11 b 1 a 21 b 2 = D a, 11 a 12 a 21 a 22 a 11 a 12 a 21 a 22 a 11 x 1 + a 12 x 2 + a 13 x 3 = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 = b 2 a 31 x 1 + a 32 x 2 + a 33 x 3 = b 3 L = { D1 D, D 2 D, D } 3 = D b 1 a 12 a 13 b 2 a 22 a 23 b 3 a 32 a 33 a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33, a 11 b 1 a 13 a 21 b 2 a 23 a 31 b 3 a 33 a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a Aufgabe Bestimmen Sie für die folgenden linearen Gleichungsystem die Lösungsmengen:, a 11 a 12 b 1 a 21 a 22 b 2 a 31 a 32 b 3 a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 (a) (b) (c) (d) x + 2y = 1 2x + 3y = 3 x 2y = 1 2x + 4y = 2 x + 2y = 1 2x + 4y = 3 2x + 5y = 2 9x 8y = 70 (e) 5x 8y = 34 4x + 9y = 19 (f) 3x 2y = 11 6x + 7y = 55 1 zweireihige Determinante: a b c d = ad bc a b c 2 dreireihige Determinante: d e f = aei + bfg + cdh afh bdi ceg g h i
2 2. Aufgabe Bestimmen Sie von den Gleichungssystemen der letzten Aufgabe die Lösungsmengen grafisch. 3. Aufgabe Bestimmen Sie für die folgenden linearen Gleichungsystem die Lösungsmengen: (a) (b) x + y + z = 2 2x y 2z = 2 3x + 3y + z = 0 x 2y + 3z = 4 2x y z = 2 x + y + 2z = 1 (c) x + y + z = 2 x + 2y z = 6 2x + 4y 2z = 6 4. Aufgabe Gleichungssysteme mit Parametern: (a) (b) y = m 1x + h y = m 2 x h ax + y + z = 1 x + ay + z = 1 x + y + az = 1 Seite 2 / 8
3 Ungleichungen Liegt eine Ungleichung als Produkt ungleich Null vor, so reicht es den Term auf sein Vorzeichen zu prüfen. Hierzu ein kleines Beispiel: (x + 3) (x 1) (x 4) 0 x+3 : x 1 : x 4 : n.d. x L = [ 3, 1] (4, ) 5. Aufgabe Bestimmen Sie die Lösungen der folgenden Ungleichungen: (a) (b) (c) (d) (e) 1 x > 1 x 2 4x 5 0 x x 2 > 1 x x 1 4 x x 4 1 < 5x 2 5 (f) x > 1 x x Seite 3 / 8
4 Exponentielles Wachstum Viele Wachstumsprozesse in der Technik und Wirtschaft werden durch Exponentialfunktionen beschrieben. Dabei unterscheidet man verschiedene Darstellungsformen: Wachstumsrate: Liegt ein prozentualer (z.b. jährlicher) Zuwachs um p statt, so kann die Population B (t) folgendermassen beschrieben werden (B 0 = B (0) sei die Anfangspopulation): ( B (t) = B p ) t 100 Vervielfachung: Findet im Zeitintervall T a eine Verfielfachung um den Faktor a statt, so kann die Population B (t) folgendermassen beschrieben werden (B 0 = B (0) sei die Anfangspopulation): B (t) = B 0 a t Ta Allgemein: Oft wird ein solches Wachstum mit der Exponentialfunktion mit Basis e (Euler sche Zahl) beschrieben. Für die Population B (t) gilt (B 0 = B (0) sei die Anfangspopulation): B (t) = B 0 e bt Nachfolgende Tabelle ermöglicht eine einfache Umrechnung für die Parameter der verschiedenen Darstellungsformen: p T a b p = 100 ( Ta a 1) 100 ( e b 1 ) T a = b = ln(a) ln(1+ p 100) ln ( 1 + p 100 ) T a ln(a) 6. Aufgabe Ein Pilz an einer Kellerwand wächst so stark, dass sich die befallene Fläche alle 3 Monate verdoppelt. Als der Pilz entdeckt wird (t = 0) beträgt die befallene Fläche 0.4 m 2. (a) Bestimmen Sie die Wachstumsfunktion. (b) Wie gross ist (theoretisch) die Fläche nach einem Jahr? 7. Aufgabe In einem 800 m 2 grossen Teich vermehrt sich eine Algenart sehr schnell: Die bedeckte Fläche verdreifacht sich jede Woche. (a) Bestimmen Sie die Wachstumsfunktion, wenn zum Zeitpunkt t = 0 eine Fläche von A 0 = 2.4 m 2 bedeckt ist. (b) Zeichnen Sie den Graphen der Wachstumsfunktion. ln(a) b (c) Nach welcher Zeit ist der ganze Teich mit Algen bedeckt? Seite 4 / 8
