n

Größe: px
Ab Seite anzeigen:

Download "n"

Transkript

1 Die Zellteilung: Übung 1d) C(n) = 2 n C(n) G C n

2 Die Zellteilung: Übung 1g) n(c) = lb(c) n(c) G n C

3 Die Zellteilung: Übung 2d) C(n) = n C(n) G C n

4 Die Zellteilung: Übung 3c) C(t) = t 7000 C(t) G C t

5 Exponentialfunktionen: Übung 4b) f 1 (x) = 3 x f 2 (x) = ( 2 3 ) x y x

6 Exponentialfunktionen: Übung 4c) f 1 (x) = 1.5 x f 2 (x) = 2 x f 3 (x) = 3 x f 4 (x) = 4 x y x

7 Exponentialfunktionen: Übung 4d) f 1 (x) = ( 1 2 ) x f 2 (x) = 2 x y x

8 Logarithmusfunktionen: Übung 5a) f 1 (x) = log 1.5 x f 2 (x) = lbx f 3 (x) = log 3 x f 4 (x) = log 4 x y x

9 Logarithmusfunktionen: Übung 5b) f(x) = log 0.6 x y x

10 Exp.- & Log.-funktionen: Übung 6b) f 1 (x) = 1.3 x f 2 (x) = log 1.3 x y x

11 Exp.- & Log.-funktionen: Übung 6b) f 1 (x) = e x f 2 (x) = lnx y x

12 Exp.- & Log.-funktionen: Übung 6b) f 1 (x) = 10 x f 2 (x) = lgx y x

13 Exp.- & Log.-funktionen: Übung 6b) Symmetrieachse g: y = x y x

14 Exponentielle Prozesse: Übung 11 Wachstumsrate: 40% Wachstumsfaktor: = a) Nach zwei Stunden: 980 Bakterien b) B(t) = t c) B(24) = = Nach 24 Stunden: Bakterien

15 Exponentielle Prozesse: Übung 11 d) Gesuchte Zeit: t Ansatz: B(t) = t = 10 6 : t = 2000 ln(...) ln(1.4 t ) = ln(2000) Log.-gesetz t ln(1.4) = ln(2000) : ln(1.4) t = ln(2000) ln(1.4) t = Zeit bis 1 Million Bakterien: h

16 Exponentielle Prozesse: Übung 11 e) Gesuchte Zeit: T Ansatz: B(t+T) = 2 B(t) t+t = t Pot.-gesetz t 1.4 T = t : ( t ) 1.4 T = 2 ln(...) ln(1.4 T ) = ln(2) T ln(1.4) = ln(2) Log.-gesetz : ln(1.4) T = ln(2) ln(1.4) T = Verdoppelungszeit: h

17 Exponentielle Prozesse: Übung 12a) 1. Lösungsweg Ansatz: M(t) = M 0 b t Gegeben: M(1) = 9.61 M(8) = 7.24 M(1) b b b b b b b M(8) b 7 M(1) b 7 = M(8) 9.61 b 7 = 7.24 : 9.61 b 7 = 0.75 b = 0.96 M 0 b 1 = M(1) M = 9.61 : 0.96 M 0 = M(t) = t

18 Exponentielle Prozesse: Übung 12a) 2. Lösungsweg Ansatz: M(t) = M 0 b t Gegeben: M(1) = 9.61 M(8) = 7.24 M 0 b 1 = 9.61 I M 0 b 8 = 7.24 II II I : b 7 = 0.75 b = 0.96 III III in I: M = 9.61 : 0.96 M 0 = M(t) = t

19 Exponentielle Prozesse: Übung 12b) Gesucht: Abnahmerate p% Aus Aufgabe a): Abnahmefaktor b = 0.96 Es gilt: b = 1 p 100 p 100 = 1 b p = b p = 3.97 Gesuchte Abnahmerate: p = 3.97%

20 Exponentielle Prozesse: Übung 12d) Aus Aufgabe a): M(t) = t Für die Halbwertszeit T gilt: b T = T = 1 2 ln(...) ln ( 0.96 T) = ln ( 1 2 ) T ln(0.96) = ln ( 1 2 ) Log.-gesetz : ln(0.96) T = ( ) ln 12 ln(0.96) T = Halbwertszeit: T 12 = 17.13h

21 Exponentielle Prozesse: Übung 13a) Gegeben: Halbwertszeit T 12 = 30.17Jahre Für den Abnahmefaktor b gilt: b = 1 2 (...) b = ( 1 2 ) b = Für die Abnahmerate folgt: p = 2.271%

22 Exponentielle Prozesse: Übung 13b) Aus Aufgabe a): Radioaktive Masse: m(t) = m 0 b t = m t Im Zeitraum von 25 Jahren: m 0 b b b... b b b m(25) b 25 b 25 = = % von der ursprünglich freigesetzten Masse Cäsium-137 sind nach 25 Jahren noch immer nicht zerfallen.

