Exponentialfunktionen

Größe: px
Ab Seite anzeigen:

Download "Exponentialfunktionen"

Transkript

1 Herr Kluge Mathematik Year 10 Exponentialfunktionen Ziel: Ich erkenne ein exponentielles Wachstum und kann es von einem linearen Wachstum unterscheiden. Ich weiß, wie man eine Gleichung zum exponentiellem Wachstum aufstellen. Gliederung: 1. Beenden des Themas trigonometrische Funktionen (Modellieren von trigonometrischen Prozessen) 2. Einstieg in das Thema der Exponentialfunktionen 3. Unterscheidung von linearem und exponentiellem Wachstum 4. Erste Übungen 5. Systematisches Lösen von Fragestellungen

2

3 Abfrage:

4 Einstieg in das Thema Die Blaualge Die Erscheinungsform ist überwiegend flächig, kann aber auch knäuelig sein. Die Farbe kann schwankt zwischen dunkelgrün, schwarzlila, schwarzblau, abgestorbene Blaualgen können schwarze Beläge (Schmieralgen) bilden.

5 Hypothese des Wachstums: Anzahl der Algen zum Beginn: 50 Nach einer Stunde Zeitpunkt t t 1 Anzahl der Algen 50 Anzahl anders dargestellt Darstellung als Funktion Funktionsgleichung für den Verlauf: Definition: Eine Funktion mit der Gleichung y=b a x (mit a > 0, a 1) heißt Exponentialfunktion. Dabei ist a die Basis und b der Anfangswert.

6

7

8 Essentials zum Thema 1. Unterscheidung von anderen Wachstumsprozessen (S. 64) 2. Wachstum und Zerfall Unterscheidung (S. 65) 3. Bestand durch eine Formel bestimmen (S. 67) 4. Wachstumsfaktor bestimmen, wenn zwei Bestände bekannt sind. (S. 66) 5. Zinseszinsformel und Anwendung (S. 67) 6. Aufbau und Eigenschaften einer exponentiellen Funktion (S. 69) 7. Graph und Funktionsgleichung in beide Richtungen bestimmen können (S. 71) 8. Funktionsgleichungen bestimmen, wenn zwei Punkte gegeben sind (S. 70) 9. Halbwertszeit und Verdopplungszeiten bestimmen (S. 70) 10. Bestimmung von Unbekannten (S. 72) 11. Modellierung von exponentiellen Prozessen (S )

9 Vergleich zwischen einem linearem Wachstum und einem exponentiellem Wachstum Eine Bewegung mit der Geschwindigkeit 10 km/h beginnt bei Kilometerstand 5. Pro Stunde wächst der Funktionswert um den konstanten Wert 10. f(0)= f(1)= Eine Bakterienkultur mit anfänglich 100 Bakterien wächst stündlich um 50 %. Pro Stunde wächst der Funktionswert mit einem konstanten Faktor 1,5. g(0)= g(1)= Wie kann man das Wachstum also unterscheiden? Lineares Wachstum Exponentielles Wachstum: (konstanter Zuwachs) (Konstanter Wachstumfaktor) d= a= Umformulierung der Aufgabe bei exponentieller Abnahme:

10 Beispiele für 1.,3., 4., 8. und 10.

11 Essentials zum Thema 1. Unterscheidung von anderen Wachstumsprozessen (S. 64) 2. Wachstum und Zerfall Unterscheidung (S. 65) 3. Bestand durch eine Formel bestimmen (S. 67) 4. Wachstumsfaktor bestimmen, wenn zwei Bestände bekannt sind. (S. 66) 5. Zinseszinsformel und Anwendung (S. 67) K(t)=K(0)*(1+p/n) n*t 6. Aufbau und Eigenschaften einer exponentiellen Funktion (S. 69) 7. Graph und Funktionsgleichung in beide Richtungen bestimmen können (S. 71) 8. Funktionsgleichungen bestimmen, wenn zwei Punkte gegeben sind (S. 70) 9. Halbwertszeit und Verdopplungszeiten bestimmen (S. 70) 10. Bestimmung von Unbekannten (S. 72) >Bsp. Blaualge (Notebook 13): 11. Modellierung von exponentiellen Prozessen (S ) Bsp.: Zerfall von Bierschaum Folgende Werte wurden bei einem 15 cm hohen Zylinder gemessen: zu 9.:

12 11. Modellierung von exponentiellen Prozessen (S ) Bsp.: Zerfall von Bierschaum Folgende Werte wurden bei einem 15 cm hohen Zylinder gemessen: t in min h in cm 15 10,0 6,0 4,0 2,5 1,6 1,0 Lässt sich dieser Zerfall exponentiell modellieren?

