3.2 Exponentialfunktion und Wachstum/Zerfall
|
|
|
- Jobst Kramer
- vor 9 Jahren
- Abrufe
Transkript
1 3.2 Exponentialfunktion und Wachstum/Zerfall Inhaltsverzeichnis 1 Die Exponentialfunktion 2 2 Exponentielles Wachtum und exponentieller Zerfall 3 1
2 Exp.-funktion,Wachstum,Zerfall Theorie und Übungen 2 1 Die Exponentialfunktion Die Exponentialfunktion ist folgendermassen definiert: Definition 1 Eine Funktion heisst Exponentialfunktion, wenn ihre Vorschrift die folgende Form hat: Bem 1 Der Name ist hier selbsterklärend. Die Variable (Argument) x steht im Exponent, daher der Name Exponentialfunktion. Wie sieht der Graph einer Exponentialfunktion aus? Setzen wir mal a = 2. Wir erhalten die folgende Wertetabelle: x x Wir zeichnen die Punkte ins Koordinatensystem ein: Übungen 1. a) Skizziere die Graphen der folgenden Funktionen ins obenstehende Koordinatensystem. i) f(x) = 3 x ii) f(x) = 0.5 x iii) f(x) = 0.8 x b) Streiche bei den folgenden Sätzen das falsche Wort durch: i) Für a > 1 gilt: Je grösser a, umso steiler/flacher ist der Graph auf der rechten Seite der x-achse. ii) Für 0 < a < 1 gilt: Je grösser a, umso steiler/flacher ist der Graph auf der linken Seite der x-achse.
3 Exp.-funktion,Wachstum,Zerfall Theorie und Übungen 3 2. Stelle rechnerisch fest, ob der angegebene Punkt oberhalb, unterhalb oder auf dem Graphen mit der Vorschrift f(x) = 2 x liegt. a) P 1 = (4 15) [unterhalb] b) P 2 = ( ) [unterhalb] c) P 3 = (3 8) [auf] 3. Bestimme, falls möglich, die Basis der Funktion f mit der Funktionsvorschrift f(x) = a x (a > 0), wenn der Punkt P auf dem Graphen der Funktion liegt. a) P 1 = (1 3) [a = 3] b) P 2 = (2 3) [a = 3] c) P 3 = (2 4) [a = 2] 4. Welche der folgenden Wertetabellen stammt von einer Exponentialfunktion? a) b) Die Spannung U [Volt] einer 12-Volt-Batterie während des Einschaltvorgangs im Zeitpunkt t [Sekunden] lässt sich mit folgender Formel beschreiben: Man misst U(0.1) = U(t) = 12 (1 e kt ) a) Berechne k. [k ] b) Welches ist die Spannung im Zeitpunkt t = 0.2 [Sekunden]? [ Volt] c) In welchem Zeitpunkt beträgt die Spannung 6 Volt? [ Sekunden] 6. (Zusatz) Die Temperatur T [ C] einer Kaffeetasse zum Zeitpunkt t [min] lässt sich mit folgender Formel berechnen: T(t) = a e kt + b Man misst: T(0.5) = 86,T(4) = 68.5 und T(7.5) = a) Berechne die Parameter a, b und k. [a , b , k ] b) Wann muss man zur Tasse greifen, wenn der Kaffee genau 60 C warm sein soll? [6.167 min] 2 Exponentielles Wachtum und exponentieller Zerfall In diesem Abschnitt geht es um exponentielle Wachstumsprozesse wie z.b. Kapitalvermehrung, Vermehrung eines Algen- oder Waldbestandes, radioaktiver Zerfall, usw. Solche Prozesse können mit einer Exponentialfunktion beschrieben werden. Zwei Beispiele: Beispiel 1 Ein See ist zu 1.5% mit Algen bedeckt. Diese vermehren sich so, dass sie jeden neuen Tag eine doppelt so grosse Fläche bedecken. Wie kann dieses Wachstum mit einer Formel beschrieben werden? Wir füllen zuerst folgende Tabelle aus: Tage Fläche in % Wir zeichnen die Punkte ins Koordinatensystem ein:
4 Exp.-funktion,Wachstum,Zerfall Theorie und Übungen Beispiel 2 Ein radioaktiver Stoff bestehe aus 243 Mio Atomen. Jede Stunde zerfällt ein Drittel des Bestandes. Mit welcher Vorschrift lässt sich dieses Wachstum beschreiben? Stunden Atome in Mio Wir zeichnen die Punkte ins Koordinatensystem ein: Wir halten fest: exponentielle Wachstumsvorgänge lassen sich mit einer Gleichung der folgenden Form beschreiben:
5 Exp.-funktion,Wachstum,Zerfall Theorie und Übungen 5 B(t) = B(0) a t B(0) ist dabei der Bestand zum Zeitpunkt t = 0 (Anfangsbestand), a ist der Wachstumsfaktor. Wenn 0 < a < 1 : Exponentieller Zerfall (der Bestand nimmt mit der Zeit ab) 0 < a < 1 : Exponentielles Wachstum (der Bestand nimmt mit der Zeit zu) Beispiel 3 Von 5 kg (Zeitpunkt t = 0) eines radioaktiven Isotops (exponentieller Zerfall) sind nach 5 Stunden noch 2kg vorhanden. Wie lautet das Zerfallsgesetz? [B(t) = t ] Übungen 7. Eine Bakterienpopulation umfasst Exemplare. Nach 2 Stunden hat sich die Zeit der Exemplare vervierfacht. Wir nehmen an, dass die Zahl der Exemplare exponentiell wächst. Wie viele Exemplare sind nach 10 Stunden vorhanden? [ Bakterien] 8. 2% eines Sees ist mit Algen bedeckt. Die Algenfläche verdoppelt sich jeweils innert zwei Tagen. a) Warum handelt es sich hier um exponentielles Wachstum? b) Mit welcher Funktionsvorschrift (Formel) kann dieses Wachstum beschrieben werden? [B(t) 2% t ] c) Nach wievielen Tagen ist der See ganz mit Algen bedeckt? [ Tage] d) Nach wievielen Tagen ist der See ganz mit Algen bedeckt, wenn sich die Algenfläche jeweils innert 5 Tagen verdoppelt? [ Tage] 9. Eine Bakterienpopulation wächst exponentionell. Um 14 Uhr sind 2300 Bakterien vorhanden, um 16 Uhr sind es Bakterien. a) Wieviele Bakterien hat es um Uhr? [ Bakterien] b) Um welche Uhrzeit sind Bakterien vorhanden? [ Uhr] 10. Ein Auto verliert jedes Jahr an Wert. Im 1.Jahr ist die Wertminderung am grössten, danach wird sie von Jahr zu Jahr geringer. Der Autohandel geht von 19% Wertminderung pro Jahr aus. a) Stelle die Wertminderung für ein Auto, dessen Neupreis Fr. ist, graphisch dar. b) Berechne die Halbwertszeit (die Zeit, nach der das Auto nur noch halb soviel Wert hat). [t 3.29 Jahre] c) Berechne die Halbwertszeit, wenn das Auto einen Neupreis von Fr. gehabt hätte. [t 3.29 Jahre] d) Kannst Du eine Formel angeben, mit der sich die Halbwertszeit direkt berechnen lässt? 11. Ein Kapital von 1000Fr liegt auf einer Bank und wird mit 5% verzinst.
6 Exp.-funktion,Wachstum,Zerfall Theorie und Übungen 6 a) Wie gross ist das Kapital nach 5 vollen Jahren bei einem Zins von 5%? [ Fr] b) Wie viele Jahre würde es dauern bis das Kapital auf 10000Fr. angewachsen ist? [47.19 J.] c) Nach welcher Zeit hat sich das Kapital verdoppelt? [14.21 J.] d) Nach welcher hätte sich ein Kapital von 3000Fr verdoppelt? [14.21 J.] e) Kannst Du eine Formel angeben, mit der sich die Verdoppelungszeit direkt berechnen lässt? 12. Die Einwohnerzahl von Afrika nahm von 1980 bis 1985 jährlich um 3% zu. In der Mitte des Jahres 1985 betrug sie 555 Millionen. a) Welches war die Einwohnerzahl Mitte 1980 (auf Millionen genau)? [479 Mio] b) In welchem Jahr wird die Einwohnerzahl bei unveränderter Wachstumsrate die Milliardengrenze überschreiten? [2005] c) Welches ist die Verdoppelungszeit bei unveränderter Wachtumsrate? [23.45 Jahre] 13. Ein lebender Organismus enthält Kohlenstoff, dabei ist ein Teil von 3% nicht stabil. Sobald der Organismus stirbt, nimmt der Anteil der nichtstabilen Elemente mit einer Halbwertszeit von 5736 Jahren exponentionell ab (Es kommen keine neuen Elemente dazu). Heute misst man bei einer altägyptischen Königsmumie einen Anteil von 1.75% an nicht stabilem Kohlenstoff. Wie alt ist die Mumie? [4460 Jahre] 14. Auf Filmverpackungen wird die Lichtempfindlichkeit des photographischen Materials meist mit DIN (deutsche Norm) und ASA (amerikanische Norm) angegeben. Dabei entsprechen sich DIN ASA a) Finde eine Funktionsgleichung, die den Zusammenhang von DIN und ASA beschreibt. b) Rechne die Filmempfindlichkeit 28DIN in ASA um. c) Welcher Filmempfindlichkeit entspricht 500ASA in der DIN-Norm?
3.2 Exponentialfunktion und Wachstum/Zerfall
3.2 Exponentialfunktion und Wachstum/Zerfall Inhaltsverzeichnis 1 Die Exponentialfunktion 2 2 Exponentielles Wachtum und exponentieller Zerfall 5 2.1 Die Schreibweise B(t)=B(0) a t................................