23 Exponentielle Prozesse: Übung 13c) Aus Aufgabe a): Radioaktive Masse: m(t) = m t Im Zeitraum von t Jahren: m 0 b b b... b b b m(t) b t t Es gilt: t = 0.05 ln(...) ln ( t) = ln(0.05) Log.-gesetz t ln(0.977) = ln(0.05) : ln(0.977) t = ln(0.05) ln(0.977) t = Gesuchte Zeit: Jahre

24 Exponentielle Prozesse: Übung 14a) Anfangskapital [CHF]: K 0 = 1550 Wachstumsrate [%]: p = 2.2 Wachstumsfaktor: b = = Gesuchte Funktion: K(t) = t

25 Exponentielle Prozesse: Übung 14b) Gesuchte Zeit [Jahre]: t Gegeben: K(t) = t = 2000 : t = ln(...) ln(1.022 t ) = ln(1.290) Log.-gesetz t ln(1.022) = ln(1.290) : ln(1.022) t = ln(1.290) ln(1.022) t = Gesuchte Zeit: Jahre

26 Exponentielle Prozesse: Übung 14c) Gesuchte Zeit [Jahre]: t Gegeben: K(t) = t = 10 6 : t = ln(...) ln(1.022 t ) = ln( ) Log.-gesetz t ln(1.022) = ln( ) : ln(1.022) t = ln( ) ln(1.022) t = Gesuchte Zeit: Jahre

27 Exponentielle Prozesse: Übung 14d) Gesuchter Zinssatz [%]: p Für die neue Funktion K mit Funktionsterm K(t) = 1550 b t wird der Wachstumsfaktor b berechnet: 1550 b 50 = 10 6 : 1550 b 50 = b = Zinssatz: 13.8%

28 Exponentielle Prozesse: Übung 14e) Aus Aufgabe a): K(t) = t Für die Verdoppelungszeit T gilt: b T = T = 2 ln(...) ln ( T) = ln(2) T ln(1.022) = ln(2) Log.-gesetz : ln(0.96) T = ln(2) ln(1.022) T = Verdoppelungszeit: T = Jahre

29 Exponentielle Prozesse: Übung 14f) Aus Aufgabe a): K(t) = t Für die gesuchte Zeit t gilt: t = 1200 : t = ln(...) ln(1.022 t ) = ln(0.774) Log.-gesetz t ln(1.022) = ln(0.774) : ln(1.022) t = ln(0.774) ln(1.022) t = Kontoeröffnung: vor Jahren

30 Exponentielle Prozesse: Übung 15a) Frequenz von a : 442Hz Das Intervall a -a ist eine Oktave, d.h. das Frequenzverhältnis ist 1 : 2. Daraus folgt die Frequenz von a : 884Hz

31 Exponentielle Prozesse: Übung 15b) Eine Oktave ist in 12 gleiche Halbtonschritte unterteilt. Für die Frequenzverhältnisse einer Oktave (z.b. a -a ) gilt: f(a b b b )... b b b f(a ) b 12 2 Es folgt: b 12 = 2 b = 12 2 Gesuchtes Frequenzverhältnis: 1 : 12 2

32 Exponentielle Prozesse: Übung 15c) Das Intervall von a bis d besteht aus 17 Halbtonschritten: f(a b b b )... b b b f(d ) b 17 ( 12 2 ) 17 Es folgt: f(d ) = f(a ) b 17 = 442 ( 12 2 ) 17 = Frequenz von d : Hz

33 Exponentielle Prozesse: Übung 15d) Der Kammerton a mit der Frequenz 442Hz sei wiederum der Startpunkt. Die Variable x steht für die Anzahl Halbtonschritte von 442 Hz bis 20000Hz. b b b b b b ( 12 2 ) x Für die Anzahl x der Halbtonschritte gilt: 442 ( 12 2 ) x =

34 Exponentielle Prozesse: Übung 15d) (...Fortsetzung:) 442 ( 12 2 ) x = : 442 ( 12 2 ) x = ln(...) ln( ( 12 2 ) x ) = ln(45.249) Log.-gesetz x ln( 12 2) = ln(45.249) : ln( 12 2) x = ln(45.249) ln( 12 2) x = Halbtonschritte höher als der Kammerton a ist der Ton dis (7). Die Obergrenze des Hörbereichs liegt also zwischen d (7) und dis (7).

