Übungsarbeit zum Thema: Exponentialfunktion und. Logarithmusfunktion

Größe: px
Ab Seite anzeigen:

Download "Übungsarbeit zum Thema: Exponentialfunktion und. Logarithmusfunktion"

Transkript

1 Übungsarbeit zum Thema: Exponentialfunktion und Logarithmusfunktion a) Bestimme die Exponentialfunktion f (x) a x mit a R +, deren Graph durch den Punkt P (3 / 0,343) verläuft. b) Bestimme die Exponentialfunktion f (x) b a x mit a R +, b R, deren Graph durch die Punkte P (0,5 / 0,325) und P 2 (2 / 4,882825) verläuft. c) Bestimme die Exponentialfunktion f (x) b a x mit a R +, b R, deren Graph durch die Punkte P ( 4 / 0,375) und P 2 (0 / 3) verläuft. 2a) Bei welchem jährlichen Zinssatz würde ein Kapital in 6 Jahren um 50 % anwachsen? (Runde auf volle Prozent!) b) Nach welcher Zeit wäre das Kapital doppelt so groß wie das Anfangskapital? (Runde auf ein Viertel Jahr genau!) c) Nach welcher Zeit wäre das Kapital 8-mal so groß wie das Anfangskapital? d) Wie groß war das Anfangskapital, wenn 4 Jahre später der Kontostand 3845 beträgt? (Runde auf volle!) 3a) Ein Anfangskapital von soll in 2 Jahren auf anwachsen. Berechne den Zinssatz! (Runde auf volle hundertstel Prozent!) b) Wie groß wäre das Entkapital nach 24 Jahren? 4a) Wie lange dauert es, bis ein Anfangskapital von 6000 bei einem Zinssatz von 3,5 % auf das Kapital angewachsen ist? (Runde auf volle Jahre!) b) Nach welcher Zeit hätte sich das Anfangskapital ) verdoppelt? 2) verdreifacht? 3) vervierfacht? 5) Eine Braunalge verdoppelt alle fünf Tage ihre Höhe. a) Berechne den "Wachstumsfaktor α" in der Einheit. h Runde auf 4 gültige Ziffern. b) Zu Beginn der Betrachtung ist die Braunalge 80 cm hoch. Das Wasser ist an der Stelle 25 m tief. Wie lange dauert es, bis die Braunalge an die Wasseroberfläche gelangt? (Runde auf volle Stunden. Gib die Zeit in vollen Tagen und Stunden an!)

2

3 6) Die vom Radium ausgehende β-strahlung hat nnach dem Durchdringen einer 6,7 mm dicken Aluminiumplatte 99% ihrer ursprünglichen Intensität verloren. a) Berechne die Halbwertsdicke von Aluminium bezüglich dieser β-strahlung. b) Ersetzt man die Aluminiumplatte durch eine 0,24 mm dicke Bleiplatte, so ist hinter dieser Bleiplatte noch 50% der ursprünglichen Strahlungsintensität nachweisbar. Wie dick müßte die Bleiplatte sein,damit sie ebenfalls 99% der ursprünglichen Strahlung absorbiert? 24 7) Das Plutoniumisotop dient aufgrund seiner geringen kritischen 94 Pu Masse zur Herstellung leichter taktischer Kernwaffen. Seine Halbwertszeit beträgt 3 Jahre. Die mit solchen Sprengsätzen versehenen Waffen müssen etwa alle 2 Jahre aufbereitet werden, um sie von den inzwischen entstandenen und störenden Zerfallsprodukten zu befreien. 24 Wieviel Prozent des Nuklids sind nach zwei Jahren zerfallen? 94 Pu 8) Von einer radioaktiven Substanz sind nach 30 Tagen nur noch ein Viertel der ursprünglichen Atomkerne vorhanden. a) Bestimme die Zerfallskonstante α e in der Einheit h. b) Welche Zerfallskonstante α 0 ergibt sich, wenn man für das Zerfallsgesetz statt der Basis e die Basis 0 benutzt? c) Zur Zeit t 0 sind von der radioaktiven Substanz N 0 7, Kerne vorhanden. Berechne mit dem Zerfallsgesetzt zur Basis e und dem Zerfallsgesetz zur Basis 0 die Anzahl N der Kerne, die noch nach 200 h vorhanden sind. 9) Löse die folgenden Gleichungen durch Substitution. a) 8 x x b) 4 x x x x 6 53 c) 5 x 6 4 x d) 6 x 2 2 x x 2 64 x e) x (3 x + 2) 6 f) 8 x + 64 x x g) log 5 (x + 4) 2 + log 5 (x + 4) 5 h) log 8 2 x 3 x + 6 log 8 x x 3 4

4

5 0) Fasse erst geschickt zusammen und löse dann. a) 7 2 x + x x + x b) 3 x + 3 x + 3 x x x + 5 x + 2 c) 7 x2 9 5 x x x + 3 d) 7 x x x x

6 L ö s u n g e n a) a 3 0,343 3 a 0,343 0,7 Die Exponentialfunktion lautet: f (x) 0,7 x b) b a 0,5 0,325 ( ) b a 2 4, lg b + 0,5 lg a lg 0,325 lg b + 2 lg a lg 4,882825,5 lg a lg 4, lg 0,325 lg a lg 4, lg 0,325,5 lg a 0, a 6,25 in ( ) b 6,25 0,5 0,325 b 2,5 0,325 b 0,25 Die Exponentialfunktion lautet: f (x) 0,25 6,25 x c) b a 4 0,75, weil ist. b a 0 3 b 3 a 0 3 a 4 0,75 a 4 0,25 a 4 0,25 0,25 a 4 a 4 4 a 2 ± 2 a,2 ± 2 Da die Exponentialfunktion nur für positive Basen definiert ist, gilt: a + 2 Die gesuchte Exponentialfunktion ist: f (x) 3 ( 2 ) x

7 2a) K n p K 0 ( + 00 ) n mit K n,5 K 0 und n 6 p,5 K 0 K 0 ( + 00 ) 6 p,5 ( + 00 ) 6 p ,5 6 p, Der Zinssatz beträgt 7 %. 2b) Mit K n 2 K 0 folgt: p ( + mit 00 ) n 2 p 7 folgt:,07 n 2 n lg,07 lg 2 lg 2 n 0,24 0,25 0 lg,07 4 Nach 0 4 J a h r e n hätte sich das Anfangskapital verdoppelt. 2c) Nach der dreifachen Verdoppelungszeit hätte sich das Anfangskapital verachtfacht. Diese Zeit beträgt J a h r e. 2d) K n K 0 ( + p 00 ) n K K ,07 4 Das Anfangskapital betrug K n ( + p 00 ) n 3a) K n K 0 ( + p 00 ) n ( + P n K n 00 K 0 P ,75 Der Zinssatz beträgt 4,75 %. p 00 ) n K n K 0 3b). Lösung K 24 K 0 K 2 2 K K 0 K Das Anfangskapital würde nach 24 Jahren 280 betragen.