Exponentialfunktion / Wachstum
1. Die Eponentialfunktion Eponentialfunktion / Wachstum Spezialfall: = 0: a 0 = 1 P(0 1). Dies bedeutet, alle Graphen - unabhängig ihrer Basis - laufen durch den Punkt (0 1). Der Graph einer Eponentialfunktion
Klasse 10; Mathematik Kessling Seite 1
Klasse 0; Mathematik Kessling Seite Übungen Eponentialfunktionen/Logarithmus Aufgabe Beim Wachstum einer bestimmten Bakterienart der Bestand der Bakterien stündlich um 43% zu. Am Beginn des Beobachtungszeitraumes
10 Zeit in Milliarden Jahren
a) Der radioaktive Zerfall von bestimmten Uran-Atomen lässt sich näherungsweise durch eine Exponentialfunktion N beschreiben (siehe nachstehende Abbildung). 100 Masse in mg 90 80 70 60 50 N 40 30 20 10
Wachstumsprozesse. Natürliches Wachstum Größenbeschränktes Wachstum Logistisches Wachstum Differenzialgleichungen
Wachstumsprozesse Natürliches Wachstum Größenbeschränktes Wachstum Logistisches Wachstum Differenzialgleichungen [email protected] www.elearning-freiburg.de Natürliches/exponentielles Wachstum Natürliches
Das zyklische Wachstum wird mit Hilfe trigonometrischer Funktionen - meist der Sinusfunktion. f(x) = a sin(bx + c) + d.
1 Arten von Wachstum Wachstum bedeutet, dass eine Größe über die Zeit zu- oder abnimmt. Dabei kann diese Zu- oder Abnahme regelmäßigen Gesetzen folgen oder unregelmäßig sein. Uns interessieren die regelmäßigen
3.3 Beschränktes(r) Wachstum/Zerfall und logistisches Wachstum
3.3 Beschränktes(r) Wachstum/Zerfall und logistisches Wachstum Inhaltsverzeichnis 1 Beschränktes Wachstum und beschränkter Zerfall 2 2 Logistisches Wachstum 5 1 Beschr. Wachstum/Zerfall 30.10.2009 Theorie
3 log. 2 )+log(1/u) g) log(2ux) 1+ a. j) log
Logarithmen 1. 5 3 = 125 ist gleichbedeutend mit 5 log(125) = 3. Formen Sie nach diesem Muster um. a) 2 5 = 32 b) 10 4 = 10 000 c) 7 0 = 1 d) 3 2 = 1/9 e) 10 3 = 0.001 f) 5 1/2 = 5 g) 6 log(216) = 3 h)
R. Brinkmann Seite Anwendungen der Exponentialfunktion
R. Brinkmann http://brinkmann-du.de Seite 6..2 Aufstellen der Funktionsgleichung : Anwendungen der Eponentialfunktion Coli Bakterien verrichten ihre Arbeit im menschlichen Darm. Sie vermehren sich durch
Wiederholungen Wachstumsfunktionen IGS List
Wiederholungen Wachstumsfunktionen IGS List Prozentuales Wachstum Wertetabelle Berechnen von Zwischenwerten Berechnen von Wachstumsraten und Wachstumsfaktoren Aufstellen von Funktionsgleichungen f ( )
Thema aus dem Bereich Analysis Funktionen 1.Grades
Thema aus dem Bereich Analysis -. Funktionen.Grades Inhaltsverzeichnis Einführung in den Funktionsbegriff Der Funktionsgraph und die Wertetabelle Was ist eine Funktion.Grades? Die Steigung einer Geraden
Gruppe 1. Lies den folgenden Text aus einem Biologiebuch.
Gruppe Lies den folgenden Text aus einem Biologiebuch.. Notiere das Wachstum der Salmonellen übersichtlich in einer Tabelle. Am Anfang soll eine Salmonelle vorhanden sein. Verwende dabei auch Potenzen..