13 Übungen Buch Seite 66, Nr. 2, 3 und 6 67, Nr. 8, 9 und 13 68, Nr. 15, 16 71, Nr. 6, 7, 8 und 9 72 Nr. 12 und 16 74, Nr. 2 75, Nr. 4, 5

4 Potenzen Wachstumsprozesse Exponentialfunktionen

4 Potenzen Wachstumsprozesse Exponentialfunktionen 4 Potenzen Wachstumsprozesse Exponentialfunktionen 4.1 Potenzieren Radizieren 4.1.1 Potenzen mit natürlichen Exponenten Exponentielle Wachstumsvorgänge 4.1.1.1 Wiederholung zum Potenzieren ist eine Potenz

Mehr

Potenz- & Exponentialfunktionen

Potenz- & Exponentialfunktionen Potenz- & Exponentialfunktionen 4. Kapitel aus meinem ANALYSIS - Lehrgang MNprofil - MIttelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 24. Oktober 2011 Überblick über

Mehr

Exponentialfunktionen

Exponentialfunktionen Eponentialfunktionen 1. Eine Lotosblume bedeckt zum jetzigen Zeitpunkt eine Teichfläche von 0, m. Die bedeckte Teichfläche verdoppelt sich von Monat zu Monat. Nach welcher Zeit (nach Beginn der Beobachtung)

Mehr

Wachstumsprozesse. Natürliches Wachstum Größenbeschränktes Wachstum Logistisches Wachstum Differenzialgleichungen

Wachstumsprozesse. Natürliches Wachstum Größenbeschränktes Wachstum Logistisches Wachstum Differenzialgleichungen Wachstumsprozesse Natürliches Wachstum Größenbeschränktes Wachstum Logistisches Wachstum Differenzialgleichungen [email protected] www.elearning-freiburg.de Natürliches/exponentielles Wachstum Natürliches

Mehr

Exponentielles Wachstum

Exponentielles Wachstum Exponentielles Wachstum ein (Kurz-)Referat Dies ist eine Beilage zum Gruppen-SOL - Projekt Potenz- & Exponentialfunktionen Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch 16. Februar 2016 Inhaltsverzeichnis

Mehr

a) Geben Sie eine Formel an, mit deren Hilfe man ermitteln kann, wie viel Wasser der Teich nach x regenlosen Tagen enthält!

a) Geben Sie eine Formel an, mit deren Hilfe man ermitteln kann, wie viel Wasser der Teich nach x regenlosen Tagen enthält! 1) Wasserstand Der Wasserstand eines Gartenteichs wird durch Verdunstung und Niederschlag reguliert. Im Sommer kann mit einer täglichen Verdunstung von 4 % des am Morgen vorhandenen Wassers gerechnet werden.

Mehr

Exponentialfunktion / Wachstum

Exponentialfunktion / Wachstum 1. Die Eponentialfunktion Eponentialfunktion / Wachstum Spezialfall: = 0: a 0 = 1 P(0 1). Dies bedeutet, alle Graphen - unabhängig ihrer Basis - laufen durch den Punkt (0 1). Der Graph einer Eponentialfunktion

Mehr

Exponentialfunktionen Kenngrößen bestimmen (1)

Exponentialfunktionen Kenngrößen bestimmen (1) Arbeitsblatt: Exponentialfunktionen Kenngrößen bestimmen () Arbeitsblätter zum Ausdrucken von sofatutor.com Exponentialfunktionen Kenngrößen bestimmen () Beschreibe die richtigen Eigenschaften für die

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mathematik und Naturwissenschaften Arbeitsblatt Mathematik 3 (Diverses) Dozent: - Brückenkurs Mathematik / Physik 2016 Lineare

Mehr

WWG Grundwissen Mathematik 10. Klasse

WWG Grundwissen Mathematik 10. Klasse WWG Grundwissen Mathematik 10. Klasse I. Kreiszahl 1. Kreis: Fläche des Kreissektors: = Länge des Kreisbogens: = Im Einheitskreis gilt: = 2 = 2. Kugel: Oberflächeninhalt: = 4 Volumen: = II. Geometrische

Mehr

Exponentialfunktionen Kenngrößen bestimmen (2)

Exponentialfunktionen Kenngrößen bestimmen (2) Arbeitsblatt: Eponentialfunktionen Kenngrößen bestimmen () Arbeitsblätter zum Ausdrucken von sofatutorcom Eponentialfunktionen Kenngrößen bestimmen () Benenne die richtigen Kenngrößen der angegebenen Graphen

Mehr

Vorbereitungskurs Lehrlinge

Vorbereitungskurs Lehrlinge Vorbereitungskurs Lehrlinge Freitag, 21. Mai 2010 14:00 BRP Mathematik Mag. Kurt Söser 2009/10 Maturavorbereitung Seite 1 Maturavorbereitung Seite 2 Maturavorbereitung Seite 3 Bsp. Die Halbwertzeit von

Mehr

Gruppe 1. Lies den folgenden Text aus einem Biologiebuch.

Gruppe 1. Lies den folgenden Text aus einem Biologiebuch. Gruppe Lies den folgenden Text aus einem Biologiebuch.. Notiere das Wachstum der Salmonellen übersichtlich in einer Tabelle. Am Anfang soll eine Salmonelle vorhanden sein. Verwende dabei auch Potenzen..