8 3b) 2.Lösung p Benutzt man die Formel K n K 0 ( + 00 ) n Zinssatz, so erhält man das gleiche Ergebnis. K (, ) Das Anfangskapital würde nach 24 Jahren 280 mit dem ganz genauen betragen. 4a) K0,035 n K n,035 n n lg,035 lg K n lg K 0 K n K 0 n lg K n lg K 0 lg,035 lg lg 6000 lg,035 0 Die Zeit beträgt 0 J a h r e. 4b) ) Mit K n 2 K 0 und p 3,5 % folgt,035 n 2 n lg,035 lg 2 n lg 2 lg, Das Kapital verdoppelt sich in 20 J a h r e n. 4b) 2) n lg 3 lg, Das Kapital verdreifacht sich in 32 J a h r e n. 4b) 3) Es ist die zweifache Verdoppelungszeit vergangen. Das Kapital vervierfacht sich in 40 J a h r e n. 5a) x : Höhe der Braunalge, T : 5 Tage 20 h 2 x 0 x 0 e α T e α T 2 ln e α T ln 2 α ln 2 T ln 2 20 h 5, h Die Wachstumskonstante beträgt α 5, h. 5b) x x 0 e α T α t ln x ln x 0 t ln x ln x 0 α t 24 d 20 h Die Braunalge gelangt nach Wasseroberfläche. ln 25 ln 8 5, h 596 h 24 T a g e n u n d 20 S t u n d e n an die-

9 6a) Intensität I : I I 0 e α d mit I e α d α d H : 00 ln 0,0 d 00 I 0 folgt: α d ln 0,0 Halbstwertsdicke ln 0,0 6,7 mm 0, mm I I 0 e α d H mit I 0,5 I 0 folgt: e α d H 0,5 α d H ln 0,5 d H ln 0,5 α ln 0,5 0, mm,008 mm Die Halbwertsdicke des Aluminiums beträgt,008 mm. 6b) I I 0 e α d mit folgt: I 0,5 I 0 Mit e α d 0,5 α d ln 0,5 α I d ln 0,5 d ln 0,5 0,24 mm 2, mm folgt 00 I α d ln 0,0 0 ln 0,0 α ln 0,0 2, mm,595 mm Die Bleiplatte müßte,595 mm dick sein. 7) N N 0 e α t mit N und folgt: 2 N 0 t 3 a e α t 0,5 α t ln 0,5 α α ln 0,5 3 a 0, a N e 0, a 2 a 0, ,88 % 90 % N 0 ln 0,5 t Nach zwei Jahren sind ca. 0 % des Plutoniumisotops zerfallen.

10 8a) N N 0 e α e t mit N 0,25 N 0 und t 720 h folgt: α e t ln 0,25 α e α e ln 0,5 720 h ln 0,5 t 9, h Die Substanz hat die Zerfallskonstante α e 9, h. 8b) N N 0 e α 0 t lg 0,5 α 0 4, h 720 h Benutzt man für das Zerfallsgesetz die Basis 0, so erhält man für die radioaktive Substanz die Zerfallskonstante α 0 4, h. 8c) N N 0 e α e t N 7, e 9, h 200 h 6, Nach 200 Stunden sind noch 6, K e r n e vorhanden. N N 0 e α 0 t N 7, , h 200 h 6, Nach Stunden sind noch vorhanden , K e r n e Die Ergebnisse stimmen bis auf Rundungsfehler überein, weil man den "Exponentiellen Zerfall" durch eine Exponentialfunktion mit beliebiger Basis beschreiben kann. 9a) 8 x x Setze x 2 u 8 u u u u u u ± u u ,25 Macht man nun die Substitution x 2 u wieder rückgängig, dann gilt: x,2 ± u ± 49 ± 7 x 3,4 ± u 2 ± 2,25 ± 3,5 L 3,5; 3,5; 7; 7

11 9b) 4 x x x x ( 2 x x 6) + 2 x x 6 57 Setze 2 x 2-3 x - 6 u 7 u + 8 u 57 7 u u 7 u 2 57 u 8 u u 8 7 u 57 4 u ± 55 4 u 2 4 u Durch "Rückgängigmachen" der Substitution erhält man: 2 x x x x 4 x x 7 x x x + 3 ± 4 4 x 4 4 x x x x x 43 7 x x 43 4 x x ,5 2 x ±, x 3 0,563 x 4 2,6563 L 3,5; 2,6563; 0,563; 2

12 9c) 5 x 6 4 x Setze x 3 u 5 u 2 4 u 352 u u u u u u 2 ± u 5 u Durch "Rückgängigmachen" der Substitution erhält man. x x x x 2 L 2; 2, x 2, x 2 2 9d) 6 x 2 2 x x 2 64 x ( 2x 2 4 x + 9 ) + 6 ( 2 x 2 4 x + 9 ) 95 3 ( 2 x 2 4 x + 9 ) x 2 4 x + 9 ) 95 Setze 2 x 2-4 x + 9 u 3 u + 4 u 95 3 u 95 4 u 9 u u u 9 u u 9025 u u u u u 293 ± u 36 9 u

13 Fortsetzung von Aufgabe 9d Durch "Rückgängigmachen" der Substitution erhält man: 2 x 2 4 x + 9 x 2 2 x x 2 2 x x 2 2 x x ± 4,06885 x 5,06885 x 2 3, x 2 4 x x 2 4 x 6 x 2 2 x 8 x 2 2 x + 9 x ± 3 x 3 4 x 4 2 L 3,06885; 2; 4; 5, e) x (3 x +2) x x x u 2 7 u x Setze 7 3 x + u u u 3364 u u 2 7 u u u u u u ± u

14 Fortsetzung von Aufgabe 9e Durch "Rückgängigmachen" der Substitution erhält man: 7 3 x ( 3 x + ) ln 7 ln 6807 ( 3 x + ) ln 7 ln x + ln6807 ln 7 ln 6807 x + ln x ( 3 x 2 + ) ln 7 ln 7 (nicht definiert) Also ist x 2 die einzige Lösung. L 2 9f) 8 x + 64 x x x x x x x x x x 436 Setze 8 x u 64 u u 436 u u 57 8 u u u + 5 ± u u Durch "Rückgängigmachen" der Substitution erhält man: 8 x 8 x 3 und 8 x x ln 8 ln (nicht definiert) Also ist x 3 die einzige Lösung. L 3

15 9g) log 5 ( x + 4 ) 2 + log 5 ( x + 4 ) 5 Setze x + 4 u log 5 u 2 + log 5 u 5 2 log 5 u + log 5 u 5 3 log 5 u 5 log 5 u 5 u Durch "Rückgängigmachen" der Substitution erhält man: x x 32 L 32 9h) log 8 2 x 3 x + 6 log 8 x x 3 log 8 u log 8 u 4 Setze 2 x - 3 x u mit log 8 log bzw. folgt u 8 u log 8 log u 8 u log 8 u + log 8 u 4 2 log 8 u 4 log 8 u 2 u Durch "Rückgängigmachen der Substitution erhält man: 2 x 3 x x 3 64 x x 387 x a) 7 2 x + x x + x 7 2 x x x + x x 7 2 x x + x x 2 x ln x ln 7 ln 2 + x ln 2 x ln 7 x ln ln 2 ln 6 L x ( 2 ln 7 ln ) ln 2 ln 2 x 0,46398 L 0, ln 7 ln