35 Exponentielle Prozesse: Übung 16a) Gegeben: Anfangswert K 0 = 50mg Halbwertszeit T 12 = 3h Ansatz: K(t) = K 0 b t = 50 b t Vorsicht: Zeitpunkt 0 ist eine Stunde nach dem Verzehr! Für den Abnahmefaktor b gilt: b 3 = 1 2 (...) 1 3 b = ( 1 2 )1 3 b = Funktionsgleichung: K(t) = t Koffeinmenge 5 h nach dem Verzehr: K(4) = = mg

36 Exponentielle Prozesse: Übung 16b) Aus Aufgabe a): K(t) = t Für die gesuchte Zeit t gilt: t = 0.01 : t = ln(...) ln(0.794 t ) = ln(0.0002) Log.-gesetz t ln(0.794) = ln(0.0002) : ln(0.794) t = ln(0.0002) ln(0.794) t = Gesuchte Zeit nach Verzehr: = h

37 Exponentielle Prozesse: Übung 16c) Neue Halbwertszeit: T 12 = = 1.8h Ansatz: K(t) = 50 b t Der Abnahmefaktor b wird neu berechnet: b 1.8 = 1 2 (...) b = ( 1 2 ) b = Funktionsgleichung: K(t) = t

38 Exponentielle Prozesse: Übung 16c) (...Fortsetzung:) Für die gesuchte Zeit t gilt: t = 0.01 : t = ln(...) ln(0.680 t ) = ln(0.0002) Log.-gesetz t ln(0.680) = ln(0.0002) : ln(0.680) t = ln(0.0002) ln(0.680) t = Gesuchte Zeit nach Verzehr: = h

39 Exponentielle Prozesse: Übung Lösungsweg Ansatz: C(t) = C 0 b t Gegeben: C(2) = 300 C(7) = C(2) b b b b b C(7) b 5 C(2) b 5 = C(7) 300 b 5 = : 300 b 5 = 3125 b = 5 C 0 b 2 = C(2) C = 300 : 25 C 0 = 12 C(t) = 12 5 t

40 Exponentielle Prozesse: Übung Lösungsweg Ansatz: C(t) = C 0 b t Gegeben: C(2) = 300 C(7) = C 0 b 2 = 300 I C 0 b 7 = II II I : b 5 = 3125 b = 5 III III in I: C = 300 : 25 C 0 = 12 C(t) = 12 5 t

3.2 Exponentialfunktion und Wachstum/Zerfall

3.2 Exponentialfunktion und Wachstum/Zerfall 3.2 Exponentialfunktion und Wachstum/Zerfall Inhaltsverzeichnis 1 Die Exponentialfunktion 2 2 Exponentielles Wachtum und exponentieller Zerfall 3 1 Exp.-funktion,Wachstum,Zerfall 27.08.2008 Theorie und

Mehr

A5 Exponentialfunktion und Logarithmusfunktion

A5 Exponentialfunktion und Logarithmusfunktion A5 Exponentialfunktion und Logarithmusfunktion A5 Exponentialfunktion und Logarithmusfunktion Wachstums- und Zerfallsprozesse. Beispiel: Bakterien können sich sehr schnell vermehren. Eine bestimmte Bakterienart

Mehr

3 log. 2 )+log(1/u) g) log(2ux) 1+ a. j) log

3 log. 2 )+log(1/u) g) log(2ux) 1+ a. j) log Logarithmen 1. 5 3 = 125 ist gleichbedeutend mit 5 log(125) = 3. Formen Sie nach diesem Muster um. a) 2 5 = 32 b) 10 4 = 10 000 c) 7 0 = 1 d) 3 2 = 1/9 e) 10 3 = 0.001 f) 5 1/2 = 5 g) 6 log(216) = 3 h)

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Mathematik für Wirtschaftswissenschaftler Yves Schneider Universität Luzern Frühjahr 2016 Repetition Kapitel 1 bis 3 2 / 54 Repetition Kapitel 1 bis 3 Ausgewählte Themen Kapitel 1 Ausgewählte Themen Kapitel

Mehr

4 Potenzen Wachstumsprozesse Exponentialfunktionen

4 Potenzen Wachstumsprozesse Exponentialfunktionen 4 Potenzen Wachstumsprozesse Exponentialfunktionen 4.1 Potenzieren Radizieren 4.1.1 Potenzen mit natürlichen Exponenten Exponentielle Wachstumsvorgänge 4.1.1.1 Wiederholung zum Potenzieren ist eine Potenz

Mehr

Vorbereitungskurs Lehrlinge

Vorbereitungskurs Lehrlinge Vorbereitungskurs Lehrlinge Freitag, 21. Mai 2010 14:00 BRP Mathematik Mag. Kurt Söser 2009/10 Maturavorbereitung Seite 1 Maturavorbereitung Seite 2 Maturavorbereitung Seite 3 Bsp. Die Halbwertzeit von