Mehr

3.2 Exponentialfunktion und Wachstum/Zerfall

3.2 Exponentialfunktion und Wachstum/Zerfall 3.2 Exponentialfunktion und Wachstum/Zerfall Inhaltsverzeichnis 1 Die Exponentialfunktion 2 2 Exponentielles Wachtum und exponentieller Zerfall 3 1 Exp.-funktion,Wachstum,Zerfall 27.08.2008 Theorie und

Mehr

A5 Exponentialfunktion und Logarithmusfunktion

A5 Exponentialfunktion und Logarithmusfunktion A5 Exponentialfunktion und Logarithmusfunktion A5 Exponentialfunktion und Logarithmusfunktion Wachstums- und Zerfallsprozesse. Beispiel: Bakterien können sich sehr schnell vermehren. Eine bestimmte Bakterienart

Mehr

Wachstum und Zerfall / Exponentialfunktionen. a x = e (lna) x = e k x

Wachstum und Zerfall / Exponentialfunktionen. a x = e (lna) x = e k x Wachstum und Zerfall / Exponentialfunktionen Mit Exponentialfunktionen können alle Wachstums- und Zerfalls- oder Abnahmeprozesse beschrieben werden. Im Allgemeinen geht es dabei um die Exponentialfunktionen

Mehr

Kurs 9 Quadratische und exponentielle Funktionen MSA Vollzeit (1 von 2)

Kurs 9 Quadratische und exponentielle Funktionen MSA Vollzeit (1 von 2) Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Kurs 9 Quadratische und exponentielle Funktionen MSA Vollzeit (1 von 2) Name: Ich So schätze ich meinen Lernzuwachs

Mehr

Übungsblatt 2.SA M 10

Übungsblatt 2.SA M 10 Übungsblatt 2SA M 0 Über einen Teich soll von A nach B eine Brücke gebaut werden Der Vermessungsingenieur misst: AP = 287 m P Q = 326 m QB = 35 m

Mehr

Potenz- & Exponentialfunktionen

Potenz- & Exponentialfunktionen Potenz- & Exponentialfunktionen 4. Kapitel aus meinem Lehrgang ANALYSIS Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch e-mail: [email protected] 8. Februar 2009 Überblick über die bisherigen

Mehr

Korrigendum Lambacher Schweizer 9/10, 1. Auflage 2011

Korrigendum Lambacher Schweizer 9/10, 1. Auflage 2011 Korrigendum Lambacher Schweizer 9/,. Auflage Klett und Balmer Verlag, Baar. April. Seite, Aufgabe Tipp: Suche dir Punkte auf dem Kreis, die du zur Bestimmung heranziehen kannst Bestimme das Streckzentrum

Mehr

Abiturvorbereitung Wachstum S. 1 von 11. Wachstum

Abiturvorbereitung Wachstum S. 1 von 11. Wachstum Abiturvorbereitung Wachstum S. 1 von 11 Themen: Exponentielles Wachstum Exponentielle Abnahme Beschränktes Wachstum Logistisches Wachstum Modellieren bei gegebenen Daten Übungsaufgaben Wachstum Exponentielles

Mehr

ALGEBRA UND GEOMETRIE. 5. und 6. Klasse

ALGEBRA UND GEOMETRIE. 5. und 6. Klasse ü ALGEBRA UND GEOMETRIE 5. und 6. Klasse 1. VERKAUFSPREIS Für einen Laufmeter Stoff betragen die Selbstkosten S Euro, der Verkaufspreis ohne Mehrwertsteuer N Euro. a) Gib eine Formel für den Gewinn G in

Mehr

R. Brinkmann Seite Anwendungen der Exponentialfunktion

R. Brinkmann  Seite Anwendungen der Exponentialfunktion R. Brinkmann http://brinkmann-du.de Seite 6..2 Aufstellen der Funktionsgleichung : Anwendungen der Eponentialfunktion Coli Bakterien verrichten ihre Arbeit im menschlichen Darm. Sie vermehren sich durch

Mehr

Potenz- & Exponentialfunktionen

Potenz- & Exponentialfunktionen Potenz- & Exponentialfunktionen ANALYSIS Kapitel 4 Sprachprofil - Oberstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch 17. Januar 2012 Überblick über die bisherigen ANALYSIS - Themen:

Mehr

Trigonometrie aus geometrischer und funktionaler Sicht

Trigonometrie aus geometrischer und funktionaler Sicht Trigonometrie aus geometrischer und funktionaler Sicht Der Kosinussatz und der Sinussatz: Wenn in einem Dreieck nur zwei Seiten und der eingeschlossene Winkel gegeben sind, oder nur die drei Seiten bekannt

Mehr

Klasse 10; Mathematik Kessling Seite 1

Klasse 10; Mathematik Kessling Seite 1 Klasse 0; Mathematik Kessling Seite Übungen Eponentialfunktionen/Logarithmus Aufgabe Beim Wachstum einer bestimmten Bakterienart der Bestand der Bakterien stündlich um 43% zu. Am Beginn des Beobachtungszeitraumes