16 0b) 3 x + 3 x + 3 x x x + 5 x x x x x 5 x x 40 3 x 26 5 x ln 40 + ( x ) ln 3 ln 26 + ( x ) ln 5 ln 40 + x ln 3 ln 3 ln 26 + x ln 5 ln 5 x ln 3 x ln 5 ln 26 ln 5 ln 40 + ln 3 x ( ln 3 ln 5 ) ln 26 ln 5 ln 40 + ln 3 x ln 26 ln 5 ln 40 + ln 3 ln 3 ln 5 x,2467 L,2467 0c) 7 x2 9 5 x x x x x x x x2 9 5 x + 3 ( x 2 9 ) ln 7 ( x + 3 ) ln5 ( x 3) ln 7 ln 5 x 3 x ln 5 ln 7 ln 5 ln ,82709 x 2 3,weil dann x und L 3; 3,82709 x gilt.

17 0d) 7 3 x x x x 7 3 x x x x x x x x x x x x x x x x x x ln x ln 7 ln 244 ln x ln 3 3 x ln 7 4 x ln 3 ln 244 ln 729 ln 392 x ( 3 ln 7 4 ln 3 ) ln 244 ln 729 ln 392 x ln 244 ln 729 ln ln 7 4 ln 3 x 4, L 4,895627

Wachstumsprozesse. Natürliches Wachstum Größenbeschränktes Wachstum Logistisches Wachstum Differenzialgleichungen

Wachstumsprozesse. Natürliches Wachstum Größenbeschränktes Wachstum Logistisches Wachstum Differenzialgleichungen Wachstumsprozesse Natürliches Wachstum Größenbeschränktes Wachstum Logistisches Wachstum Differenzialgleichungen klaus_messner@web.de www.elearning-freiburg.de Natürliches/exponentielles Wachstum Natürliches

Mehr

Vorbereitungskurs Lehrlinge

Vorbereitungskurs Lehrlinge Vorbereitungskurs Lehrlinge Freitag, 21. Mai 2010 14:00 BRP Mathematik Mag. Kurt Söser 2009/10 Maturavorbereitung Seite 1 Maturavorbereitung Seite 2 Maturavorbereitung Seite 3 Bsp. Die Halbwertzeit von

Mehr

n

n Die Zellteilung: Übung 1d) C(n) = 2 n 14 13 12 11 10 9 8 7 6 5 4 3 2 1 2 1 1 C(n) G C n 1 2 3 4 5 6 7 8 9 101112 Die Zellteilung: Übung 1g) n(c) = lb(c) 5 4 3 2 1 2 1 1 n(c) G n C 1 2 3 4 5 6 7 8 9 101112

Mehr

Exponentielles Wachstum und Zerfall ( S. Riedmann)

Exponentielles Wachstum und Zerfall ( S. Riedmann) Exponentielles Wachstum und Zerfall ( S. Riedmann) Aufgabe (1) Ein Wald hatte 1990 einen Bestand von 33.000 m³ Holz. Im Laufe von 20 Jahren wurde kein Holz gefällt, so dass sich der Bestand von 1970 um

Mehr

3 log. 2 )+log(1/u) g) log(2ux) 1+ a. j) log

3 log. 2 )+log(1/u) g) log(2ux) 1+ a. j) log Logarithmen 1. 5 3 = 125 ist gleichbedeutend mit 5 log(125) = 3. Formen Sie nach diesem Muster um. a) 2 5 = 32 b) 10 4 = 10 000 c) 7 0 = 1 d) 3 2 = 1/9 e) 10 3 = 0.001 f) 5 1/2 = 5 g) 6 log(216) = 3 h)

Mehr

3.2 Exponentialfunktion und Wachstum/Zerfall

3.2 Exponentialfunktion und Wachstum/Zerfall 3.2 Exponentialfunktion und Wachstum/Zerfall Inhaltsverzeichnis 1 Die Exponentialfunktion 2 2 Exponentielles Wachtum und exponentieller Zerfall 3 1 Exp.-funktion,Wachstum,Zerfall 27.08.2008 Theorie und

Mehr

Lösungen (Hinweis: Ich habe nur da gerundet, wo es nicht anders möglich war. Ansonsten habe ich die genauen Werte benutzt.)

Lösungen (Hinweis: Ich habe nur da gerundet, wo es nicht anders möglich war. Ansonsten habe ich die genauen Werte benutzt.) Übungsaufgaben Aufgabe 1 Ein Waldstück weist heute (2009) einen Holzbestand von 7300 m³ auf. Auf welchen Wert wächst der Holzbestand innerhalb von 6 Jahren (bis 2015), wenn er jedes Jahr um 3,2 % zunimmt?

Mehr

Einige Übungsaufgaben zum Thema Exponentialfunktion und ihre Anwendungen. Aufgabe 1 Gib die Lösung folgender Gleichung an: 4 3 (x 2) = 2 5 3x

Einige Übungsaufgaben zum Thema Exponentialfunktion und ihre Anwendungen. Aufgabe 1 Gib die Lösung folgender Gleichung an: 4 3 (x 2) = 2 5 3x Einige Übungsaufgaben zum Thema Exponentialfunktion und ihre Anwendungen Ich habe die Aufgaben sehr ausführlich gelöst, meistens noch eine Probe gemacht und alle Zwischenschritte aufgeschrieben. Das müsst

Mehr

Übungsaufgaben zur Analysis

Übungsaufgaben zur Analysis Serie Übungsaufgaben zur Analysis. Multiplizieren Sie folgende Klammern aus: ( + 3y)( + 4a + 4b) (a b )( + 3y 4) (3 + )(7 + y) + (a + b)(3 + ). Multiplizieren Sie folgende Klammern aus: 6a( 3a + 5b c)

Mehr

Auswertung. D10: Radioaktivität

Auswertung. D10: Radioaktivität zum Versuch D10: Radioaktivität Jule Heier Partner: Alexander Fufaev Gruppe 334 Einleitung In diesem Versuch sollen verschiedene Eigenschaften, wie z.b. Absorption und Reichweite, von β- und γ-strahlung

Mehr

Logarithmische Skalen

Logarithmische Skalen Logarithmische Skalen Arbeitsblatt Logarithmische Skalen ermöglichen dir eine übersichtlichere Darstellung von Kurvenverläufen vor allem dann, wenn sie sich über sehr große Zahlenbereiche erstrecken. 1

Mehr

Die Exponentialfunktion Kap Aufgaben zu exponentiellem Wachstum und Zerfall

Die Exponentialfunktion Kap Aufgaben zu exponentiellem Wachstum und Zerfall 1 von 5 19.11.2013 12:23 Doc-Stand: 11/19/2013 12:18:48 Die Exponentialfunktion Kap.6.3 - Aufgaben zu exponentiellem Wachstum und Zerfall Bei allen Aufgaben wird exponentielles Wachstum bzw. exponentieller