5 8. Aufgabe Die Anzahl Keime in Kuhmilch wächst exponentiell. Zwei Stunden nach dem Melken enthielt 1 cm 3 Milch 8000 Keime, nach einer weiteren Stunde waren es schon Keime. (a) Bestimmen Sie die Wachstumsfunktion. (b) Wie viele Keime enthielt die Milch unmittelbar nach dem Melken, 10 min nach dem Melken, einen Tag nach dem Melken? (c) in welcher Zeit verdoppelt bzw. verdreifacht sich die Anzahl der Keime? 9. Aufgabe Waldbestände wachsen näherungsweise exponentiell, wenn kein Holz geschlagen wird. Ein Bestand, der zur Zeit auf m 3 geschätzt wird, wächst jährlich um 2.5%. (a) Bestimmen Sie die Wachstumsfunktion. (b) Wie gross ist der Bestand in 10 Jahren? (c) Wie gross war der Bestand vor 5 Jahren? (d) In welcher Zeit verdoppelt sich der Waldbestand? 10. Aufgabe Ein Auto verliert im Laufe eines Jahres etwa 18% an Wert. (a) Bestimmen Sie die Funktion W (t) für den Wert des Autos, wenn der Neuwert Franken beträgt. (b) Bestimmen Sie den Wert nach 5 Jahren. (c) In welcher Zeit halbiert sich der Wert des Autos? (d) Ein (anderes) Auto hat heute einen Wert von 2400 Franken. Welchen Wert hatte das Auto vor 8 Jahren? 11. Aufgabe Beim radioaktiven Zerfall nimmt die Masse m einer radioaktiven Substanz exponentiell mit der Zeit ab. Bestimmen Sie für nachfolgende Substanzen jeweils: die Funktionsgleichung m (t), die Halbwertszeit T 1. 2 (a) Wismuth hat eine Zerfallsrate von 13% pro Tag. Zum Zeitpunkt t = 0 sind m 0 = 10 g Wismuth vorhanden. (b) Für bestimmte Untersuchungen verwendet man in der Medizin radioaktives Jod. Von anfänglich 4 mg sind nach einer Stunde noch 3 mg übrig. (c) Von einer gewissen Menge des Kohlenstoffisotops C14 sind nach 100 Jahren noch g übrig, nach 1000 Jahren noch g. Seite 5 / 8
6 12. Aufgabe Um wie viel Prozent nimmt der Wert einer Maschine jährlich ab, wenn ihr Wert nach 3 Jahren auf die Hälfte des Neuwerts gesunken ist? Seite 6 / 8
7 Harmonische Schwingung Harmonische Schwingungen sind wichtige Funktionen in der Technik: h sin (t) = A sin (ω t + ϕ 0 ) + x 0 = A sin (ω ( t t 0 )) + x 0 h cos (t) = A cos (ω t + ϕ 0 ) + x 0 = A cos (ω ( t t 0 )) + x 0 Die Kenngrössen harmonischer Schwingungen sind: A: Amplitude der Schwingung - maximale Auslenkung aus der Ruhelage. x 0 : Linearer Mittelwert - Verschiebung der Kurve in vertikaler Richtung. ω: Kreisfrequenz der Schwingung - Anzahl Schwingungen in der Zeitspanne 2 π. f: Frequenz der Schwingung - Anzahl Schwingungen in der Zeitspanne 1. Es gilt f = ω 2π T : Periodendauer einer Schwingung - Zeitdauer bis sich die Schwingung wiederholt. Es gilt T = 1 f = 2π ω ϕ 0 : Phasenverschiebung - Winkeloffset zum Zeitpunkt t = 0. t 0 : Zeitliche Verschiebung der Schwingung - Zeitpunkt für den Start der Grundschwingungen Sinus oder Kosinus. Es gilt t 0 = ϕ 0 ω Sinusschwingung (in der Grafik ist die Funktion h (t) = 2 sin ( 3 2 t + π 4 ) 2 dargestellt): Kosinusschwingung (in der Grafik ist die Funktion h (t) = 3 cos ( 2t π 3 ) + 1 dargestellt): Seite 7 / 8
8 13. Aufgabe Bestimmen Sie alle Kenngrössen der folgenden harmonischen Schwingungen und skizzieren Sie die Graphen: (a) f 1 (t) = 311 sin (2 π 50 t) (b) f 2 (t) = 2 sin ( ) 4t π (c) f 3 (t) = 1 cos ( ) t + π 4 (d) f 4 (t) = sin ( t + 0.1) 2 (e) f 5 (t) = cos (1 t) (f) f 6 (t) = 1 sin (3t + π) Aufgabe Wie lauten die Funktionsgleichungen der dargestellten harmonischen Schwingungen? Seite 8 / 8
Lösungen (Hinweis: Ich habe nur da gerundet, wo es nicht anders möglich war. Ansonsten habe ich die genauen Werte benutzt.)