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kompetenzen für die zentralen Prüfungen der 10. Klasse - Mathematik - Funktionen Das komplette Material finden Sie hier: School-Scout.de

Mehr

16.1 Wichtiges über mathematische Funktionen

16.1 Wichtiges über mathematische Funktionen 16 16.1 Wichtiges über mathematische Funktionen Definition Funktion Wird durch die Gleichung y = f(x) jedem x des Definitionsbereiches genau ein y des Wertebereiches zugeordnet, nennen wir dies eine Funktion

Mehr

10 Zeit in Milliarden Jahren

10 Zeit in Milliarden Jahren a) Der radioaktive Zerfall von bestimmten Uran-Atomen lässt sich näherungsweise durch eine Exponentialfunktion N beschreiben (siehe nachstehende Abbildung). 100 Masse in mg 90 80 70 60 50 N 40 30 20 10

Mehr

Funktionenlehre. Grundwissenskatalog G8-Lehrplanstandard

Funktionenlehre. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK Funktionenlehre Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngmnasiums Bad Neustadt und des Kurt-Huber-Gmnasiums Gräfelfing J O H A N N

Mehr

Absprachen / Hinweise. Inhaltsbezogene Kompetenzen Die Schülerinnen und Schüler. 5 Wochen

Absprachen / Hinweise. Inhaltsbezogene Kompetenzen Die Schülerinnen und Schüler. 5 Wochen Potenzen mit Potenzen rechnen Rechengesetze exemplarisch begründen Gleichungen umformen und lösen, in einfachen Fällen auch hilfsmittelfrei Kreis- und Körperberechnungen Flächeninhalt und Umfang des Kreises

Mehr

Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik

Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik e Exponentialfunktionen Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik Exponentialfunktionen Potenzfunktion: y = x 9 Exponentialfunktion: y = 9 x Die Potenz- und die Exponentialfunktionen

Mehr

16.1 Wichtiges über mathematische Funktionen

16.1 Wichtiges über mathematische Funktionen 16 16.1 Wichtiges über mathematische Funktionen Definition Funktion Wird durch die Gleichung y = f(x) jedem x des Definitionsbereiches genau ein y des Wertebereiches zugeordnet, nennen wir dies eine Funktion

Mehr

Vermischte Aufgaben als Probevorbereitung Posten 1

Vermischte Aufgaben als Probevorbereitung Posten 1 Vermischte Aufgaben als Probevorbereitung Posten 1 Aufgabe 1 Gegeben: f(x) = 2 x g(x) = log 3(x) a. Stelle die Funktion grafisch dar. b. Verschiebe die Kurve um 2 Einheiten nach oben und um 3 Einheiten

Mehr

exponentielle Wachstumsphase Abbildung 1: Wachstumskurve einer Bakterienkultur

exponentielle Wachstumsphase Abbildung 1: Wachstumskurve einer Bakterienkultur Bakterienwachstum Mathematische Schwerpunkte: Teil 1: Folgen; vollständige Induktion; rekursiv definierte Folgen Teil 2: Exponentialfunktionen Teil 3: Extremwertbestimmung; Integration einer rationalen

Mehr

(3) Wurzelfunktionen. Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz

(3) Wurzelfunktionen. Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz (3) Wurzelfunktionen Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz Definition y = f (x) g(y) = x gilt. Für jedes k N ist

Mehr

Das zyklische Wachstum wird mit Hilfe trigonometrischer Funktionen - meist der Sinusfunktion. f(x) = a sin(bx + c) + d.

Das zyklische Wachstum wird mit Hilfe trigonometrischer Funktionen - meist der Sinusfunktion. f(x) = a sin(bx + c) + d. 1 Arten von Wachstum Wachstum bedeutet, dass eine Größe über die Zeit zu- oder abnimmt. Dabei kann diese Zu- oder Abnahme regelmäßigen Gesetzen folgen oder unregelmäßig sein. Uns interessieren die regelmäßigen

Mehr

SRB- Schulinterner Lehrplan Mathematik Klasse 10

SRB- Schulinterner Lehrplan Mathematik Klasse 10 12 15 Std. z.b.: Lesen (Informationen aus Texten, Tabellen und Grafen), Begriffe und Verfahren miteinander in Beziehung setzen (Gleichung, Graph), Arbeits schritte erläutern, Lösungswege vergleichen und

Mehr

Exponentialfunktion*

Exponentialfunktion* Exponentialfunktion* Aufgabennummer: 1_435 Aufgabentyp: Typ 1 T Typ Aufgabenformat: offenes Format Grundkompetenz: FA 5.1 Gegeben ist der Graph einer Exponentialfunktion f mit f(x) = a b x mit a, b R +

Mehr

Wiederholungen Wachstumsfunktionen IGS List

Wiederholungen Wachstumsfunktionen IGS List Wiederholungen Wachstumsfunktionen IGS List Prozentuales Wachstum Wertetabelle Berechnen von Zwischenwerten Berechnen von Wachstumsraten und Wachstumsfaktoren Aufstellen von Funktionsgleichungen f ( )