Mehr

Potenz- & Exponentialfunktionen

Potenz- & Exponentialfunktionen Potenz- & Exponentialfunktionen 4. Kapitel aus meinem Lehrgang ANALYSIS Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch e-mail: theorie@ronaldbalestra.ch 8. Februar 2009 Überblick über die bisherigen

Mehr

a) Geben Sie eine Formel an, mit deren Hilfe man ermitteln kann, wie viel Wasser der Teich nach x regenlosen Tagen enthält!

a) Geben Sie eine Formel an, mit deren Hilfe man ermitteln kann, wie viel Wasser der Teich nach x regenlosen Tagen enthält! 1) Wasserstand Der Wasserstand eines Gartenteichs wird durch Verdunstung und Niederschlag reguliert. Im Sommer kann mit einer täglichen Verdunstung von 4 % des am Morgen vorhandenen Wassers gerechnet werden.

Mehr

Differentiation der Exponential- und Logarithmusfunktion. Mag. Mone Denninger 23. Oktober 2004

Differentiation der Exponential- und Logarithmusfunktion. Mag. Mone Denninger 23. Oktober 2004 Differentiation der Exponential- und Logarithmusfunktion Mag. Mone Denninger 23. Oktober 2004 1 INHALTSVERZEICHNIS 8. Klasse Inhaltsverzeichnis 1 Differentiation der Exponentialfunktion 3 2 Differentiation

Mehr

Potenz- & Exponentialfunktionen

Potenz- & Exponentialfunktionen Potenz- & Exponentialfunktionen ANALYSIS Kapitel 4 Sprachprofil - Oberstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch 17. Januar 2012 Überblick über die bisherigen ANALYSIS - Themen:

Mehr

4 Potenzen Wachstumsprozesse Exponentialfunktionen

4 Potenzen Wachstumsprozesse Exponentialfunktionen 4 Potenzen Wachstumsprozesse Exponentialfunktionen 4.1 Potenzieren Radizieren 4.1.1 Potenzen mit natürlichen Exponenten Exponentielle Wachstumsvorgänge 4.1.1.1 Wiederholung zum Potenzieren ist eine Potenz

Mehr

1) Targetmasse für neutrinolosen doppelten β-zerfall:

1) Targetmasse für neutrinolosen doppelten β-zerfall: 1) Targetmasse für neutrinolosen doppelten β-zerfall: Ein vielversprechender Kandidat für die Suche nach dem neutrinolosen doppelten β- Zerfall ist. Die experimentelle Observable ist die Halbwertszeit.

Mehr

Exponentialfunktion - typische Beispiele

Exponentialfunktion - typische Beispiele Exp_typBsp.odt Exponentialfunktion - 1/6 Exponentialfunktion - typische Beispiele Es geht um Wachstums- oder Abnahmevorgänge Nützlich in vielen Beispielen ist der folgende Ansatz : N(t)=N 0 a t t steht

Mehr

Übungen Mathematik - Exponentialfunktion und Wachstumsprozesse

Übungen Mathematik - Exponentialfunktion und Wachstumsprozesse Übungen Mathematik - Eponentialfunktion und Wachstumsprozesse Aufgabe 1: Erstelle für die folgenden Funktionen f eine Wertetabelle von = -5 bis = 5 und zeichne ihren Graphen. a) f() = 0,8 b) f() = 1,25

Mehr

(3) Wurzelfunktionen. Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz

(3) Wurzelfunktionen. Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz (3) Wurzelfunktionen Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz Definition y = f (x) g(y) = x gilt. Für jedes k N ist

Mehr

3 Logarithmen und Exponentialfunktion

3 Logarithmen und Exponentialfunktion Mathematik fur Ingenieure Institut fur Algebra, Zahlentheorie und Diskrete Mathematik Dr. Dirk Windelberg Universitat Hannover Stand: 8. August 008 http://www.iazd.uni-hannover.de/windelberg/teach/ing

Mehr

Lambacher Schweizer. Arbeitsfassung. Lösungen. Mathematik für Gymnasien. Bundesland. Baden-Württemberg

Lambacher Schweizer. Arbeitsfassung. Lösungen. Mathematik für Gymnasien. Bundesland. Baden-Württemberg Arbeitsfassung Kapitel, Stand: Oktober 08 Die Verkaufsauflage erscheint unter der ISBN 978---79-0 Lambacher Schweizer Mathematik für Gymnasien 9 Lösungen Bundesland Baden-Württemberg III Potenzfunktionen

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Übungen zur Klausur über das Propädeutikum Dr. Daniel Bick 08. November 2013 Daniel Bick Physik für Biologen und Zahnmediziner 08. November 2013 1 / 27 Information

Mehr

Exponentialfunktion / Wachstum

Exponentialfunktion / Wachstum 1. Die Eponentialfunktion Eponentialfunktion / Wachstum Spezialfall: = 0: a 0 = 1 P(0 1). Dies bedeutet, alle Graphen - unabhängig ihrer Basis - laufen durch den Punkt (0 1). Der Graph einer Eponentialfunktion

Mehr

Radioaktivität. den 7 Oktober Dr. Emőke Bódis

Radioaktivität. den 7 Oktober Dr. Emőke Bódis Radioaktivität den 7 Oktober 2016 Dr. Emőke Bódis Prüfungsfrage Die Eigenschaften und Entstehung der radioaktiver Strahlungen: Alpha- Beta- und Gamma- Strahlungen. Aktivität. Zerfallgesetz. Halbwertzeit.

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Mathematik für Wirtschaftswissenschaftler Yves Schneider Universität Luzern Frühjahr 2016 Repetition Kapitel 1 bis 3 2 / 54 Repetition Kapitel 1 bis 3 Ausgewählte Themen Kapitel 1 Ausgewählte Themen Kapitel

Mehr

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759.

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759. (4) Exponential- und Logarithmusfunktionen Satz Für jedes b > 1 gibt es eine eindeutig bestimmte Funktion exp b : R R + mit folgenden Eigenschaften. exp b (r) = b r für alle r Q Die Funktion exp b ist

Mehr

10 Zeit in Milliarden Jahren

10 Zeit in Milliarden Jahren a) Der radioaktive Zerfall von bestimmten Uran-Atomen lässt sich näherungsweise durch eine Exponentialfunktion N beschreiben (siehe nachstehende Abbildung). 100 Masse in mg 90 80 70 60 50 N 40 30 20 10

Mehr

Röntgenstrahlen. Röntgenröhre von Wilhelm Konrad Röntgen. Foto: Deutsches Museum München.