A5 Exponentialfunktion und Logarithmusfunktion
A5 Exponentialfunktion und Logarithmusfunktion A5 Exponentialfunktion und Logarithmusfunktion Wachstums- und Zerfallsprozesse. Beispiel: Bakterien können sich sehr schnell vermehren. Eine bestimmte Bakterienart
Potenz- & Exponentialfunktionen
Potenz- & Exponentialfunktionen 4. Kapitel aus meinem ANALYSIS - Lehrgang MNprofil - MIttelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 24. Oktober 2011 Überblick über
Übungsarbeit zum Thema: Exponentialfunktion und. Logarithmusfunktion
Übungsarbeit zum Thema: Exponentialfunktion und Logarithmusfunktion a) Bestimme die Exponentialfunktion f (x) a x mit a R +, deren Graph durch den Punkt P (3 / 0,343) verläuft. b) Bestimme die Exponentialfunktion
Vorbereitungskurs Lehrlinge
Vorbereitungskurs Lehrlinge Freitag, 21. Mai 2010 14:00 BRP Mathematik Mag. Kurt Söser 2009/10 Maturavorbereitung Seite 1 Maturavorbereitung Seite 2 Maturavorbereitung Seite 3 Bsp. Die Halbwertzeit von
Analysis-Aufgaben: Funktionen (Grundlagen) 7. Anwendungen GeoGebra
Analysis-Aufgaben: Funktionen (Grundlagen) 7 Anwendungen GeoGebra 1. Wir beginnen diese Aufgabenserie mit einer kurzen Wiederholung der Definitionen & Begriffe im Zusammenhang mit Funktionen: (a) Definiere
Exponentialfunktionen
Mathematik Buch / 3. Funktionen / Zuordnungen -288- Aufgabe: Exponentialfunktionen Eine Fläche ist zu Beginn der Baggerarbeiten 800 m 2 groß. Jede Woche schaffen die Bagger 550 m 2 neue Fläche dazu. Eine
Gymnasium Liestal Maturitätsprüfungen 2004
Gymnasium Liestal Maturitätsprüfungen 2004 Mathematik Klasse 4LM Bemerkungen: Hilfsmittel: Punkteverteilung: Die Prüfungsdauer beträgt 4 Stunden. Beginnen Sie jede Aufgabe mit einem neuen Blatt! Taschenrechner
Exponentielles Wachstum und Zerfall ( S. Riedmann)
Exponentielles Wachstum und Zerfall ( S. Riedmann) Aufgabe (1) Ein Wald hatte 1990 einen Bestand von 33.000 m³ Holz. Im Laufe von 20 Jahren wurde kein Holz gefällt, so dass sich der Bestand von 1970 um
4 Potenzen Wachstumsprozesse Exponentialfunktionen
4 Potenzen Wachstumsprozesse Exponentialfunktionen 4.1 Potenzieren Radizieren 4.1.1 Potenzen mit natürlichen Exponenten Exponentielle Wachstumsvorgänge 4.1.1.1 Wiederholung zum Potenzieren ist eine Potenz
a) Geben Sie eine Formel an, mit deren Hilfe man ermitteln kann, wie viel Wasser der Teich nach x regenlosen Tagen enthält!
1) Wasserstand Der Wasserstand eines Gartenteichs wird durch Verdunstung und Niederschlag reguliert. Im Sommer kann mit einer täglichen Verdunstung von 4 % des am Morgen vorhandenen Wassers gerechnet werden.
Exponentielle Abnahme
Exponentielle Abnahme Typ 1 S Aufgabennummer: 1_00 Prüfungsteil: Aufgabenformat: Multiple Choice ( aus 5) Grundkompetenz: FA 5.3 keine Hilfsmittel S erforderlich gewohnte Hilfsmittel Typ besondere Technologie
Exponentialfunktionen
Herr Kluge Mathematik Year 10 Exponentialfunktionen Ziel: Ich erkenne ein exponentielles Wachstum und kann es von einem linearen Wachstum unterscheiden. Ich weiß, wie man eine Gleichung zum exponentiellem
Lineare Gleichungssysteme
Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mathematik und Naturwissenschaften Arbeitsblatt Mathematik 3 (Diverses) Dozent: - Brückenkurs Mathematik / Physik 2016 Lineare
2.5 Funktionen 2.Grades (Thema aus dem Bereich Analysis)
.5 Funktionen.Grades (Thema aus dem Bereich Analysis) Inhaltsverzeichnis 1 Definition einer Funktion.Grades. Die Verschiebung des Graphen 5.1 Die Verschiebung des Graphen in y-richtung.........................
Potenz- & Exponentialfunktionen
Potenz- & Exponentialfunktionen 4. Kapitel aus meinem Lehrgang ANALYSIS Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch e-mail: [email protected] 8. Februar 2009 Überblick über die bisherigen
Mathematik 6A 2. Schularbeit, 21. Dezember 2018 Gruppe A Note. von 48 P Befriedigend. Aufgabe 1 Funktionen 2 P.
Mathematik 6A 2. Schularbeit, 21. Dezember 2018 Gruppe A Name: Erreicht Note von 48 P. Notenschlüssel 0 23 Nicht genügend 24-29 Genügend 30-36 Befriedigend 37-42 Gut 43-48 Sehr gut Aufgabe 1 Funktionen
Übungen Mathematik - Exponentialfunktion und Wachstumsprozesse
Übungen Mathematik - Eponentialfunktion und Wachstumsprozesse Aufgabe 1: Erstelle für die folgenden Funktionen f eine Wertetabelle von = -5 bis = 5 und zeichne ihren Graphen. a) f() = 0,8 b) f() = 1,25
49 Mathematik für Biologen, Biotechnologen und Biochemiker
49 Mathematik für Biologen, Biotechnologen und Biochemiker 43 Momentane Wachstumsrate, Zuwachsrate pro Zeiteinheit und die Verdoppelungszeit Jede Exponentialfunktion f(t) = c exp(t) ist durch die beiden
Potenz- & Exponentialfunktionen
Potenz- & Exponentialfunktionen ANALYSIS Kapitel 4 Sprachprofil - Oberstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch 17. Januar 2012 Überblick über die bisherigen ANALYSIS - Themen:
2.2 Funktionen 1.Grades
. Funktionen.Grades (Thema aus dem Bereich Analysis) Inhaltsverzeichnis Was ist eine Funktion.Grades? Die Steigung einer Geraden. Die Definition der Steigung.................................... Die Berechnung
Die Exponentialfunktion Kap Aufgaben zu exponentiellem Wachstum und Zerfall
1 von 5 19.11.2013 12:23 Doc-Stand: 11/19/2013 12:18:48 Die Exponentialfunktion Kap.6.3 - Aufgaben zu exponentiellem Wachstum und Zerfall Bei allen Aufgaben wird exponentielles Wachstum bzw. exponentieller
Logarithmische Skalen
Logarithmische Skalen Arbeitsblatt Logarithmische Skalen ermöglichen dir eine übersichtlichere Darstellung von Kurvenverläufen vor allem dann, wenn sie sich über sehr große Zahlenbereiche erstrecken. 1
Lineares Wachstum/exponentielles Wachstum
Seite 1 / 9 Lineares Wachstum/exponentielles Wachstum 1. Herr Apfalterer und Frau Bader haben ein Jahresgehalt von 18.000. Für die jährliche Gehaltserhöhung stehen zwei verschieden Möglichkeiten zur Auswahl.