Mehr

Logarithmische Skalen

Logarithmische Skalen Logarithmische Skalen Arbeitsblatt Logarithmische Skalen ermöglichen dir eine übersichtlichere Darstellung von Kurvenverläufen vor allem dann, wenn sie sich über sehr große Zahlenbereiche erstrecken. 1

Mehr

Projekt Standardisierte schriftliche Reifeprüfung in Mathematik. T e s t h e f t. Vorname:

Projekt Standardisierte schriftliche Reifeprüfung in Mathematik. T e s t h e f t. Vorname: Projekt Standardisierte schriftliche Reifeprüfung in Mathematik T e s t h e f t Schüler(in) Nachname:. Vorname:. Projekt Standardisierte schriftliche Reifeprüfung in Mathematik A01 Aussagen zur quadratischen

Mehr

Übungsblatt Wachstums- Zerfallsfunktionen Lösungen

Übungsblatt Wachstums- Zerfallsfunktionen Lösungen Übungsblatt Lösungen Beispiel 1: Man betrachtet das Wachstum der Weltbevölkerung im Zeitraum von 1950 (Zeitpunkt t = 0) bis 1990 (Zeitpunkt t = 40). Die Tabelle soll im Zuge der Rechnung von dir ausgefüllt

Mehr

Kapitel 3 EXPONENTIAL- UND LOGARITHMUS-FUNKTION

Kapitel 3 EXPONENTIAL- UND LOGARITHMUS-FUNKTION Kapitel 3 EXPONENTIAL- UND LOGARITHMUS-FUNKTION Fassung vom 3 Dezember 2005 Mathematik für Humanbiologen und Biologen 39 3 Exponentialfunktion 3 Exponentialfunktion Wir betrachten als einführendes Beispiel

Mehr

Analysis: exp. und beschränktes Wachstum Analysis

Analysis: exp. und beschränktes Wachstum Analysis Analysis Wahlteilaufgaben zu exponentiellem und beschränktem Wachstum inkl Differenzialgleichungen Gymnasium ab J1 Alexander Schwarz wwwmathe-aufgabencom Februar 2014 1 Aufgabe 1 Zu Beginn eines Experimentes

Mehr

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759.

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759. (4) Exponential- und Logarithmusfunktionen Satz Für jedes b > 1 gibt es eine eindeutig bestimmte Funktion exp b : R R + mit folgenden Eigenschaften. exp b (r) = b r für alle r Q Die Funktion exp b ist

Mehr

Einstiegsvoraussetzungen 3. Semester

Einstiegsvoraussetzungen 3. Semester Einstiegsvoraussetzungen 3. Semester Wiederholung vom VL Bereich: Zahlen und Maße Fehlerrechnung kennen Fehler in der Darstellung von Zahlen und können Ergebnisse auf sinnvolle Art runden. verstehen die

Mehr

Lösungserwartung und Lösungsschlüssel zur prototypischen Schularbeit für die 7. Klasse (Autor: Gottfried Gurtner)

Lösungserwartung und Lösungsschlüssel zur prototypischen Schularbeit für die 7. Klasse (Autor: Gottfried Gurtner) Lösungserwartung und Lösungsschlüssel zur prototypischen Schularbeit für die 7. Klasse (Autor: Gottfried Gurtner) Teil : Mathematische Grundkompetenzen ) Es muss (ausschließlich) die richtige Antwortmöglichkeit

Mehr

Klassenarbeit 1 Klasse 10e Mathematik

Klassenarbeit 1 Klasse 10e Mathematik 203-09-30 Klassenarbeit Klasse 0e Mathematik Lösung Berechne jeweils den Wert für x. Benutze dazu nicht den Taschenrechner. Im Ergebnis soll keine Dezimalzahldarstellung benutzt werden; nur ganze Zahlen,

Mehr

Exponentielles Wachstum und Logarithmus

Exponentielles Wachstum und Logarithmus Eigenschaften der Exponentialfunktionen Die Funktion nennt man Exponentialfunktion mit der Basis a. Ist neben der Potenz noch ein Faktor im Funktionsterm vorhanden, spricht man von einer allgemeinen Exponentialfunktion:

Mehr

Schulinterner Lehrplan Mathematik Einführungsphase Oberstufe

Schulinterner Lehrplan Mathematik Einführungsphase Oberstufe Schulinterner Lehrplan Mathematik Einführungsphase Oberstufe Halbjahr 10. 1 Schwerpunkt Inhaltsbezogene Prozessbezogene Arithmetik/Algebra Zahlenmengen (LS10 Kap. I) Angabe von Zahlenmengen mit der Intervall-

Mehr

Lineares Wachstum/exponentielles Wachstum

Lineares Wachstum/exponentielles Wachstum Seite 1 / 9 Lineares Wachstum/exponentielles Wachstum 1. Herr Apfalterer und Frau Bader haben ein Jahresgehalt von 18.000. Für die jährliche Gehaltserhöhung stehen zwei verschieden Möglichkeiten zur Auswahl.