Röntgenstrahlen. Röntgenröhre von Wilhelm Konrad Röntgen. Foto: Deutsches Museum München. Röntgenstrahlen 1 Wilhelm Konrad Röntgen Foto: Deutsches Museum München. Röntgenröhre von 1896 2 1 ev = 1 Elektronenvolt = Energie die ein Elektron nach Durchlaufen der Potentialdifferenz 1V hat (1.6 10-19

Mehr

Theoretische Grundlagen Physikalisches Praktikum. Versuch 8: Radioaktivität

Theoretische Grundlagen Physikalisches Praktikum. Versuch 8: Radioaktivität Theoretische Grundlagen Physikalisches Praktikum Versuch 8: Radioaktivität Radioaktivität spontane Umwandlung instabiler tomkerne natürliche Radioaktivität: langlebige Urnuklide und deren Zerfallsprodukte

Mehr

Korrigendum Lambacher Schweizer 9/10, 1. Auflage 2011

Korrigendum Lambacher Schweizer 9/10, 1. Auflage 2011 Korrigendum Lambacher Schweizer 9/,. Auflage Klett und Balmer Verlag, Baar. April. Seite, Aufgabe Tipp: Suche dir Punkte auf dem Kreis, die du zur Bestimmung heranziehen kannst Bestimme das Streckzentrum

Mehr

A5 Exponentialfunktion und Logarithmusfunktion

A5 Exponentialfunktion und Logarithmusfunktion A5 Exponentialfunktion und Logarithmusfunktion A5 Exponentialfunktion und Logarithmusfunktion Wachstums- und Zerfallsprozesse. Beispiel: Bakterien können sich sehr schnell vermehren. Eine bestimmte Bakterienart

Mehr

Anwendungen von Logarithmen - Sachaufgaben

Anwendungen von Logarithmen - Sachaufgaben Anwendungen von Logarithmen - Sachaufgaben 1. Jod 131 hat eine Halbwertszeit von 8 Tagen. Nach wie vielen Tagen sind 95% einer ursprünglich vorhandenen Stoffmenge zerfallen? Lösung: 34,6 Tage 2. Faltet

Mehr

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 4-E1 4-E2 4-E3 Gewöhnliche Differentialgleichung: Aufgaben Bestimmen Sie allgemeine und spezielle Lösungen der folgenden Differentialgleichungen Aufgabe

Mehr

Klassenarbeit 1 Klasse 10e Mathematik

Klassenarbeit 1 Klasse 10e Mathematik 203-09-30 Klassenarbeit Klasse 0e Mathematik Lösung Berechne jeweils den Wert für x. Benutze dazu nicht den Taschenrechner. Im Ergebnis soll keine Dezimalzahldarstellung benutzt werden; nur ganze Zahlen,

Mehr

Examensaufgaben RADIOAKTIVITÄT

Examensaufgaben RADIOAKTIVITÄT Examensaufgaben RADIOAKTIVITÄT Aufgabe 1 (September 2007) a) Stellen Sie das Grundgesetz des radioaktiven Zerfalls auf und leiten sie aus diesem Gesetz den Zusammenhang zwischen der Halbwertszeit und der

Mehr

3.2 Exponentialfunktion und Wachstum/Zerfall

3.2 Exponentialfunktion und Wachstum/Zerfall 3.2 Exponentialfunktion und Wachstum/Zerfall Inhaltsverzeichnis 1 Die Exponentialfunktion 2 2 Exponentielles Wachtum und exponentieller Zerfall 5 2.1 Die Schreibweise B(t)=B(0) a t................................

Mehr

Exponentialfunktion*

Exponentialfunktion* Exponentialfunktion* Aufgabennummer: 1_435 Aufgabentyp: Typ 1 T Typ Aufgabenformat: offenes Format Grundkompetenz: FA 5.1 Gegeben ist der Graph einer Exponentialfunktion f mit f(x) = a b x mit a, b R +

Mehr

Exponentialfunktionen

Exponentialfunktionen Mathematik Buch / 3. Funktionen / Zuordnungen -288- Aufgabe: Exponentialfunktionen Eine Fläche ist zu Beginn der Baggerarbeiten 800 m 2 groß. Jede Woche schaffen die Bagger 550 m 2 neue Fläche dazu. Eine

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl0-Gruppe B. Gegeben ist die Exponentialfunktion y=f x =0.8 2 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

Aufgabenblock : Lösen Sie folgenden Ausdruck nach x auf: 5x : Vereinfachen Sie folgenden Ausdruck: x + x2 (δ + a) x x x5 (δ + a) x 6

Aufgabenblock : Lösen Sie folgenden Ausdruck nach x auf: 5x : Vereinfachen Sie folgenden Ausdruck: x + x2 (δ + a) x x x5 (δ + a) x 6 Aufgabenblock 1 1.1: Lösen Sie folgenden Ausdruck nach x auf: 5x 5 2π ω = ω δ 1.2: Vereinfachen Sie folgenden Ausdruck: δ + a x + x2 (δ + a) x 3 + 1 x x5 (δ + a) x 6 1.3: Lösen Sie folgende Gleichung nach

Mehr

Pflichtaufgaben A B C D E F. 2,20 m. 1,45 m. 1,10 m. (9 Punkte) P1.1 Löse die Gleichung. (Grundmenge = Menge der Reellen Zahlen)

Pflichtaufgaben A B C D E F. 2,20 m. 1,45 m. 1,10 m. (9 Punkte) P1.1 Löse die Gleichung. (Grundmenge = Menge der Reellen Zahlen) Abschlussprüfung Realschule Pflichtaufgaben P1 (9 Punkte) P1.1 Löse die Gleichung. (Grundmenge = Menge der Reellen Zahlen) 5(0,2x 0,8) = 8x (1 + 2x) P1.2 Löse die Formel nach h auf: V = 2 π r 3 h P1.3

Mehr

Potenz- & Exponentialfunktionen

Potenz- & Exponentialfunktionen Potenz- & Exponentialfunktionen 4. Kapitel aus meinem ANALYSIS - Lehrgang MNprofil - MIttelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 24. Oktober 2011 Überblick über

Mehr

Klasse 10; Mathematik Kessling Seite 1

Klasse 10; Mathematik Kessling Seite 1 Klasse 0; Mathematik Kessling Seite Übungen Eponentialfunktionen/Logarithmus Aufgabe Beim Wachstum einer bestimmten Bakterienart der Bestand der Bakterien stündlich um 43% zu. Am Beginn des Beobachtungszeitraumes

Mehr

Kapitel 3 EXPONENTIAL- UND LOGARITHMUS-FUNKTION

Kapitel 3 EXPONENTIAL- UND LOGARITHMUS-FUNKTION Kapitel 3 EXPONENTIAL- UND LOGARITHMUS-FUNKTION Fassung vom 3 Dezember 2005 Mathematik für Humanbiologen und Biologen 39 3 Exponentialfunktion 3 Exponentialfunktion Wir betrachten als einführendes Beispiel

Mehr

allgemeine Informationen

allgemeine Informationen allgemeine Informationen Für das Zerfallsgesetz gilt der Zusammenhang N t =N 0 e t, wobei t die Zeit, N t die Anzahl der Kerne zum Zeitpunkt t, N 0 die Anzahl der Kerne zum Zeitpunkt t=0 (also zu Beginn