Übungsaufgaben Aufgabe 1 Ein Waldstück weist heute (2009) einen Holzbestand von 7300 m³ auf. Auf welchen Wert wächst der Holzbestand innerhalb von 6 Jahren (bis 2015), wenn er jedes Jahr um 3,2 % zunimmt?
FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK
FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK Sommersemester 006 Zahl der Blätter: 5 Blatt 1 s. unten Hilfsmittel: Literatur, Manuskript, keine Taschenrechner und sonstige elektronische Rechner Zeit:
3.2 Exponentialfunktion und Wachstum/Zerfall
3.2 Exponentialfunktion und Wachstum/Zerfall Inhaltsverzeichnis 1 Die Exponentialfunktion 2 2 Exponentielles Wachtum und exponentieller Zerfall 3 1 Exp.-funktion,Wachstum,Zerfall 27.08.2008 Theorie und
Exponentialfunktion / Wachstum
1. Die Eponentialfunktion Eponentialfunktion / Wachstum Spezialfall: = 0: a 0 = 1 P(0 1). Dies bedeutet, alle Graphen - unabhängig ihrer Basis - laufen durch den Punkt (0 1). Der Graph einer Eponentialfunktion
Wachstum und Zerfall / Exponentialfunktionen. a x = e (lna) x = e k x
Wachstum und Zerfall / Exponentialfunktionen Mit Exponentialfunktionen können alle Wachstums- und Zerfalls- oder Abnahmeprozesse beschrieben werden. Im Allgemeinen geht es dabei um die Exponentialfunktionen
R. Brinkmann Seite Anwendungen der Exponentialfunktion
R. Brinkmann http://brinkmann-du.de Seite 6..2 Aufstellen der Funktionsgleichung : Anwendungen der Eponentialfunktion Coli Bakterien verrichten ihre Arbeit im menschlichen Darm. Sie vermehren sich durch
Einstiegsvoraussetzungen für das 3. Semester Angewandte Mathematik AM
Einstiegsvoraussetzungen für das 3. Semester Angewandte Mathematik AM 1. Siehe: Einstiegsvoraussetzungen für das 1. Semester 2. Bereich: Zahlen und Maße 2.1. Fehlerrechnung (Begriffe absoluter und relativer
] ( )
Fachhochschule Nordwestschweiz FHNW) Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lösung Arbeitsblatt Gleichungen / Ungleichungen Dozent: Roger Burkhardt Klasse: Brückenkurs 0 Büro:
(2 π f C ) I eff Z = 25 V
Physik Induktion, Selbstinduktion, Wechselstrom, mechanische Schwingung ösungen 1. Eine Spule mit der Induktivität = 0,20 mh und ein Kondensator der Kapazität C = 30 µf werden in Reihe an eine Wechselspannung
Exponentialfunktionen
Herr Kluge Mathematik Year 10 Exponentialfunktionen Ziel: Ich erkenne ein exponentielles Wachstum und kann es von einem linearen Wachstum unterscheiden. Ich weiß, wie man eine Gleichung zum exponentiellem
Vorbereitungskurs Lehrlinge
Vorbereitungskurs Lehrlinge Freitag, 21. Mai 2010 14:00 BRP Mathematik Mag. Kurt Söser 2009/10 Maturavorbereitung Seite 1 Maturavorbereitung Seite 2 Maturavorbereitung Seite 3 Bsp. Die Halbwertzeit von
Arbeitsblatt Mathematik 1 (Funktionen) 1. Aufgabe Skizzieren Sie die Graphen der folgenden linearen Funktionen:
Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mathematik und Naturwissenschaften Arbeitsblatt Mathematik 1 (Funktionen) Dozent: - Brückenkurs Mathematik / Physik 2016 Lineare
Im Folgenden wird die Bedeutung der auftretenden Parameter A, ω, ϕ untersucht. 1. y(t) = A sin t Skizze: A = 1, 2, 1 /2
19 9. Harmonische Schwingungen (Sinusschwingungen) Der Punkt P rotiert gleichförmig in der Grundebene um den Ursprung O mit der Winkelgeschwindigkeit in positivem Drehsinn. Zur Zeit t = 0 schliesst uuur
Das zyklische Wachstum wird mit Hilfe trigonometrischer Funktionen - meist der Sinusfunktion. f(x) = a sin(bx + c) + d.