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine Universität Düsseldorf 13. Oktober 2010 Hinweise Internetseite zur Vorlesung: http://blog.ruediger-braun.net Dort können Sie Materialien

Mehr

Mathematik 6A 2. Schularbeit, 21. Dezember 2018 Gruppe A Note. von 48 P Befriedigend. Aufgabe 1 Funktionen 2 P.

Mathematik 6A 2. Schularbeit, 21. Dezember 2018 Gruppe A Note. von 48 P Befriedigend. Aufgabe 1 Funktionen 2 P. Mathematik 6A 2. Schularbeit, 21. Dezember 2018 Gruppe A Name: Erreicht Note von 48 P. Notenschlüssel 0 23 Nicht genügend 24-29 Genügend 30-36 Befriedigend 37-42 Gut 43-48 Sehr gut Aufgabe 1 Funktionen

Mehr

Exponentialgleichungen und -funktionen

Exponentialgleichungen und -funktionen Eponentialgleichungen und -funktionen Eigenschaften der Eponentialfunktionen 3 C,D Funktionsgraphen zuordnen Ordnen Sie den folgenden Funktionen ihre Graphen zu (einer ist nicht gezeichnet) und erklären

Mehr

1 Lineare Funktionen. 1 Antiproportionale Funktionen

1 Lineare Funktionen. 1 Antiproportionale Funktionen Funktion Eine Funktion ist eine Zuordnung, bei der zu jeder Größe eines ersten Bereichs (Ein gabegröße) genau eine Größe eines zweiten Bereichs (Ausgabegröße) gehört. Eine Funktion wird durch eine Funktionsvorschrift

Mehr

Mariengymnasium Jever Schuleigenes Fachcurriculum / Arbeitsplan Mathematik Jahrgang 10 Stand: von 8

Mariengymnasium Jever Schuleigenes Fachcurriculum / Arbeitsplan Mathematik Jahrgang 10 Stand: von 8 Mariengymnasium Jever Schuleigenes Fachcurriculum / Arbeitsplan Mathematik Jahrgang 10 Stand: 30.08.2017 1 von 8 Unterrichtswerk: Elemente der Mathematik, Niedersachsen, 10. Schuljahr, Schroedel, ISBN

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius Mittelpunktswinkel : Länge des Kreisbogens gilt für einen Kreissektor mit Fläche des Kreissektors Das Bogenmaß eines Winkels ist die Länge des

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius r gilt für einen Kreissektor mit Mittelpunktswinkel α: Länge des Kreisbogens Fläche des Kreissektors b = α α 2rπ A = 360 360 πr2 Das Bogenmaß

Mehr

Prozessbezogene Kompetenzen

Prozessbezogene Kompetenzen 1. Quadratische Funktionen ca. 4 Wochen S.12-35 Der freie Fall Normalparabel: y = x 2 Verschobene Normalparabel: y = x 2 + e Arbeiten mit dem Taschenrechner: Wertetabellen Verschobene Normalparabel: y

Mehr

AGO - Stoffverteilungsplan Jahrgang 10

AGO - Stoffverteilungsplan Jahrgang 10 AGO - Stoffverteilungsplan Jahrgang 10 In der folgenden Tabelle sind nur die wesentlichen Kompetenzen angegeben, zu deren Aufbau in dem jeweiligen Abschnitt ein entscheidender Beitrag geleistet wird. Durch

Mehr

Aufgaben. zu Inhalten der 6. Klasse

Aufgaben. zu Inhalten der 6. Klasse Aufgaben zu Inhalten der 6. Klasse Universität Klagenfurt, Institut für Didaktik der Mathematik (AECC-M) November 2010 Aufgaben vom Typ 1 Potenzen und Wurzeln Die folgende Tabelle enthält in jeder Zeile

Mehr

Exponentielles Wachstum:

Exponentielles Wachstum: Exponentielles Wachstum: Bsp.: Ein Wald hat zum Zeitpunkt t = 0 einen Holzbestand von N 0 = N(0) = 20 000 m 3. Nach 0 Jahren ist der Holzbestand auf 25 000 m 3 angewachsen. a) Nimm an, dass die Zunahme

Mehr

Vorbereitung zur mündlichen Prüfung in Mathematik

Vorbereitung zur mündlichen Prüfung in Mathematik Vorbereitung zur mündlichen Prüfung in Mathematik Themenbereich: Funktionen Aufgabe Um welche Arten von Funktionen handelt es sich? Bestimme bei gegebenem Graphen die Funktionsgleichung a) = b) = c) =

Mehr

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel Achtung: Das Grundwissen steht im Lehrplan! Tipps zum Grundwissen Mathematik Jahrgangsstufe 10 Folgende Begriffe und Aufgaben solltest Du nach der 10. Klasse kennen und können: (Falls Du Lücken entdeckst,

Mehr

Weitere einfache Eigenschaften elementarer Funktionen

Weitere einfache Eigenschaften elementarer Funktionen Kapitel 6 Weitere einfache Eigenschaften elementarer Funktionen 6.1 Polynome Geg.: Polynom vom Grad n p(x) = a 0 + a 1 x +... + a n 1 x n 1 + a n x n, also mit a n 0. p(x) = x n ( a 0 x + a 1 n x +...