Mehr

49 Mathematik für Biologen, Biotechnologen und Biochemiker

49 Mathematik für Biologen, Biotechnologen und Biochemiker 49 Mathematik für Biologen, Biotechnologen und Biochemiker 43 Momentane Wachstumsrate, Zuwachsrate pro Zeiteinheit und die Verdoppelungszeit Jede Exponentialfunktion f(t) = c exp(t) ist durch die beiden

Mehr

Vermischte Aufgaben als Probevorbereitung Posten 1

Vermischte Aufgaben als Probevorbereitung Posten 1 Vermischte Aufgaben als Probevorbereitung Posten 1 Aufgabe 1 Gegeben: f(x) = 2 x g(x) = log 3(x) a. Stelle die Funktion grafisch dar. b. Verschiebe die Kurve um 2 Einheiten nach oben und um 3 Einheiten

Mehr

Klasse 10; Mathematik Kessling Seite 1

Klasse 10; Mathematik Kessling Seite 1 Klasse 0; Mathematik Kessling Seite Übungen Eponentialfunktionen/Logarithmus Aufgabe Beim Wachstum einer bestimmten Bakterienart der Bestand der Bakterien stündlich um 43% zu. Am Beginn des Beobachtungszeitraumes

Mehr

Wachstum und Zerfall / Exponentialfunktionen. a x = e (lna) x = e k x

Wachstum und Zerfall / Exponentialfunktionen. a x = e (lna) x = e k x Wachstum und Zerfall / Exponentialfunktionen Mit Exponentialfunktionen können alle Wachstums- und Zerfalls- oder Abnahmeprozesse beschrieben werden. Im Allgemeinen geht es dabei um die Exponentialfunktionen

Mehr

Verlauf Material LEK Glossar Lösungen. Die Mathematik im Klavier Exponentialfunktion und Logarithmus. Nico Lorenz, Waltrop VORANSICHT

Verlauf Material LEK Glossar Lösungen. Die Mathematik im Klavier Exponentialfunktion und Logarithmus. Nico Lorenz, Waltrop VORANSICHT Reihe 23 S 1 Verlauf Material LEK Glossar Lösungen Die Mathematik im Klavier Exponentialfunktion und Logarithmus Nico Lorenz, Waltrop Sophie spielt Béla Bartók. Klasse: 10/11 Dauer: Inhalt: 1 2 Stunden

Mehr

a) Geben Sie eine Formel an, mit deren Hilfe man ermitteln kann, wie viel Wasser der Teich nach x regenlosen Tagen enthält!

a) Geben Sie eine Formel an, mit deren Hilfe man ermitteln kann, wie viel Wasser der Teich nach x regenlosen Tagen enthält! 1) Wasserstand Der Wasserstand eines Gartenteichs wird durch Verdunstung und Niederschlag reguliert. Im Sommer kann mit einer täglichen Verdunstung von 4 % des am Morgen vorhandenen Wassers gerechnet werden.

Mehr

d) Berechne den Zeitpunkt, an dem der Flächeninhalt kleiner als 1 mm² wird

d) Berechne den Zeitpunkt, an dem der Flächeninhalt kleiner als 1 mm² wird 1) Text mit Prozent: Die Bakterienkultur ist jetzt 7000 mm² groß. Durch Zugabe eines Antibiotikums sterben die Bakterien, wobei die Fläche pro Stunde um etwa 35% kleiner wird. Es sei A(n) der Flächeninhalt

Mehr

Exponentialfunktionen

Exponentialfunktionen Herr Kluge Mathematik Year 10 Exponentialfunktionen Ziel: Ich erkenne ein exponentielles Wachstum und kann es von einem linearen Wachstum unterscheiden. Ich weiß, wie man eine Gleichung zum exponentiellem

Mehr

Potenz- & Exponentialfunktionen

Potenz- & Exponentialfunktionen Potenz- & Exponentialfunktionen 4. Kapitel aus meinem ANALYSIS - Lehrgang MNprofil - MIttelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 24. Oktober 2011 Überblick über

Mehr

Lösungen (Hinweis: Ich habe nur da gerundet, wo es nicht anders möglich war. Ansonsten habe ich die genauen Werte benutzt.)

Lösungen (Hinweis: Ich habe nur da gerundet, wo es nicht anders möglich war. Ansonsten habe ich die genauen Werte benutzt.) Übungsaufgaben Aufgabe 1 Ein Waldstück weist heute (2009) einen Holzbestand von 7300 m³ auf. Auf welchen Wert wächst der Holzbestand innerhalb von 6 Jahren (bis 2015), wenn er jedes Jahr um 3,2 % zunimmt?