1 Arten von Wachstum Wachstum bedeutet, dass eine Größe über die Zeit zu- oder abnimmt. Dabei kann diese Zu- oder Abnahme regelmäßigen Gesetzen folgen oder unregelmäßig sein. Uns interessieren die regelmäßigen
Kopfübungen für die Oberstufe
Serie E Alle Kopfübungen der Serie E beinhalten die folgenden Themen in der angegebenen Reihenfolge. Tragen die Schülerinnen und Schüler ihre Antworten in eine Antwortmatrix ein, so kann nach Abschluss
Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759.
(4) Exponential- und Logarithmusfunktionen Satz Für jedes b > 1 gibt es eine eindeutig bestimmte Funktion exp b : R R + mit folgenden Eigenschaften. exp b (r) = b r für alle r Q Die Funktion exp b ist
HRP 2007 (BOS): Schriftliche Prüfungsaufgaben im Fach Mathematik (Vorschlag 1) HRP BOS-
HRP 007 (BOS): Schriftliche Prüfungsaufgaben im Fach Mathematik (Vorschlag ) Bildung, Wissenschaft und Forschung HRP 007 -BOS- Name: Datum: Vorschlag : Aus 5 Aufgaben können Sie auswählen. Sie müssen dabei
lim Der Zwischenwertsatz besagt folgendes:
2.3. Grenzwerte von Funktionen und Stetigkeit 35 Wir stellen nun die wichtigsten Sätze über stetige Funktionen auf abgeschlossenen Intervallen zusammen. Wenn man sagt, eine Funktion f:[a,b] R, definiert
1. Schularbeit - Gruppe A M 0 1(1) 6C A
. Schularbeit - Gruppe A M 0 () 6C 3 0 97 A. Ergänze folgende Tabelle: Potenz Bruch / Wurzel numerischer Wert 3-5 n -5 8 0,00 3 5 4 x 3 8 7. Berechne: a) ( x y) ( x + y) 0 = b) 9x 6ax : = 5 4a 3 3. Rechne
Kreuze nur die zutreffenden Eigenschaften für die folgenden Funktionen im richtigen Feld an!
Teil : Grundkompetenzen ( Punkte) Beispiel : ( Punkt) Die nebenstehende Graphik stellt ein eponentielles Wachstum der Form f() = a b (a, b R + ) dar. Bestimme aus dem Graphen die Werte der Konstanten a
Wiederholungen Wachstumsfunktionen IGS List
Wiederholungen Wachstumsfunktionen IGS List Prozentuales Wachstum Wertetabelle Berechnen von Zwischenwerten Berechnen von Wachstumsraten und Wachstumsfaktoren Aufstellen von Funktionsgleichungen f ( )
Primzahlen Darstellung als harmonische Schwingung
Primzahlen Darstellung als harmonische Schwingung Die natürliche Sinusschwingung wird hier in Zusammenhang mit der Zahlentheorie gebracht um einen weiteren theoretischen Ansatz für die Untersuchung der
Prozessbezogene Kompetenzen
1. Quadratische Funktionen ca. 4 Wochen S.12-35 Der freie Fall Normalparabel: y = x 2 Verschobene Normalparabel: y = x 2 + e Arbeiten mit dem Taschenrechner: Wertetabellen Verschobene Normalparabel: y
Arbeitsblatt Funktionen
Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Geistes- und Naturwissenschaft Dozent: Roger Burkhardt Klasse: Brückenkurs 011 Arbeitsblatt Funktionen Büro: 4.613 Semester: -
a) Geben Sie eine Formel an, mit deren Hilfe man ermitteln kann, wie viel Wasser der Teich nach x regenlosen Tagen enthält!
1) Wasserstand Der Wasserstand eines Gartenteichs wird durch Verdunstung und Niederschlag reguliert. Im Sommer kann mit einer täglichen Verdunstung von 4 % des am Morgen vorhandenen Wassers gerechnet werden.