Mehr

Inhaltsbezogene Kompetenzen

Inhaltsbezogene Kompetenzen Kommunizieren ( PK 6 ) Schlüssigkeit und gehen darauf ein. Größen und Messen ( IK 2 )...berechnen Streckenlängen und Winkelgrößen mithilfe trigonometrischer Beziehungen sowie Kosinusund Sinussatz. Entdeckungen

Mehr

Teil 2. Hier: Verwendung von Methoden aus der Analysis. Wachstumsrate, Wachstumsgeschwindigkeit Differenzialgleichung. Auch mit CAS-Einsatz

Teil 2. Hier: Verwendung von Methoden aus der Analysis. Wachstumsrate, Wachstumsgeschwindigkeit Differenzialgleichung. Auch mit CAS-Einsatz Themenheft Exponentielles Wachstum Teil 2 Hier: Verwendung von Methoden aus der Analysis. Wachstumsrate, Wachstumsgeschwindigkeit Differenzialgleichung Auch mit CAS-Einsatz Datei Nr. 45810 Stand 23. Februar

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 05. Dezember 2012 1 Datenpaare Korrelation 2 Lineare Regression Problemstellung Beispiel Bleibelastung 3 Regression

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Funktionen. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Funktionen. Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kopiervorlagen Funktionen Das komplette Material finden Sie hier: School-Scout.de Inhaltsverzeichnis Funktionen Zuordnungen Blatt

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = = 360 360 Das Bogenmaß eines Winkels ist

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = 2 = 360 360 Das Bogenmaß eines Winkels ist

Mehr

Lösungen (Hinweis: Ich habe nur da gerundet, wo es nicht anders möglich war. Ansonsten habe ich die genauen Werte benutzt.)

Lösungen (Hinweis: Ich habe nur da gerundet, wo es nicht anders möglich war. Ansonsten habe ich die genauen Werte benutzt.) Übungsaufgaben Aufgabe 1 Ein Waldstück weist heute (2009) einen Holzbestand von 7300 m³ auf. Auf welchen Wert wächst der Holzbestand innerhalb von 6 Jahren (bis 2015), wenn er jedes Jahr um 3,2 % zunimmt?

Mehr

K2 - Klausur Nr. 2. Wachstumsvorgänge modellieren mit der Exponentialfunktion. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

K2 - Klausur Nr. 2. Wachstumsvorgänge modellieren mit der Exponentialfunktion. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. K2 - Klausur Nr. 2 Wachstumsvorgänge modellieren mit der Exponentialfunktion Pflichtteil keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere

Mehr

Volumen und Oberflächeninhalt der Kugel 10_01

Volumen und Oberflächeninhalt der Kugel 10_01 Volumen und Oberflächeninhalt der Kugel 10_01 Alle Punkte (des dreidimensionalen Raums), die von einem Punkt M die gleiche Entfernung r besitzen, liegen auf einer Kugel mit Mittelpunkt M und Radiuslänge

Mehr

einzeichnen von Steigungsdreiecken bestimmt werden oder durch die rechnerische Form. Hier wird die rechnerische Form gezeigt:

einzeichnen von Steigungsdreiecken bestimmt werden oder durch die rechnerische Form. Hier wird die rechnerische Form gezeigt: Lösungen Mathematik Dossier Funktionen b) Steigungen: Können entweder durch einzeichnen von Steigungsdreiecken bestimmt werden oder durch die rechnerische Form. Hier wird die rechnerische Form gezeigt:

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun http://blog.ruediger-braun.net Heinrich-Heine-Universität Düsseldorf 10. Dezember 2014 1 Datenpaare Korrelation 2 Lineare Regression Problemstellung Beispiel

Mehr

49 Mathematik für Biologen, Biotechnologen und Biochemiker

49 Mathematik für Biologen, Biotechnologen und Biochemiker 49 Mathematik für Biologen, Biotechnologen und Biochemiker 43 Momentane Wachstumsrate, Zuwachsrate pro Zeiteinheit und die Verdoppelungszeit Jede Exponentialfunktion f(t) = c exp(t) ist durch die beiden

Mehr

II Wachstumsvorgänge. ( exakt ). Auftrag 2: Der Flächeninhalt eines DIN-A-Formates ist. Schülerbuchseiten

II Wachstumsvorgänge. ( exakt ). Auftrag 2: Der Flächeninhalt eines DIN-A-Formates ist. Schülerbuchseiten Schülerbuchseiten 9 Erkundungen Seite Der Zerfall von Bierschaum Individuelle Lösung. In der Regel funktioniert der Versuch recht gut. Je nach Biersorte und Sauberkeit des Glases ergibt sich eine Halbwertszeit

Mehr

1. Teil Repetitionen zum Thema (bisherige) Funktionen

1. Teil Repetitionen zum Thema (bisherige) Funktionen Analysis-Aufgaben: Rationale Funktionen 2 1. Teil Repetitionen zum Thema (bisherige) Funktionen 1. Die folgenden Funktionen sind gegeben: f(x) = x 3 x 2, g(x) = x 4 + 4 (a) Bestimme die folgenden Funktionswerte/-