Mehr

Radioaktiver Zerfall

Radioaktiver Zerfall 11.3.2 Radioaktiver Zerfall Betrachtet man einen einzelnen instabilen Atomkern, so kann nicht vorhergesagt werden zu welchem Zeitpunkt der Atomkern zerfällt. So könnte der Atomkern im nächsten Moment,

Mehr

49 Mathematik für Biologen, Biotechnologen und Biochemiker

49 Mathematik für Biologen, Biotechnologen und Biochemiker 49 Mathematik für Biologen, Biotechnologen und Biochemiker 43 Momentane Wachstumsrate, Zuwachsrate pro Zeiteinheit und die Verdoppelungszeit Jede Exponentialfunktion f(t) = c exp(t) ist durch die beiden

Mehr

Selbstdiagnosebogen zu Exponentialfunktionen

Selbstdiagnosebogen zu Exponentialfunktionen Mathematik- Unterrichts- Einheiten- Datei e. V. www.mued.de Klasse 10 04/2009 Selbstdiagnosebogen zu Eponentialfunktionen A) Kreuze deine Einschätzung an. Ich kann 1. zu einem Wachstumsprozentsatz den

Mehr

Nach der Halbwertszeit τ ist nur noch die Hälfte der Atomkerne vorhanden. Durch diese Angabe ist b bestimmt.

Nach der Halbwertszeit τ ist nur noch die Hälfte der Atomkerne vorhanden. Durch diese Angabe ist b bestimmt. 1 9. Exponentieller Zerfall Von einer radioaktiven Substanz sind zu Beginn (0) Atome vorhanden. () ist die Anzahl der radioaktiven Atomkerne im Zeitpunkt t. () nimmt exponentiell ab, d.h. es gilt ()=(0)

Mehr

Übungsblatt 2.SA M 10

Übungsblatt 2.SA M 10 Übungsblatt 2SA M 0 Über einen Teich soll von A nach B eine Brücke gebaut werden Der Vermessungsingenieur misst: AP = 287 m P Q = 326 m QB = 35 m

Mehr

1 Lineare Funktionen. 1 Antiproportionale Funktionen

1 Lineare Funktionen. 1 Antiproportionale Funktionen Funktion Eine Funktion ist eine Zuordnung, bei der zu jeder Größe eines ersten Bereichs (Ein gabegröße) genau eine Größe eines zweiten Bereichs (Ausgabegröße) gehört. Eine Funktion wird durch eine Funktionsvorschrift

Mehr

Exponential- und Logarithmusfunktion

Exponential- und Logarithmusfunktion Exponential- und Logarithmusfunktion (BOS 2 Jahrgangsstufe) c 2005, Thomas Barmetler Stand: 7 Mai 2005 Kontakt und weitere Infos: wwwbarmetlerde Inhaltsverzeichnis Einführung 3 Die Euler sche Zahl 3 2

Mehr

Kopfübungen für die Oberstufe

Kopfübungen für die Oberstufe Serie E Alle Kopfübungen der Serie E beinhalten die folgenden Themen in der angegebenen Reihenfolge. Tragen die Schülerinnen und Schüler ihre Antworten in eine Antwortmatrix ein, so kann nach Abschluss

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A 1. Gegeben ist die Exponentialfunktion y=f x = 0,5 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

Grundwissen. 10. Jahrgangsstufe. Mathematik

Grundwissen. 10. Jahrgangsstufe. Mathematik Grundwissen 10. Jahrgangsstufe Mathematik 1 Kreis und Kugel 1.1 Kreissektor und Bogenmaß Kreis Umfang U = π r=π d Flächeninhalt A=π r Kreissektor mit Mittelpunktswinkel α Bogenlänge b= α π r 360 Flächeninhalt

Mehr

Wachstum und Zerfall / Exponentialfunktionen. a x = e (lna) x = e k x

Wachstum und Zerfall / Exponentialfunktionen. a x = e (lna) x = e k x Wachstum und Zerfall / Exponentialfunktionen Mit Exponentialfunktionen können alle Wachstums- und Zerfalls- oder Abnahmeprozesse beschrieben werden. Im Allgemeinen geht es dabei um die Exponentialfunktionen

Mehr

Aufgaben zum Üben für die zweite Schularbeit 1/10

Aufgaben zum Üben für die zweite Schularbeit 1/10 Aufgaben zum Üben für die zweite Schularbeit 1/10 1) Bei Atombombentests wird radioaktives Kobalt freigesetzt. a) Berechne, wann der letzte Test stattfand, wenn nur mehr 10 % der ursprünglichen Kobaltmasse

Mehr

Einführungsseminar S2 zum Physikalischen Praktikum

Einführungsseminar S2 zum Physikalischen Praktikum Einführungsseminar S2 zum Physikalischen Praktikum 1. Organisatorisches 2. Unterweisung 3. Demo-Versuch Radioaktiver Zerfall 4. Am Schluss: Unterschriften! Praktischer Strahlenschutz Wechselwirkung von

Mehr

ANALYSIS. 3. Extremwertaufgaben (folgt)

ANALYSIS. 3. Extremwertaufgaben (folgt) ANALYSIS 1. Untersuchung ganzrationaler Funktionen 1.1 Symmetrie 2 1.2 Ableitung 2 1.3 Berechnung der Nullstellen 3 1.4 Funktionsuntersuchung I 4 1.5 Funktionsuntersuchung II 6 2. Bestimmung ganzrationaler

Mehr

Lineares Wachstum/exponentielles Wachstum

Lineares Wachstum/exponentielles Wachstum Seite 1 / 9 Lineares Wachstum/exponentielles Wachstum 1. Herr Apfalterer und Frau Bader haben ein Jahresgehalt von 18.000. Für die jährliche Gehaltserhöhung stehen zwei verschieden Möglichkeiten zur Auswahl.

Mehr

Examensaufgaben RADIOAKTIVITÄT

Examensaufgaben RADIOAKTIVITÄT Examensaufgaben RADIOAKTIVITÄT Aufgabe 1 (September 2007) a) Stellen Sie das Grundgesetz des radioaktiven Zerfalls auf und leiten sie aus diesem Gesetz den Zusammenhang zwischen der Halbwertszeit und der

Mehr

Weitere elementare reelle Funktionen

Weitere elementare reelle Funktionen Zusatzaufgaben Weitere elementare reelle Funktionen Übung. Geben Sie den Definitionsbereich der Funktionen an, die durch die folgenden Funktionsgleichungen gegeben sind bestimmen Sie jeweils die Nullstellen).