4. Bei einem Versuch zur Vermehrung von Wasserlinsenkeimlingen wurde diese Tabelle angelegt: B(t) Anzahl der Keimlinge
1. Ein Geheimnis breitet sich aus Armin vertraut Bettina ein Geheimnis an. Obwohl Bettina versprach, das Geheimnis nicht weiterzuerzählen, erzählt sie es am folgenden Tag ihren Freunden Peter und Sabine.
Selbstdiagnosebogen zu Exponentialfunktionen
Mathematik- Unterrichts- Einheiten- Datei e. V. www.mued.de Klasse 10 04/2009 Selbstdiagnosebogen zu Eponentialfunktionen A) Kreuze deine Einschätzung an. Ich kann 1. zu einem Wachstumsprozentsatz den
Lösungen (Hinweis: Ich habe nur da gerundet, wo es nicht anders möglich war. Ansonsten habe ich die genauen Werte benutzt.)
Übungsaufgaben Aufgabe 1 Ein Waldstück weist heute (2009) einen Holzbestand von 7300 m³ auf. Auf welchen Wert wächst der Holzbestand innerhalb von 6 Jahren (bis 2015), wenn er jedes Jahr um 3,2 % zunimmt?
Übungsblatt 2.SA M 10
Übungsblatt 2SA M 0 Über einen Teich soll von A nach B eine Brücke gebaut werden Der Vermessungsingenieur misst: AP = 287 m P Q = 326 m QB = 35 m
Analysis: exp. und beschränktes Wachstum Analysis
Analysis Wahlteilaufgaben zu exponentiellem und beschränktem Wachstum inkl Differenzialgleichungen Gymnasium ab J1 Alexander Schwarz wwwmathe-aufgabencom Februar 2014 1 Aufgabe 1 Zu Beginn eines Experimentes
Klassenarbeit 1 Klasse 10e Mathematik
203-09-30 Klassenarbeit Klasse 0e Mathematik Lösung Berechne jeweils den Wert für x. Benutze dazu nicht den Taschenrechner. Im Ergebnis soll keine Dezimalzahldarstellung benutzt werden; nur ganze Zahlen,
Kurs 9 Quadratische und exponentielle Funktionen MSA Vollzeit (1 von 2)
Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Kurs 9 Quadratische und exponentielle Funktionen MSA Vollzeit (1 von 2) Name: Ich So schätze ich meinen Lernzuwachs
Thema aus dem Bereich Analysis Funktionen 1.Grades
Thema aus dem Bereich Analysis -.3 Funktionen.Grades Inhaltsverzeichnis Checkliste Einführung in den Funktionsbegriff 3 Der Funktionsgraph und die Wertetabelle 3 Was ist eine Funktion.Grades? 5 Die Steigung
6. Radioaktive Stoffe zerfallen nach dem Gesetz t
1. Ein Distrikt eines Entwicklungslandes hatte Ende 1993 rund 120 000 Einwohner. Die Bevölkerungszahl nimmt laut Statistik jährlich um 2,5 % zu. a) Wie viele Einwohner wird dieser Distrikt Ende 2005 voraussichtlich
Exponentielles Wachstum
Exponentielles Wachstum ein (Kurz-)Referat Dies ist eine Beilage zum Gruppen-SOL - Projekt Potenz- & Exponentialfunktionen Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch 16. Februar 2016 Inhaltsverzeichnis
die Wachstumsrate ist proportional zur Anzahl der vorhandenen Individuen.