4 Potenzen Wachstumsprozesse Exponentialfunktionen
4 Potenzen Wachstumsprozesse Exponentialfunktionen 4.1 Potenzieren Radizieren 4.1.1 Potenzen mit natürlichen Exponenten Exponentielle Wachstumsvorgänge 4.1.1.1 Wiederholung zum Potenzieren ist eine Potenz
KOMPETENZHEFT ZUR TRIGONOMETRIE, II
KOMPETENZHEFT ZUR TRIGONOMETRIE, II 1. Aufgabenstellungen Aufgabe 1.1. Bestimme alle Winkel in [0 ; 360 ], die Lösungen der gegebenen Gleichung sind, und zeichne sie am Einheitskreis ein. 1) sin(α) = 0,4
Abschlussprüfung 2011 an den Realschulen in Bayern
Prüfungsdauer: 150 Minuten Abschlussprüfung 2011 an den Realschulen in Bayern Mathematik I Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Nachtermin A 1.0 Lebensmittelchemiker untersuchten das
Selbsteinschätzungstest Auswertung und Lösung
Selbsteinschätzungstest Auswertung und Lösung Abgaben: 46 / 587 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: Durchschnitt: 7 Frage (Diese Frage haben ca. 0% nicht beantwortet.) Welcher Vektor
Tutorium Physik 2. Schwingungen
1 Tutorium Physik 2. Schwingungen SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 9. SCHWINGUNGEN 9.1 Bestimmen der
1 Lineare Funktionen. 1 Antiproportionale Funktionen
Funktion Eine Funktion ist eine Zuordnung, bei der zu jeder Größe eines ersten Bereichs (Ein gabegröße) genau eine Größe eines zweiten Bereichs (Ausgabegröße) gehört. Eine Funktion wird durch eine Funktionsvorschrift
Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie
Dr. Michael Stiglmayr Teresa Schnepper, M.Sc. WS 014/015 Bergische Universität Wuppertal Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie Aufgabe 1
Lösung Serie 3 (Modellieren (SIMULINK + MATLAB))
Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lösung Serie 3 (Modellieren (SIMULINK + MATLAB Dozent: Roger Burkhardt Klasse: Studiengang ST Büro:
Kreissektoren und Bogenmaß
M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = = 360 360 Das Bogenmaß eines Winkels ist
Kreissektoren und Bogenmaß
M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = 2 = 360 360 Das Bogenmaß eines Winkels ist
Kosinusfunktion: graphische Darstellung und Interpretation. 1-E Vorkurs, Mathematik
Kosinusfunktion: graphische Darstellung und Interpretation 1-E Vorkurs, Mathematik Kosinusfunktion: Erklärung der Aufgabe 1 Aufgabe 1: Zeichnen Sie die trigonometrische Kosinusfunktion g (x) = a cos x.
BMS Mathematik - G Abschlussprüfung_11 Seite: 1/7
BMS Mathematik - G Abschlussprüfung_11 Seite: 1/7 Aufgabe 1 a) Vereinfachen Sie die Terme so weit wie möglich: 9 h + 2h + h (I) = 7 8 h + h 8 7 (II) n n 4 x n n+ 4 x b) Bestimmen Sie die Lösungsmenge für
Praktikum I PP Physikalisches Pendel
Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische
Aufgaben. zu Inhalten der 6. Klasse
Aufgaben zu Inhalten der 6. Klasse Universität Klagenfurt, Institut für Didaktik der Mathematik (AECC-M) November 2010 Aufgaben vom Typ 1 Potenzen und Wurzeln Die folgende Tabelle enthält in jeder Zeile
Trignonometrische Funktionen 6a
Schuljahr 2015/16 [email protected] Institute for Mathematics and Scientific Computing Karl-Franzens-Universität Graz Graz, November 23, 2015 Winkelmaße Winkelmaß bis 6. Klasse: Grad (0 360 )
Lineares Wachstum/exponentielles Wachstum
Seite 1 / 9 Lineares Wachstum/exponentielles Wachstum 1. Herr Apfalterer und Frau Bader haben ein Jahresgehalt von 18.000. Für die jährliche Gehaltserhöhung stehen zwei verschieden Möglichkeiten zur Auswahl.
Mathematikaufgaben zur Vorbereitung auf das Studium
Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik / Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Betriebswirtschaft International Business Dresden 05 . Mengen
Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung
34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis
Mathematikaufgaben zur Vorbereitung auf das Studium
Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik / Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Kartographie/Geoinformatik Vermessung/Geoinformatik Dresden
Übungsaufgaben zur Analysis
Serie Übungsaufgaben zur Analysis. Multiplizieren Sie folgende Klammern aus: ( + 3y)( + 4a + 4b) (a b )( + 3y 4) (3 + )(7 + y) + (a + b)(3 + ). Multiplizieren Sie folgende Klammern aus: 6a( 3a + 5b c)
Die Anzahl der Keime in 1 cm 3 Milch wird im zeitlichen Abstand von 1 h bestimmt.
7. Anwendungen ================================================================== 7.1 Exponentielles Wachstum ------------------------------------------------------------------------------------------------------------------
Übungsblatt Wachstums- Zerfallsfunktionen Lösungen
Übungsblatt Lösungen Beispiel 1: Man betrachtet das Wachstum der Weltbevölkerung im Zeitraum von 1950 (Zeitpunkt t = 0) bis 1990 (Zeitpunkt t = 40). Die Tabelle soll im Zuge der Rechnung von dir ausgefüllt
Grundwissen. 10. Jahrgangsstufe. Mathematik
Grundwissen 10. Jahrgangsstufe Mathematik 1 Kreis und Kugel 1.1 Kreissektor und Bogenmaß Kreis Umfang U = π r=π d Flächeninhalt A=π r Kreissektor mit Mittelpunktswinkel α Bogenlänge b= α π r 360 Flächeninhalt
5. Vorlesung Wintersemester
5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode
MR Mechanische Resonanz
MR Mechanische Resonanz Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis Grundlagen 2. Freie, ungedämpfte Schwingung....................... 2.2 Freie, gedämpfte Schwingung........................