Mehr

Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts

Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts 1. Stetigkeit und Grenzwerte: (a) Aus der folgenden grafischen Darstellung von y 1 (x) = x 2/3 /(1 + x 2 ) ist

Mehr

Analysis: exp. und beschränktes Wachstum Analysis

Analysis: exp. und beschränktes Wachstum Analysis Analysis Wahlteilaufgaben zu exponentiellem und beschränktem Wachstum inkl Differenzialgleichungen Gymnasium ab J1 Alexander Schwarz wwwmathe-aufgabencom Februar 2014 1 Aufgabe 1 Zu Beginn eines Experimentes

Mehr

4 Ja, die Daten passen:

4 Ja, die Daten passen: Wachstum* Lösungen Seiten 80, 81 Check-in Aufgaben Die Lösungen zum Check-in befinden sich am Ende des Schülerbuchs auf den Seiten 177 und 178. Lösungen Seiten 8, 83 Aktiv Bevölkerungsentwicklung 1 a)

Mehr

Exponentielles Wachstum und Zerfall ( S. Riedmann)

Exponentielles Wachstum und Zerfall ( S. Riedmann) Exponentielles Wachstum und Zerfall ( S. Riedmann) Aufgabe (1) Ein Wald hatte 1990 einen Bestand von 33.000 m³ Holz. Im Laufe von 20 Jahren wurde kein Holz gefällt, so dass sich der Bestand von 1970 um

Mehr

2. Mathematische Grundlagen

2. Mathematische Grundlagen 2. Mathematische Grundlagen Erforderliche mathematische Hilfsmittel: Summen und Produkte Exponential- und Logarithmusfunktionen 21 2.1 Endliche Summen und Produkte Betrachte n reelle Zahlen a 1, a 2,...,

Mehr

Logarithmische Skalen

Logarithmische Skalen Logarithmische Skalen Arbeitsblatt Logarithmische Skalen ermöglichen dir eine übersichtlichere Darstellung von Kurvenverläufen vor allem dann, wenn sie sich über sehr große Zahlenbereiche erstrecken. 1

Mehr

Die Anzahl der Keime in 1 cm 3 Milch wird im zeitlichen Abstand von 1 h bestimmt.

Die Anzahl der Keime in 1 cm 3 Milch wird im zeitlichen Abstand von 1 h bestimmt. 7. Anwendungen ================================================================== 7.1 Exponentielles Wachstum ------------------------------------------------------------------------------------------------------------------

Mehr

Aufgaben zum Üben für die zweite Schularbeit 1/10

Aufgaben zum Üben für die zweite Schularbeit 1/10 Aufgaben zum Üben für die zweite Schularbeit 1/10 1) Bei Atombombentests wird radioaktives Kobalt freigesetzt. a) Berechne, wann der letzte Test stattfand, wenn nur mehr 10 % der ursprünglichen Kobaltmasse

Mehr

Exponentialfunktion - typische Beispiele

Exponentialfunktion - typische Beispiele Exp_typBsp.odt Exponentialfunktion - 1/6 Exponentialfunktion - typische Beispiele Es geht um Wachstums- oder Abnahmevorgänge Nützlich in vielen Beispielen ist der folgende Ansatz : N(t)=N 0 a t t steht

Mehr

3.2 Exponentialfunktion und Wachstum/Zerfall

3.2 Exponentialfunktion und Wachstum/Zerfall 3.2 Exponentialfunktion und Wachstum/Zerfall Inhaltsverzeichnis 1 Die Exponentialfunktion 2 2 Exponentielles Wachtum und exponentieller Zerfall 5 2.1 Die Schreibweise B(t)=B(0) a t................................

Mehr

Weitere einfache Eigenschaften elementarer Funktionen

Weitere einfache Eigenschaften elementarer Funktionen Kapitel 6 Weitere einfache Eigenschaften elementarer Funktionen 6.1 Polynome Geg.: Polynom vom Grad n p(x) = a 0 + a 1 x +... + a n 1 x n 1 + a n x n, also mit a n 0. p(x) = x n ( a 0 x + a 1 n x +...

Mehr

16.1 Wichtiges über mathematische Funktionen

16.1 Wichtiges über mathematische Funktionen 16 16.1 Wichtiges über mathematische Funktionen Definition Funktion Wird durch die Gleichung y = f(x) jedem x des Definitionsbereiches genau ein y des Wertebereiches zugeordnet, nennen wir dies eine Funktion

Mehr

R. Brinkmann Seite Anwendungen der Exponentialfunktion

R. Brinkmann  Seite Anwendungen der Exponentialfunktion R. Brinkmann http://brinkmann-du.de Seite 6..2 Aufstellen der Funktionsgleichung : Anwendungen der Eponentialfunktion Coli Bakterien verrichten ihre Arbeit im menschlichen Darm. Sie vermehren sich durch

Mehr

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759.