Exponentielles Wachstum und Zerfall Angenommen, man möchte ein Modell des Wachstums oder Zerfalls einer Population erarbeiten, dann ist ein Gedanke naheliegend: die Wachstumsrate ist proportional zur Anzahl
Mathematik - 1. Semester. folgenden Zahlenpaare die gegebene Gleichung erfüllen:
Mathematik -. Semester Wi. Ein Beispiel Lineare Funktionen Gegeben sei die Gleichung y x + 3. Anhand einer Wertetabelle sehen wir; daß die folgenden Zahlenpaare die gegebene Gleichung erfüllen: x 0 6 8
1 Lineare Funktionen. 1 Antiproportionale Funktionen
Funktion Eine Funktion ist eine Zuordnung, bei der zu jeder Größe eines ersten Bereichs (Ein gabegröße) genau eine Größe eines zweiten Bereichs (Ausgabegröße) gehört. Eine Funktion wird durch eine Funktionsvorschrift
K2 - Klausur Nr. 2. Wachstumsvorgänge modellieren mit der Exponentialfunktion. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.
K2 - Klausur Nr. 2 Wachstumsvorgänge modellieren mit der Exponentialfunktion Pflichtteil keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere
Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A
Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A 1. Gegeben ist die Exponentialfunktion y=f x = 0,5 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,
Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B
Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl0-Gruppe B. Gegeben ist die Exponentialfunktion y=f x =0.8 2 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,
Abiturvorbereitung Wachstum S. 1 von 11. Wachstum
Abiturvorbereitung Wachstum S. 1 von 11 Themen: Exponentielles Wachstum Exponentielle Abnahme Beschränktes Wachstum Logistisches Wachstum Modellieren bei gegebenen Daten Übungsaufgaben Wachstum Exponentielles
Weitere elementare reelle Funktionen
Zusatzaufgaben Weitere elementare reelle Funktionen Übung. Geben Sie den Definitionsbereich der Funktionen an, die durch die folgenden Funktionsgleichungen gegeben sind bestimmen Sie jeweils die Nullstellen).
2.1 Einführung in die Funktionenlehre (Thema aus dem Bereich Analysis)
2.1 Einführung in die Funktionenlehre (Thema aus dem Bereich Analysis) Inhaltsverzeichnis 1 Einführung in den Begriff 2 2 Der Funktionsgraph und die Wertetabelle 3 3 Der Funktionsbegriff wird noch näher
Kantonsschule Solothurn RYS SS11/ Nach welcher Vorschrift wird der Funktionswert y aus x berechnet? Welcher Definitionsbereich ID ist sinnvoll?
RYS SS11/1 - Übungen 1. Nach welcher Vorschrift wird der Funktionswert y aus berechnet? Welcher Definitionsbereich ID ist sinnvoll? a) : Seitenlänge eines Quadrates (in cm) y: Flächeninhalt des Quadrates
4. f (x) = 5x. 6. f (x) = e 2x+5
Zusatzaufgaben Weitere elementare reelle Funktionen Übung. Geben Sie den Definitionsbereich der Funktionen an, die durch die folgenden Funktionsgleichungen gegeben sind bestimmen Sie jeweils die Nullstellen).
ALGEBRA UND GEOMETRIE. 5. und 6. Klasse
ü ALGEBRA UND GEOMETRIE 5. und 6. Klasse 1. VERKAUFSPREIS Für einen Laufmeter Stoff betragen die Selbstkosten S Euro, der Verkaufspreis ohne Mehrwertsteuer N Euro. a) Gib eine Formel für den Gewinn G in
Exponentialfunktionen Kenngrößen bestimmen (2)
Arbeitsblatt: Eponentialfunktionen Kenngrößen bestimmen () Arbeitsblätter zum Ausdrucken von sofatutorcom Eponentialfunktionen Kenngrößen bestimmen () Benenne die richtigen Kenngrößen der angegebenen Graphen
Exponentialfunktion*
Exponentialfunktion* Aufgabennummer: 1_435 Aufgabentyp: Typ 1 T Typ Aufgabenformat: offenes Format Grundkompetenz: FA 5.1 Gegeben ist der Graph einer Exponentialfunktion f mit f(x) = a b x mit a, b R +
Wachstum und Zerfall / Exponentialfunktionen. a x = e (lna) x = e k x
Wachstum und Zerfall / Exponentialfunktionen Mit Exponentialfunktionen können alle Wachstums- und Zerfalls- oder Abnahmeprozesse beschrieben werden. Im Allgemeinen geht es dabei um die Exponentialfunktionen
Exponentialfunktionen
Eponentialfunktionen 1. Eine Lotosblume bedeckt zum jetzigen Zeitpunkt eine Teichfläche von 0, m. Die bedeckte Teichfläche verdoppelt sich von Monat zu Monat. Nach welcher Zeit (nach Beginn der Beobachtung)
Funktionen (Grundlagen)
Funktionen (Grundlagen) 1. Kapitel aus meinem ANALYSIS - Lehrgang Sprachprofil - Mittelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 23. November 2011 Inhaltsverzeichnis
Berufsmaturitätsprüfung 2013 Mathematik
GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmaturitätsschule Berufsmaturitätsprüfung 2013 Mathematik Zeit: Hilfsmittel: Hinweise: Punkte: 180 Minuten Formel- und Tabellensammlung ohne gelöste
Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag,
Lineare Funktionen Aufgabe 1: Welche der folgenden Abbildungen stellen eine Funktion dar? Welche Abbildungen stellen eine lineare Funktion dar? Ermittle für die linearen Funktionen eine Funktionsgleichung.