WWG Grundwissen Mathematik 10. Klasse
WWG Grundwissen Mathematik 10. Klasse I. Kreiszahl 1. Kreis: Fläche des Kreissektors: = Länge des Kreisbogens: = Im Einheitskreis gilt: = 2 = 2. Kugel: Oberflächeninhalt: = 4 Volumen: = II. Geometrische
SRB- Schulinterner Lehrplan Mathematik Klasse 10
12 15 Std. z.b.: Lesen (Informationen aus Texten, Tabellen und Grafen), Begriffe und Verfahren miteinander in Beziehung setzen (Gleichung, Graph), Arbeits schritte erläutern, Lösungswege vergleichen und
Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung
28. September 2016 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung Aufgabe 1. Die nachfolgende Grafik stellt das Oszillogramm zweier sinusförmiger Spannungen
Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen
Physik Schwingungen Zusammenfassung Mechanik Physik Mathe Einheiten Bewegung Bewegung 3d Newtons Gesetze Energie Gravitation Rotation Impuls Ableitung, Integration Vektoren Skalarprodukt Gradient Kreuzprodukt
Berufsreifprüfung Mathematik
BRP Mathematik VHS Floridsdorf 08.10.2011 Seite 1/3 Berufsreifprüfung Mathematik Volkshochschule Floridsdorf / Herbsttermin 2011 1. Ein Brückenbogen besteht aus zwei Parabeln zweiter Ordnung (siehe Skizze).
Mathematikaufgaben zur Vorbereitung auf das Studium
Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengang Bauingenieurwesen Dresden 2005 . Mengen Kenntnisse
Testklausur Mathematik Studiengang Informationstechnik Berufsakademie in Horb
Richtzeit pro Seite: Erste und letzte Seite je 4 min., Andere Seiten je 8 min. Gesamtzeit: 6 min. Vereinfachen Sie folgende Ausdrücke durch Ausklammern, Ausmultiplizieren bzw. Kürzen: 4 ln( ) + ln( ) sin
Korrigendum Lambacher Schweizer 9/10, 1. Auflage 2011
Korrigendum Lambacher Schweizer 9/,. Auflage Klett und Balmer Verlag, Baar. April. Seite, Aufgabe Tipp: Suche dir Punkte auf dem Kreis, die du zur Bestimmung heranziehen kannst Bestimme das Streckzentrum
Einstiegsvoraussetzungen 3. Semester
Einstiegsvoraussetzungen 3. Semester Wiederholung vom VL Bereich: Zahlen und Maße Fehlerrechnung kennen Fehler in der Darstellung von Zahlen und können Ergebnisse auf sinnvolle Art runden. verstehen die
1 Differentialrechnung
BT/MT SS 6 Mathematik II Klausurvorbereitung www.eah-jena.de/~puhl Thema: Üben, üben und nochmals üben!!! Differentialrechnung Aufgabe Differenzieren Sie folgende Funktionen: a y = ln( b f( = a a + c f(
3.2 Exponentialfunktion und Wachstum/Zerfall
3.2 Exponentialfunktion und Wachstum/Zerfall Inhaltsverzeichnis 1 Die Exponentialfunktion 2 2 Exponentielles Wachtum und exponentieller Zerfall 5 2.1 Die Schreibweise B(t)=B(0) a t................................