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759. (4) Exponential- und Logarithmusfunktionen Satz Für jedes b > 1 gibt es eine eindeutig bestimmte Funktion exp b : R R + mit folgenden Eigenschaften. exp b (r) = b r für alle r Q Die Funktion exp b ist

Mehr

17 Exponentialfunktion und Logarithmus

17 Exponentialfunktion und Logarithmus 17 Exponentialfunktion und Logarithmus Die Exponentialfunktion gilt als die wichtigste Funktion der Analysis. Sie hat sowohl theoretische als auch praktische Bedeutung. Sie tritt in vielen Anwendungen

Mehr

SCHRIFTLICHE MATURA 2010

SCHRIFTLICHE MATURA 2010 SCHRIFTLICHE MATURA 2010 Fach: Mathematik Klassen: 7SA Prüfer: Dr. Martin Holzer Name: Diese Arbeit umfasst 4 Aufgaben. Jede der 4 Aufgaben wird mit gleich vielen Punkten bewertet. Für die Darstellung

Mehr

Korrigendum Lambacher Schweizer 9/10, 1. Auflage 2011

Korrigendum Lambacher Schweizer 9/10, 1. Auflage 2011 Korrigendum Lambacher Schweizer 9/,. Auflage Klett und Balmer Verlag, Baar. April. Seite, Aufgabe Tipp: Suche dir Punkte auf dem Kreis, die du zur Bestimmung heranziehen kannst Bestimme das Streckzentrum

Mehr

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 4-E1 4-E2 4-E3 Gewöhnliche Differentialgleichung: Aufgaben Bestimmen Sie allgemeine und spezielle Lösungen der folgenden Differentialgleichungen Aufgabe

Mehr

Wiederholungen Wachstumsfunktionen IGS List

Wiederholungen Wachstumsfunktionen IGS List Wiederholungen Wachstumsfunktionen IGS List Prozentuales Wachstum Wertetabelle Berechnen von Zwischenwerten Berechnen von Wachstumsraten und Wachstumsfaktoren Aufstellen von Funktionsgleichungen f ( )

Mehr

Exponentialfunktionen - Eigenschaften und Graphen

Exponentialfunktionen - Eigenschaften und Graphen Exponentialfunktionen - Eigenschaften und Graphen 1 Taschengeld Peter startet in wenigen Tagen zu einer zweiwöchigen Klassenfahrt Seine Eltern möchten ihm nach folgendem Plan Taschengeld mitgeben: Für

Mehr

4. Bei einem Versuch zur Vermehrung von Wasserlinsenkeimlingen wurde diese Tabelle angelegt: B(t) Anzahl der Keimlinge

4. Bei einem Versuch zur Vermehrung von Wasserlinsenkeimlingen wurde diese Tabelle angelegt: B(t) Anzahl der Keimlinge 1. Ein Geheimnis breitet sich aus Armin vertraut Bettina ein Geheimnis an. Obwohl Bettina versprach, das Geheimnis nicht weiterzuerzählen, erzählt sie es am folgenden Tag ihren Freunden Peter und Sabine.

Mehr

2 Besondere mathematische Funktionen

2 Besondere mathematische Funktionen 2 Besondere mathematische Funktionen Inhalt 2.1 Vorbemerkung......... 19 2.2 Summenzeichen... 20 2.3 Produktzeichen......... 23 2.4 Betragsfunktion... 23 2.5 Ganzzahlfunktion....... 24 2.6 PotenzenundWurzeln...

Mehr

Aufgaben zu Potenzen, Wurzeln, Logarithmen. Potenzen mit positiven Exponenten: (5 + 7)

Aufgaben zu Potenzen, Wurzeln, Logarithmen. Potenzen mit positiven Exponenten: (5 + 7) Besuchen Sie auch die Seite http://www.matheaufgaben-loesen.de/ dort gibt es viele Aufgaben zu weiteren Themen und unter Hinweise den Weg zu den Lösungen. Aufgaben zu Potenzen, Wurzeln, Logarithmen Potenzen

Mehr

Differentiation der Exponential- und Logarithmusfunktion. Mag. Mone Denninger 23. Oktober 2004

Differentiation der Exponential- und Logarithmusfunktion. Mag. Mone Denninger 23. Oktober 2004 Differentiation der Exponential- und Logarithmusfunktion Mag. Mone Denninger 23. Oktober 2004 1 INHALTSVERZEICHNIS 8. Klasse Inhaltsverzeichnis 1 Differentiation der Exponentialfunktion 3 2 Differentiation