Mehr

12,25 4,25. & 11/12,25

12,25 4,25. & 11/12,25 Anwendungsorientierte Analysis Musteraufgaben mit Hilfsmittel) Lösung A1 2.1 Trigonometrische Funktion der Messergebnisse: Die Messergebnisse können entweder mit einer Sinusfunktion ) oder aber auch mit

Mehr

(in)stabile Kerne & Radioaktivität

(in)stabile Kerne & Radioaktivität Übersicht (in)stabile Kerne & Radioaktivität Zerfallsgesetz Natürliche und künstliche Radioaktivität Einteilung der natürlichen Radionuklide Zerfallsreihen Zerfallsarten Untersuchung der Strahlungsarten

Mehr

Aufgabe 1 Vereinfachen Sie die folgenden Ausdrücke soweit wie möglich. Vorsicht: Einige Terme können nicht weiter vereinfacht werden!

Aufgabe 1 Vereinfachen Sie die folgenden Ausdrücke soweit wie möglich. Vorsicht: Einige Terme können nicht weiter vereinfacht werden! Bachelor Bauingenieurwesen Reto Spöhel Repetitionsblatt BMS-Stoff Mathematik Alle Aufgaben sind ohne Taschenrechner zu lösen! Aufgabe 1 Vereinfachen Sie die folgenden Ausdrücke soweit wie möglich. Vorsicht:

Mehr

R. Brinkmann Seite Anwendungen der Exponentialfunktion

R. Brinkmann  Seite Anwendungen der Exponentialfunktion R. Brinkmann http://brinkmann-du.de Seite 6..2 Aufstellen der Funktionsgleichung : Anwendungen der Eponentialfunktion Coli Bakterien verrichten ihre Arbeit im menschlichen Darm. Sie vermehren sich durch

Mehr

Kreuze nur die zutreffenden Eigenschaften für die folgenden Funktionen im richtigen Feld an!

Kreuze nur die zutreffenden Eigenschaften für die folgenden Funktionen im richtigen Feld an! Teil : Grundkompetenzen ( Punkte) Beispiel : ( Punkt) Die nebenstehende Graphik stellt ein eponentielles Wachstum der Form f() = a b (a, b R + ) dar. Bestimme aus dem Graphen die Werte der Konstanten a

Mehr

4. f (x) = 5x. 6. f (x) = e 2x+5

4. f (x) = 5x. 6. f (x) = e 2x+5 Zusatzaufgaben Weitere elementare reelle Funktionen Übung. Geben Sie den Definitionsbereich der Funktionen an, die durch die folgenden Funktionsgleichungen gegeben sind bestimmen Sie jeweils die Nullstellen).

Mehr

In der Abbildung ist ein vereinfachtes Energieniveauschema eines Lasers dargestellt.

In der Abbildung ist ein vereinfachtes Energieniveauschema eines Lasers dargestellt. Klausur Physik III, 7.3.2016 Aufg. 1/5 Aufgabe 1) In der Abbildung ist ein vereinfachtes Energieniveauschema eines Lasers dargestellt. 1. Nennen Sie die wesentlichen Prozesse, die bei der Erzeugung von

Mehr

Abiturprüfung Physik, Grundkurs. Induktionsspannungen an einer im Magnetfeld schwingenden Leiterschaukel

Abiturprüfung Physik, Grundkurs. Induktionsspannungen an einer im Magnetfeld schwingenden Leiterschaukel Seite 1 von 8 Abiturprüfung 2009 Physik, Grundkurs Aufgabenstellung: Aufgabe 1: Induktionsspannungen an einer im Magnetfeld schwingenden Leiterschaukel Ein Kupferstab der Länge L = 14 cm hängt wie in Abbildung

Mehr

Natürliche Radioaktivität

Natürliche Radioaktivität Natürliche Radioaktivität Definition Natürliche Radioaktivität Die Eigenschaft von Atomkernen sich spontan in andere umzuwandeln, wobei Energie in Form von Teilchen oder Strahlung frei wird, nennt man

Mehr

Examen GF Mathematik (PAM) Kurzfragen 2017

Examen GF Mathematik (PAM) Kurzfragen 2017 Examen GF Mathematik (PAM) Kurzfragen 2017 Die mit einem + gekennzeichneten Fragen sind längere Kurzfragen. Kurzfrage 1+ Was ist ein Vektor? Ein Vektor ist die Menge aller gerichteten Strecken ( Pfeile

Mehr

1 Dorn Bader Physik der Struktur der Materie

1 Dorn Bader Physik der Struktur der Materie 1 Dorn Bader Physik der Struktur der Materie 1.1 S. 308 Nachweisgeräte A 2: a) Was lässt sich aus der Länge der Spuren in einer Nebelkammer folgern? Die Länge der Spuren in der Nebelkammer sind ein Maß

Mehr

Abgabetermin

Abgabetermin Aufgaben Serie 1 1 Abgabetermin 20.10.2016 1. Streuexperiment Illustrieren Sie die Streuexperimente von Rutherford. Welche Aussagen über Grösse und Struktur des Kerns lassen sich daraus ziehen? Welches

Mehr

Wachstum 4. Michael Dröttboom 1 LernWerkstatt-Selm.de

Wachstum 4. Michael Dröttboom 1 LernWerkstatt-Selm.de 1. Entscheiden Sie, ob es sich um exponentielles oder lineares Wachstum bzw. Abnehmen/Schrumpfen handelt. Geben Sie die jeweilige Wachstumsfunktion an: a) Joes Taschengeld von 15 nimmt mit jedem Lebensjahr

Mehr

Praktikum Physik Radioaktivität 13GE RADIOAKTIVITÄT VERSUCHSAUSWERTUNG

Praktikum Physik Radioaktivität 13GE RADIOAKTIVITÄT VERSUCHSAUSWERTUNG RADIOAKIVIÄ VERSUCHSAUSWERUNG I. VERSUCHSZIEL Die Zerfallskurve einer radioaktiven Substanz soll aufgenommen werden. Aus dieser Zerfallskurve soll das Gesetz des radioaktiven Zerfalls hergeleitet werden.

Mehr

42. Radioaktivität. 35. Lektion Radioaktivität

42. Radioaktivität. 35. Lektion Radioaktivität 42. Radioaktivität 35. Lektion Radioaktivität Lernziel: Unstabile Kerne zerfallen unter Emission von α, β, oder γ Strahlung Begriffe Begriffe Radioaktiver Zerfall ktivität Natürliche Radioaktivität Künstliche

Mehr

Tutorium Mathematik I M WM Lösungen

Tutorium Mathematik I M WM Lösungen Tutorium Mathematik I M WM Lösungen 3... Durch mehrmaliges Anwenden der Regel von de l Hospital ergibt sich: e e sin() e cos()e sin() sin() cos() e + sin()e sin() cos ()e sin() sin() e + cos()e sin() +

Mehr

2) Kernstabilität und radioaktive Strahlung (2)

2) Kernstabilität und radioaktive Strahlung (2) 2) Kernstabilität und radioaktive Strahlung (2) Periodensystem der Elemente vs. Nuklidkarte ca. 115 unterschiedliche chemische Elemente Periodensystem der Elemente 7 2) Kernstabilität und radioaktive Strahlung