16.1 Wichtiges über mathematische Funktionen
16 16.1 Wichtiges über mathematische Funktionen Definition Funktion Wird durch die Gleichung y = f(x) jedem x des Definitionsbereiches genau ein y des Wertebereiches zugeordnet, nennen wir dies eine Funktion
4.8. Prüfungsaufgaben zu trigonometrischen Funktionen
.8. Prüfungsaufgaben zu trigonometrischen Funktionen Aufgabe : Schaubilder der trigonomtrischen Funktionen () a) Zeichne das Schaubild der Funktion f() = sin(,5) im Bereich π. b) Zeichne das Schaubild
6. Wachstumsformen. Definitionen: durchschnittliche Wachstumsrate im y Zeitintervall t: t geometrisch. Sekantensteigung, abhängig von t
1 6. Wachstumsformen Definitionen: durchschnittliche Wachstumsrate im y Zeitintervall t: t geometrisch. Sekantensteigung, abhängig von t momentane Wachstumsrate: geometrisch: Tangentensteigung, unabhängig
Mechanische Schwingungen Aufgaben 1
Mechanische Schwingungen Aufgaben 1 1. Experiment mit Fadenpendel Zum Bestimmen der Fallbeschleunigung wurde ein Fadenpendel verwendet. Mit der Fadenlänge l 1 wurde eine Periodendauer von T 1 =4,0 s und
Logarithmische Skalen
Logarithmische Skalen Arbeitsblatt Logarithmische Skalen ermöglichen dir eine übersichtlichere Darstellung von Kurvenverläufen vor allem dann, wenn sie sich über sehr große Zahlenbereiche erstrecken. 1
Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B
Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl0-Gruppe B. Gegeben ist die Exponentialfunktion y=f x =0.8 2 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,
Die Exponentialfunktion Kap Aufgaben zu exponentiellem Wachstum und Zerfall
1 von 5 19.11.2013 12:23 Doc-Stand: 11/19/2013 12:18:48 Die Exponentialfunktion Kap.6.3 - Aufgaben zu exponentiellem Wachstum und Zerfall Bei allen Aufgaben wird exponentielles Wachstum bzw. exponentieller
Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III
Physik Schwingungen III Wiederholung Komplexe Zahlen Harmonischer Oszillator DGL Getrieben Gedämpft Komplexe Zahlen Eulersche Formel e i' = cos ' + i sin ' Komplexe Schwingung e i!t = cos!t + i sin!t Schwingung
Berufsmaturitätsprüfung 2013 Mathematik
GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmaturitätsschule Berufsmaturitätsprüfung 2013 Mathematik Zeit: Hilfsmittel: Hinweise: Punkte: 180 Minuten Formel- und Tabellensammlung ohne gelöste
Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A
Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A 1. Gegeben ist die Exponentialfunktion y=f x = 0,5 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,
Exponentialfunktionen
Mathematik Buch / 3. Funktionen / Zuordnungen -288- Aufgabe: Exponentialfunktionen Eine Fläche ist zu Beginn der Baggerarbeiten 800 m 2 groß. Jede Woche schaffen die Bagger 550 m 2 neue Fläche dazu. Eine
Analysis: exp. und beschränktes Wachstum Analysis
Analysis Wahlteilaufgaben zu exponentiellem und beschränktem Wachstum inkl Differenzialgleichungen Gymnasium ab J1 Alexander Schwarz wwwmathe-aufgabencom Februar 2014 1 Aufgabe 1 Zu Beginn eines Experimentes
M 10 Resonanz und Phasenverschiebung bei der mechanischen Schwingung
Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum M 1 esonanz und Phasenverschiebung bei der mechanischen Schwingung Aufgaben 1. Bestimmen Sie die Frequenz der freien gedämpften Schwingung
Konvergenz und Stetigkeit
Mathematik I für Biologen, Geowissenschaftler und Geoökologen 10. Dezember 2008 Konvergenz Definition Fourierreihen Obertöne Geometrische Reihe Definition: Eine Funktion f : D R d heißt beschränkt, wenn
Differentialgleichungen 2. Ordnung
Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei
Übungsaufgaben Physik II
Fachhochschule Dortmund Blatt 1 1. Ein Auto hat leer die Masse 740 kg. Eine Nutzlast von 300 kg senkt den Wagen in den Radfedern um 6 cm ab. Welche Periodendauer hat die vertikale Schwingung, die der Wagen
Was können die Studienanfänger wirklich?
Was können die Studienanfänger wirklich? Die folgenden Zahlen beruhen auf einem Test zu Beginn des Präsensvorkurses Mathematik an der RWTH Aachen mit in diesem Jahr fast 2000 Teilnehmen. Der Test umfasst
KOMPETENZHEFT ZU STAMMFUNKTIONEN
KOMPETENZHEFT ZU STAMMFUNKTIONEN 1. Aufgabenstellungen Aufgabe 1.1. Finde eine Funktion F (x), die F (x) = f(x) erfüllt. a) f(x) = 5 x 2 2 x + 8 e) f(x) = 1 + x x 2 b) f(x) = 1 x4 10 f) f(x) = e x + 2
3 log. 2 )+log(1/u) g) log(2ux) 1+ a. j) log
Logarithmen 1. 5 3 = 125 ist gleichbedeutend mit 5 log(125) = 3. Formen Sie nach diesem Muster um. a) 2 5 = 32 b) 10 4 = 10 000 c) 7 0 = 1 d) 3 2 = 1/9 e) 10 3 = 0.001 f) 5 1/2 = 5 g) 6 log(216) = 3 h)
Resonanz Versuchsvorbereitung
Versuche P1-1,, Resonanz Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 0.1.010 1 1 Vorwort Im Praktikumsversuch,,Resonanz geht es um freie
Gruppe 1. Lies den folgenden Text aus einem Biologiebuch.