Vermischte Aufgaben als Probevorbereitung Posten 1
Vermischte Aufgaben als Probevorbereitung Posten 1 Aufgabe 1 Gegeben: f(x) = 2 x g(x) = log 3(x) a. Stelle die Funktion grafisch dar. b. Verschiebe die Kurve um 2 Einheiten nach oben und um 3 Einheiten
Einstiegsvoraussetzungen 3. Semester
Einstiegsvoraussetzungen 3. Semester Wiederholung vom VL Bereich: Zahlen und Maße Fehlerrechnung kennen Fehler in der Darstellung von Zahlen und können Ergebnisse auf sinnvolle Art runden. verstehen die
3.1 Logarithmen. 1 Monate werden zu Tagen 2. 2 Der Logarithmus 3. 3 Der Basiswechsel 4. 4 Die Logarithmenregeln 5. 5 Exponentialgleichungen 7
3. Logarithmen Inhaltsverzeichnis Monate werden zu Tagen 2 2 Der Logarithmus 3 3 Der Basiswechsel 4 4 Die Logarithmenregeln 5 5 Exponentialgleichungen 7 5. einfache Exponentialgleichungen...............................
Nach der Halbwertszeit τ ist nur noch die Hälfte der Atomkerne vorhanden. Durch diese Angabe ist b bestimmt.
1 9. Exponentieller Zerfall Von einer radioaktiven Substanz sind zu Beginn (0) Atome vorhanden. () ist die Anzahl der radioaktiven Atomkerne im Zeitpunkt t. () nimmt exponentiell ab, d.h. es gilt ()=(0)
Mathematik für Wirtschaftswissenschaftler
Mathematik für Wirtschaftswissenschaftler Yves Schneider Universität Luzern Frühjahr 2016 Repetition Kapitel 1 bis 3 2 / 54 Repetition Kapitel 1 bis 3 Ausgewählte Themen Kapitel 1 Ausgewählte Themen Kapitel
Lösungen lineare Funktionen
lineare Funktionen Lösungen 1 Lösungen lineare Funktionen Schnittpunkt gegeben bestimme Funktionsvorschrift. Flächeninhalt von eingeschlossenem Dreieck berechnen. Schnittwinkel gegeben, berechne Steigung.
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus:
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kompetenzen für die zentralen Prüfungen der 10. Klasse - Mathematik - Funktionen Das komplette Material finden Sie hier: School-Scout.de
Übungsaufgaben zu linearen Funktionen
Übungsaufgaben zu linearen Funktionen Aufgabe 1: Erstelle eine Wertetabelle und zeichne den dazugehörigen Graphen zur folgenden Funktionen: a) f(x) = 4x + 6 b) f(x) = 2x + 4 c) f(x) = 2 3 x + 4 5 d) f(x)
Mathematik schriftlich
WS KV Chur Lehrabschlussprüfungen 009 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe
Übungen: Lineare Funktionen
Übungen: Lineare Funktionen 1. Zeichnen Sie die Graphen der folgenden Funktionen und berechnen Sie die Nullstelle. a) f: y = 2x - 3 b) f: y = -3x + 6 c) f: y = ¼ x + 3 d) f: y = - 3 / 2 x + 9 e) f: y =
Lambacher Schweizer. Arbeitsfassung. Lösungen. Mathematik für Gymnasien. Bundesland. Baden-Württemberg
Arbeitsfassung Kapitel, Stand: Oktober 08 Die Verkaufsauflage erscheint unter der ISBN 978---79-0 Lambacher Schweizer Mathematik für Gymnasien 9 Lösungen Bundesland Baden-Württemberg III Potenzfunktionen
Wirtschaftsmathematik - Übungen SS 2019
Wirtschaftsmathematik - Übungen SS 09 Blatt 0: Wiederholung der Grundlagen Dieses Blatt 0 dient zur Orientierung und Selbsteinschätzung der Studierenden. Die Beispiele behandeln Inhalte, die in der Wirtschaftsmathematik
Exponentialfunktion. Mathematik W9. Mag. Rainer Sickinger LMM, BR. v 1 Mag. Rainer Sickinger Mathematik W9 1 / 19
Mathematik W9 Mag. Rainer Sickinger LMM, BR v 1 Mag. Rainer Sickinger Mathematik W9 1 / 19 Kühe und die Milch Die Keime in der Kuhmilch vermehren sich nach dem Melken sehr schnell. Gleich nach dem Melken
Aufgaben zum Üben für die zweite Schularbeit 1/10
Aufgaben zum Üben für die zweite Schularbeit 1/10 1) Bei Atombombentests wird radioaktives Kobalt freigesetzt. a) Berechne, wann der letzte Test stattfand, wenn nur mehr 10 % der ursprünglichen Kobaltmasse
16.1 Wichtiges über mathematische Funktionen
16 16.1 Wichtiges über mathematische Funktionen Definition Funktion Wird durch die Gleichung y = f(x) jedem x des Definitionsbereiches genau ein y des Wertebereiches zugeordnet, nennen wir dies eine Funktion
Exponentialfunktion - typische Beispiele