Mehr

Funktionenlehre. Grundwissenskatalog G8-Lehrplanstandard

Funktionenlehre. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK Funktionenlehre Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngmnasiums Bad Neustadt und des Kurt-Huber-Gmnasiums Gräfelfing J O H A N N

Mehr

Kurs 9 Quadratische und exponentielle Funktionen MSA Vollzeit (1 von 2)

Kurs 9 Quadratische und exponentielle Funktionen MSA Vollzeit (1 von 2) Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Kurs 9 Quadratische und exponentielle Funktionen MSA Vollzeit (1 von 2) Name: Ich So schätze ich meinen Lernzuwachs

Mehr

Systemwissenschaften, Mathematik und Statistik

Systemwissenschaften, Mathematik und Statistik Systemwissenschaften, Mathematik und Statistik Systemwissenschaften: 1 WS: Systemwissenschaften 1, VO 2std 2 SS: Systemwissenschaften 2, VO 2std Übung zu Systemwissenschaften, UE 2std 3 WS: Systemwissenschaften

Mehr

Exponentialfunktionen, Eulersche Zahl, Logarithmen

Exponentialfunktionen, Eulersche Zahl, Logarithmen Exponentialfunktionen, Eulersche Zahl, Logarithmen Jörn Loviscach Versionsstand: 22. Oktober 2010, 23:29 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu: http://www.youtube.com/joernloviscach

Mehr

f : x 2 x f : x 1 Exponentialfunktion zur Basis a. Für alle Exponentialfunktionen gelten die Gleichungen (1) a x a y = a x+y (2) ax a y = ax y

f : x 2 x f : x 1 Exponentialfunktion zur Basis a. Für alle Exponentialfunktionen gelten die Gleichungen (1) a x a y = a x+y (2) ax a y = ax y 5. Die natürliche Exponentialfunktion und natürliche Logarithmusfunktion ================================================================== 5.1 Die natürliche Exponentialfunktion f : x 2 x f : x 1 2 x

Mehr

Übungsblatt Wachstums- Zerfallsfunktionen Lösungen

Übungsblatt Wachstums- Zerfallsfunktionen Lösungen Übungsblatt Lösungen Beispiel 1: Man betrachtet das Wachstum der Weltbevölkerung im Zeitraum von 1950 (Zeitpunkt t = 0) bis 1990 (Zeitpunkt t = 40). Die Tabelle soll im Zuge der Rechnung von dir ausgefüllt

Mehr

Exponential- und Logarithmusfunktion. Biostatistik, WS 2010/2011. Inhalt. Matthias Birkner Mehr zur Eulerschen Zahl und natürliche

Exponential- und Logarithmusfunktion. Biostatistik, WS 2010/2011. Inhalt. Matthias Birkner Mehr zur Eulerschen Zahl und natürliche Biostatistik, WS 2010/2011 Exponential- und Logarithmusfunktion Matthias Birkner http://www.mathematik.uni-mainz.de/~birkner/biostatistik1011/ 5.11.2010 Inhalt 1 Exponential- und Logarithmusfunktion Potenzen

Mehr

lim Der Zwischenwertsatz besagt folgendes:

lim Der Zwischenwertsatz besagt folgendes: 2.3. Grenzwerte von Funktionen und Stetigkeit 35 Wir stellen nun die wichtigsten Sätze über stetige Funktionen auf abgeschlossenen Intervallen zusammen. Wenn man sagt, eine Funktion f:[a,b] R, definiert

Mehr

Lineares Wachstum/exponentielles Wachstum

Lineares Wachstum/exponentielles Wachstum Seite 1 / 9 Lineares Wachstum/exponentielles Wachstum 1. Herr Apfalterer und Frau Bader haben ein Jahresgehalt von 18.000. Für die jährliche Gehaltserhöhung stehen zwei verschieden Möglichkeiten zur Auswahl.

Mehr

Exponential- & Logarithmusfunktionen

Exponential- & Logarithmusfunktionen Exponential- & Logarithmusfunktionen Referenten: Paul Schmelz & Wadim Krapp Fachlehrer: Herr Wettlaufer Fach: Mathematik Thema: Exponential- & Logarithmusfunktionen Inhaltsverzeichnis file:///d /Refs/_To%20Do/zips/ExponentialLogarithmusfunktionen.html

Mehr

Die Quinte und der Wolf über die Symmetrie der gleichstufigen Stimmung

Die Quinte und der Wolf über die Symmetrie der gleichstufigen Stimmung Die Quinte und der Wolf über die Symmetrie der gleichstufigen Stimmung Goethe-Gymnasium. 07/2014. Regensburg Clara Löh Fakultät für Mathematik. Universität Regensburg Überblick Die Quinte und der Wolf

Mehr

Lösungen zu den Übungsaufgaben zu exponentiellem und beschränktem Wachstum mit Differenzialgleichungen. = a e mit a = f(0) = 400.