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

Staatsexamensaufgabe 2001/II,1 Teilaufgabe 3

Staatsexamensaufgabe 2001/II,1 Teilaufgabe 3 Staatsexamensaufgabe 2001/II,1 Teilaufgabe 3 Entwickeln Sie eine Unterrichtseinheit, in der exponentielles und lineares Wachstum gegenübergestellt werden! Sachanalyse Diese finden Sie in einem ausgeführten

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl0-Gruppe B. Gegeben ist die Exponentialfunktion y=f x =0.8 2 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

1 Kreissektoren und Kugeln Kreissektor mit dem Mittelpunktswinkel α und dem Radius r:

1 Kreissektoren und Kugeln Kreissektor mit dem Mittelpunktswinkel α und dem Radius r: Mathematikgrundwissen der 0. Jahrgangsstufe Kreissektoren und Kugeln Kreissektor mit dem Mittelpunktswinkel und dem Radius r: r A r b Bogenlänge: b = 60 r Flächeninhalt: b = 60 r Berechne jeweils den Umfang

Mehr

KGS Schneverdingen Gymnasialzweig Mathematik Klasse 10 Stoffverteilungsplan (Stand: Juli 2012)

KGS Schneverdingen Gymnasialzweig Mathematik Klasse 10 Stoffverteilungsplan (Stand: Juli 2012) Lehrbuch: Elemente der Mathematik 10 KGS Schneverdingen Gymnasialzweig Mathematik Klasse 10 Stoffverteilungsplan (Stand: Juli 2012) Thema Inhalte Kompetenzen Zeit in Stunden Buchseiten Bemerkungen Modellieren

Mehr

2.1 Lineares Wachstum 2.2 Exponentielles Wachstum 2.3 Exponentiell beschränktes Wachstum 2.4 Logistisches Wachstum.

2.1 Lineares Wachstum 2.2 Exponentielles Wachstum 2.3 Exponentiell beschränktes Wachstum 2.4 Logistisches Wachstum. Wachstumsmodellierung: Theorie Marius Bockwinkel Gliederung 1 Definition 2 Wachstumsarten 2.1 Lineares Wachstum 2.2 Exponentielles Wachstum 2.3 Exponentiell beschränktes Wachstum 2.4 Logistisches Wachstum

Mehr

Selbstdiagnosebogen zu Exponentialfunktionen

Selbstdiagnosebogen zu Exponentialfunktionen Mathematik- Unterrichts- Einheiten- Datei e. V. www.mued.de Klasse 10 04/2009 Selbstdiagnosebogen zu Eponentialfunktionen A) Kreuze deine Einschätzung an. Ich kann 1. zu einem Wachstumsprozentsatz den

Mehr

Probleme lösen mit Hilfe von Ableitungen, Extrem- und Wendepunkten

Probleme lösen mit Hilfe von Ableitungen, Extrem- und Wendepunkten Kompetenzen und Inhalte des Bildungsplans Unterrichtsinhalte Die Schülerinnen und Schüler können - besondere Eigenschaften von Funktionen rechnerisch und mithilfe des GTR bestimmen; Bestimmung von Extrem-

Mehr

Mathematik Curriculum Kursstufe

Mathematik Curriculum Kursstufe Mathematik Curriculum Kursstufe Kompetenzen und Inhalte des Bildungsplans Leitidee Funktionaler können besondere Eigenschaften von Funktionen rechnerisch und mithilfe des GTR bestimmen. Unterrichtsinhalte

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A 1. Gegeben ist die Exponentialfunktion y=f x = 0,5 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

ALGEBRA UND GEOMETRIE

ALGEBRA UND GEOMETRIE ALGEBRA UND GEOMETRIE VERKAUFSPREIS Für einen Laufmeter Stoff betragen die Selbstkosten S Euro, der Verkaufspreis ohne Mehrwertsteuer N Euro. a) Gib eine Formel für den Gewinn G in Abhängigkeit von N und

Mehr

Grundwissen. 10. Jahrgangsstufe. Mathematik

Grundwissen. 10. Jahrgangsstufe. Mathematik Grundwissen 10. Jahrgangsstufe Mathematik 1 Kreis und Kugel 1.1 Kreissektor und Bogenmaß Kreis Umfang U = π r=π d Flächeninhalt A=π r Kreissektor mit Mittelpunktswinkel α Bogenlänge b= α π r 360 Flächeninhalt

Mehr

Übungen Mathematik - Exponentialfunktion und Wachstumsprozesse

Übungen Mathematik - Exponentialfunktion und Wachstumsprozesse Übungen Mathematik - Eponentialfunktion und Wachstumsprozesse Aufgabe 1: Erstelle für die folgenden Funktionen f eine Wertetabelle von = -5 bis = 5 und zeichne ihren Graphen. a) f() = 0,8 b) f() = 1,25

Mehr