Mehr

Aufgaben zu exponentiellem Wachstum und Zerfall ausführliche Lösungen

Aufgaben zu exponentiellem Wachstum und Zerfall ausführliche Lösungen Aufgaben zu exponentiellem Wachstum und Zerfall ausführliche Lösungen Aufgabe1 - Lösung a) Auf welchen Betrag wächst ein Waldbestand von 45 000m 3 bei einem jährlichen Zuwachs von 8% in 10 Jahren an? b)

Mehr

Schülertraining zur Internationalen Chemie Olympiade 2018

Schülertraining zur Internationalen Chemie Olympiade 2018 Schülertraining zur Internationalen Chemie Olympiade 2018 Physikalische Chemie 04.05.2018 Prof. Schlücker Elzbieta Stepula, Tim Holtum, Michael Erkelenz Lehrbücher der Physikalischen Chemie Mortimer Hug

Mehr

an Hand einer Skizze her!

an Hand einer Skizze her! 10 1 über Trigonometrie Vom 425 Meter über dem Meeresspiegel liegenden Stift Göttweig sieht man das Kremser Freibad unter dem Tiefenwinkel α=3,01. Nachdem man sich um den Horizontalwinkel ϕ=10,57 gedreht

Mehr

Exponentialfunktionen, Eulersche Zahl, Logarithmen

Exponentialfunktionen, Eulersche Zahl, Logarithmen Exponentialfunktionen, Eulersche Zahl, Logarithmen Jörn Loviscach Versionsstand: 16. November 2009, 19:01 1 Exponentialfunktionen Eine Funktion der Art x 7 3 x heißt Exponentialfunktion [exponential function].

Mehr

1 Beschreibung der Grundlagen

1 Beschreibung der Grundlagen Westsächsische Hochschule Zwickau Fachgruppe Mathematik Grundlagen Inhaltsverzeichnis Aufgaben zu den Grundlagen findet man über den folgenden Link: Aufgaben zu den Grundlagen 01 1 Beschreibung der Grundlagen

Mehr

Zeit: Teil A maximal 15 Minuten, insgesamt 45 Minuten

Zeit: Teil A maximal 15 Minuten, insgesamt 45 Minuten Physikprüfung: Schwingungen und Radioaktivität Zeit: Teil A maximal 15 Minuten, insgesamt 45 Minuten Teil A: Kurzfragen Hinweise:! keine Hilfsmittel (Taschenrechner, FoTa, Formelblatt) erlaubt! numerische

Mehr

Wiederholungen Wachstumsfunktionen IGS List

Wiederholungen Wachstumsfunktionen IGS List Wiederholungen Wachstumsfunktionen IGS List Prozentuales Wachstum Wertetabelle Berechnen von Zwischenwerten Berechnen von Wachstumsraten und Wachstumsfaktoren Aufstellen von Funktionsgleichungen f ( )

Mehr

6. Wachstumsformen. Definitionen: durchschnittliche Wachstumsrate im y Zeitintervall t: t geometrisch. Sekantensteigung, abhängig von t

6. Wachstumsformen. Definitionen: durchschnittliche Wachstumsrate im y Zeitintervall t: t geometrisch. Sekantensteigung, abhängig von t 1 6. Wachstumsformen Definitionen: durchschnittliche Wachstumsrate im y Zeitintervall t: t geometrisch. Sekantensteigung, abhängig von t momentane Wachstumsrate: geometrisch: Tangentensteigung, unabhängig

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine Universität Düsseldorf 13. Oktober 2010 Hinweise Internetseite zur Vorlesung: http://blog.ruediger-braun.net Dort können Sie Materialien

Mehr

Gruppe 1. Lies den folgenden Text aus einem Biologiebuch.

Gruppe 1. Lies den folgenden Text aus einem Biologiebuch. Gruppe Lies den folgenden Text aus einem Biologiebuch.. Notiere das Wachstum der Salmonellen übersichtlich in einer Tabelle. Am Anfang soll eine Salmonelle vorhanden sein. Verwende dabei auch Potenzen..

Mehr

Schriftliche Abiturprüfung 2017

Schriftliche Abiturprüfung 2017 MA-G-WTR 2017 NT Aufg Schriftliche Abiturprüfung 2017 Mathematik G-Kurs Datum: 19.05.2017 Bearbeitungszeit: 3 Zeitstunden Hilfsmittel: Zugelassener wissenschaftlicher Taschenrechner Zugelassene Formelsammlung

Mehr

Exponentielles Wachstum und Logarithmus

Exponentielles Wachstum und Logarithmus Eigenschaften der Exponentialfunktionen Die Funktion nennt man Exponentialfunktion mit der Basis a. Ist neben der Potenz noch ein Faktor im Funktionsterm vorhanden, spricht man von einer allgemeinen Exponentialfunktion:

Mehr

1 Kreissektoren und Kugeln Kreissektor mit dem Mittelpunktswinkel α und dem Radius r:

1 Kreissektoren und Kugeln Kreissektor mit dem Mittelpunktswinkel α und dem Radius r: Mathematikgrundwissen der 0. Jahrgangsstufe Kreissektoren und Kugeln Kreissektor mit dem Mittelpunktswinkel und dem Radius r: r A r b Bogenlänge: b = 60 r Flächeninhalt: b = 60 r Berechne jeweils den Umfang

Mehr

(a) Stellen Sie im Rahmen des Modells des beschränkten Wachstums eine Funktion auf, welche die Temperatur des Wassers nach t Stunden angibt.

(a) Stellen Sie im Rahmen des Modells des beschränkten Wachstums eine Funktion auf, welche die Temperatur des Wassers nach t Stunden angibt. Prof. Dr. Moritz Kaßmann Fakultät für Mathematik Wintersemester 08/9 Universität Bielefeld Klausuraufgaben Erste Klausur zur Vorlesung Anwendungen der Mathematik 7. Februar 09 Lösungsvorschläge Aufgabe

Mehr

Kurs 9 Quadratische und exponentielle Funktionen MSA Vollzeit (1 von 2)

Kurs 9 Quadratische und exponentielle Funktionen MSA Vollzeit (1 von 2) Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Kurs 9 Quadratische und exponentielle Funktionen MSA Vollzeit (1 von 2) Name: Ich So schätze ich meinen Lernzuwachs

Mehr

Mathematik 6A 2. Schularbeit, 21. Dezember 2018 Gruppe A Note. von 48 P Befriedigend. Aufgabe 1 Funktionen 2 P.

Mathematik 6A 2. Schularbeit, 21. Dezember 2018 Gruppe A Note. von 48 P Befriedigend. Aufgabe 1 Funktionen 2 P. Mathematik 6A 2. Schularbeit, 21. Dezember 2018 Gruppe A Name: Erreicht Note von 48 P. Notenschlüssel 0 23 Nicht genügend 24-29 Genügend 30-36 Befriedigend 37-42 Gut 43-48 Sehr gut Aufgabe 1 Funktionen

Mehr

Funktionenlehre. Grundwissenskatalog G8-Lehrplanstandard

Funktionenlehre. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK Funktionenlehre Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngmnasiums Bad Neustadt und des Kurt-Huber-Gmnasiums Gräfelfing J O H A N N

Mehr