Gruppe Lies den folgenden Text aus einem Biologiebuch.. Notiere das Wachstum der Salmonellen übersichtlich in einer Tabelle. Am Anfang soll eine Salmonelle vorhanden sein. Verwende dabei auch Potenzen..
Mathematik schriftlich
WS KV Chur Lehrabschlussprüfungen 009 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe
PP Physikalisches Pendel
PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung
Die Exponentialfunktion und ihre Anwendung in der Biologie
Die Exponentialfunktion und ihre Anwendung in der Biologie Escheria coli (kurz E. coli) sind Bakterien, die im Darm von Säugetieren und Menschen leben. Ein junges E. coli Bakterium wächst mit einer konstanten
Mathematik - Oberstufe
Mathematik - Oberstufe Pflicht- /Wahlteilaufgaben und Musterlösungen zu trigonometrischen Funktionen Zielgruppe: Oberstufe Gymnasium Schwerpunkt: Ableitung, Gleichungen, Aufstellen von trigonometrischen
einzeichnen von Steigungsdreiecken bestimmt werden oder durch die rechnerische Form. Hier wird die rechnerische Form gezeigt:
Lösungen Mathematik Dossier Funktionen b) Steigungen: Können entweder durch einzeichnen von Steigungsdreiecken bestimmt werden oder durch die rechnerische Form. Hier wird die rechnerische Form gezeigt:
BESONDERE LEISTUNGSFESTSTELLUNG Schuljahr 2015/2016 MATHEMATIK
Prüfungstag: 11. Mai 2016 (HAUPTTERMIN) Prüfungsbeginn: 08:00 Uhr BESONDERE LEISTUNGSFESTSTELLUNG Schuljahr 2015/2016 MATHEMATIK Hinweise für die Teilnehmerinnen und Teilnehmer Bearbeitungszeit: 180 Minuten
F u n k t i o n e n Trigonometrische Funktionen
F u n k t i o n e n Trigonometrische Funktionen Jules Antoine Lissajous (*1822 in Versailles, 1880 in Plombières-les-Bains) wurde durch die nach ihm benannten Figuren bekannt, die bei der Überlagerung
ELEMENTE. Grundkompetenzen DER MATHEMATIK. für die neue Reifeprüfung. Mit Lösungen
5 ELEMENTE DER MATHEMATIK GK Grundkompetenzen für die neue Reifeprüfung Mit Lösungen Die Formulierung der Grundkompetenzen (GK) bezieht sich auf den Stand von August 2010. 1. Auflage, 2010 Gesamtherstellung:
Crashkurs sin 2 x + 5 cos 2 x = sin 2 x 2 sin x = 3
Crashkurs. Funktion mit Parameter/Ortskurve - Wahlteil Analysis.. Gegeben sei für t > die Funktion f t durch f t (x) = 4 x 4t x 2 ; x R\{}. a) Welche Scharkurve geht durch den Punkt Q( 4)? b) Bestimme
Aufgaben zum logistischen Wachstum. Buscharten-Aufgabe. Punktsymmetrie zum Wendepunkt. Sonnenblumen-Aufgabe. Typische Fragestellungen
Aufgaben zum logistischen Wachstum Kürbis-Aufgabe Buscharten-Aufgabe Punktsymmetrie zum Wendepunkt Sonnenblumen-Aufgabe Typische Fragestellungen Aufgaben zum logistischen Wachstum 1. Eine Untersuchung
9. Periodische Bewegungen
Inhalt 9.1 Schwingungen 9.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 9.1.4 Erzwungene Schwingung 9.1 Schwingungen 9.1 Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen
Gruppe A. Mündliche Matur 2003, Mathematik, 4cN. Aufgabe 1 (Matrizen) Finde eine Matrix mit. und
Gruppe A Aufgabe 1 (Matrizen) Finde eine Matrix mit und Wie lauten die Eigenwerte und Eigenvektoren von? Aufgabe 2 (Analysis) Ein Ball fällt aus 5m Höhe auf den Boden und springt dann mehrmals wieder auf
Arbeitsblatt Mathematik 2 (Vektoren)
Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Mathematik und Naturwissenschaften Arbeitsblatt Mathematik (Vektoren Dozent: - Brückenkurs Mathematik / Physik 6. Aufgabe Gegeben
Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. 9. Mai Teil-1-Aufgaben. Korrekturheft. öffentliches Dokument
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik 9. Mai 2014 Teil-1-Aufgaben Korrekturheft Aufgabe 1 Positive rationale Zahlen 0,9 10 3 0,01 Ein Punkt ist nur dann zu geben, wenn