Exp_typBsp.odt Exponentialfunktion - 1/6 Exponentialfunktion - typische Beispiele Es geht um Wachstums- oder Abnahmevorgänge Nützlich in vielen Beispielen ist der folgende Ansatz : N(t)=N 0 a t t steht
Exponentialfunktionen - Eigenschaften und Graphen
Exponentialfunktionen - Eigenschaften und Graphen 1 Taschengeld Peter startet in wenigen Tagen zu einer zweiwöchigen Klassenfahrt Seine Eltern möchten ihm nach folgendem Plan Taschengeld mitgeben: Für
Kapitel 8: Funktionen
In der Mathematik ist eine Funktion eine Beziehung zwischen zwei Mengen, die jedem Element der einen Menge (Funktionsargument, unabhängige Variable, x-wert) genau ein Element der anderen Menge (Funktionswert,
Mathematik - Arbeitsblatt Lineare Funktionen
Mathematik - Arbeitsblatt Lineare Funktionen 1.(a) Welche der drei roten Graphen gehört zur Funktion == +5? Wie lautet die Funktionsgleichung des blauen Graphen? Bestimme rechnerisch die Nullstelle des
Dritte Schularbeit Mathematik Klasse 7A G am
Dritte Schularbeit Mathematik Klasse 7A G am 08.03.2016 SCHÜLERNAME: Punkte im Basisteil: / 24 Punkte im Vertiefungsteil: /24 Davon Kompensationspunkte: /4 Note: Notenschlüssel: Falls die Summe der erzielten
Projekt Standardisierte schriftliche Reifeprüfung in Mathematik. T e s t h e f t. Vorname:
Projekt Standardisierte schriftliche Reifeprüfung in Mathematik T e s t h e f t 2 Schüler(in) Nachname:. Vorname:. Projekt Standardisierte schriftliche Reifeprüfung in Mathematik B211 Quadratische Funktionen
1.7 lineare Gleichungen und Ungleichungen mit 2 Unbekannten
1.7 lineare Gleichungen und Ungleichungen mit 2 Unbekannten Inhaltsverzeichnis 1 Lineare Gleichungen mit 2 Unbekannten 2 1.1 Was ist eine lineare Gleichung mit 2 Unbekannten?..................... 2 1.2
Lineare Funktion Eigenschaften von linearen Funktionen Übungen Bearbeite zu jeder der gegebenen Funktionen die Fragen:
Lineare Funktion Eigenschaften von linearen Funktionen Übungen - 3 2.0 Bearbeite zu jeder der gegebenen Funktionen die Fragen: steigt oder fällt der Graph der Funktion? schneidet der Graph die y-achse
2.2 Funktionen 2.Grades (Thema aus dem Bereich Analysis)
. Funktionen.Grades (Thema aus dem Bereich Analysis) Inhaltsverzeichnis 1 Definition einer Funktion.Grades. Der Parameter a 3 3 Die Verschiebung des Graphen 5 3.1 Die Verschiebung des Graphen in y-richtung........................
Abschlussprüfung 2016 Mathematik schriftlich
schriftlich Bemerkungen: Hilfsmittel: Punktetotal Die Prüfungsdauer beträgt 3 Stunden. Beginnen Sie jede Aufgabe auf einem neuen Blatt! Alle Zwischenergebnisse ungerundet weiterverwenden und nur das Endergebnis
Funktionale Zusammenhänge - Übungen
Funktionale Zusammenhänge - Übungen 1. Die Temperatur in Grad Fahrenheit (T F ) kann aus der Temperatur in Grad Celsius (T C ) mit folgender Formel berechnet werden: T F = 1,8 T C + 32 a) Wieviel Grad
HRP 2007 (BOS): Schriftliche Prüfungsaufgaben im Fach Mathematik (Vorschlag 1) HRP BOS-
HRP 007 (BOS): Schriftliche Prüfungsaufgaben im Fach Mathematik (Vorschlag ) Bildung, Wissenschaft und Forschung HRP 007 -BOS- Name: Datum: Vorschlag : Aus 5 Aufgaben können Sie auswählen. Sie müssen dabei
Kreuze nur die zutreffenden Eigenschaften für die folgenden Funktionen im richtigen Feld an!
Teil : Grundkompetenzen ( Punkte) Beispiel : ( Punkt) Die nebenstehende Graphik stellt ein eponentielles Wachstum der Form f() = a b (a, b R + ) dar. Bestimme aus dem Graphen die Werte der Konstanten a
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Funktionen. Das komplette Material finden Sie hier:
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kopiervorlagen Funktionen Das komplette Material finden Sie hier: School-Scout.de Inhaltsverzeichnis Funktionen Zuordnungen Blatt
Mathematik für Biologen
Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine Universität Düsseldorf 13. Oktober 2010 Hinweise Internetseite zur Vorlesung: http://blog.ruediger-braun.net Dort können Sie Materialien