Lösungen zu den Übungsaufgaben zu exponentiellem und beschränktem Wachstum mit Differenzialgleichungen. = a e mit a = f(0) = 400. wwwmathe-aufgabencom Lösungen zu den Übungsaufgaben zu exponentiellem und beschränem Wachstum mit Differenzialgleichungen Aufgabe 1 a) Ansatz für die Wachstumsfunion: f(t) = a e mit a = f(0) = 400 2k 1

Mehr

Der natürliche Logarithmus. logarithmus naturalis

Der natürliche Logarithmus. logarithmus naturalis Der natürliche Logarithmus ln logarithmus naturalis Zur Erinnerung: Die Exponentialfunktion y = exp(x) ist festgelegt durch 2 y = exp(x) y (x) = y(x) 0 x y(0) = 2 Zur Erinnerung: e := y() 2.78 exp(x) =

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mathematik und Naturwissenschaften Arbeitsblatt Mathematik 3 (Diverses) Dozent: - Brückenkurs Mathematik / Physik 2016 Lineare

Mehr

Lösung zur Übung 19 SS 2012

Lösung zur Übung 19 SS 2012 Lösung zur Übung 19 SS 01 69) Beim radioaktiven Zerfall ist die Anzahl der pro Zeiteinheit zerfallenden Kerne dn/dt direkt proportional zur momentanen Anzahl der Kerne N(t). a) Formulieren Sie dazu die

Mehr

Weitere elementare reelle Funktionen

Weitere elementare reelle Funktionen Zusatzaufgaben Weitere elementare reelle Funktionen Übung. Geben Sie den Definitionsbereich der Funktionen an, die durch die folgenden Funktionsgleichungen gegeben sind bestimmen Sie jeweils die Nullstellen).

Mehr

Die Exponentialfunktion und ihre Anwendung in der Biologie

Die Exponentialfunktion und ihre Anwendung in der Biologie Die Exponentialfunktion und ihre Anwendung in der Biologie Escheria coli (kurz E. coli) sind Bakterien, die im Darm von Säugetieren und Menschen leben. Ein junges E. coli Bakterium wächst mit einer konstanten

Mehr

1 Lineare Funktionen. 1 Antiproportionale Funktionen

1 Lineare Funktionen. 1 Antiproportionale Funktionen Funktion Eine Funktion ist eine Zuordnung, bei der zu jeder Größe eines ersten Bereichs (Ein gabegröße) genau eine Größe eines zweiten Bereichs (Ausgabegröße) gehört. Eine Funktion wird durch eine Funktionsvorschrift

Mehr

1. Schularbeit 3HL 12. Nov. 2013

1. Schularbeit 3HL 12. Nov. 2013 1. Schularbeit 3HL 12. Nov. 2013 1. Der Abbau von Koffein im Ko rper ist ein exponentieller Prozess. Die Abbaurrate kann von Person zu Person stark variieren. a) Fu r Lena liegt die Halbwertszeit bei 1,5

Mehr

3 Logarithmen und Exponentialfunktion

3 Logarithmen und Exponentialfunktion Mathematik fur Ingenieure Institut fur Algebra, Zahlentheorie und Diskrete Mathematik Dr. Dirk Windelberg Universitat Hannover Stand: 8. August 008 http://www.iazd.uni-hannover.de/windelberg/teach/ing

Mehr

Hermann-Hesse-Oberschule (Gymnasium) Berlin Kreuzberg Fachbereich Mathematik Kurs ma - 2

Hermann-Hesse-Oberschule (Gymnasium) Berlin Kreuzberg Fachbereich Mathematik Kurs ma - 2 Hermann-Hesse-Oberschule (Gymnasium) Berlin Kreuzberg Fachbereich Mathematik Kurs ma - 2 e ln(a) = a máth ma = das Gelernte, die Kenntnis mathematikói (µ"h0µ"j46@\), d. h. die durch Lernen Einsicht erlangt

Mehr

Exponentialfunktion / Wachstum

Exponentialfunktion / Wachstum 1. Die Eponentialfunktion Eponentialfunktion / Wachstum Spezialfall: = 0: a 0 = 1 P(0 1). Dies bedeutet, alle Graphen - unabhängig ihrer Basis - laufen durch den Punkt (0 1). Der Graph einer Eponentialfunktion

Mehr

Kapitel 3 EXPONENTIAL- UND LOGARITHMUS-FUNKTION

Kapitel 3 EXPONENTIAL- UND LOGARITHMUS-FUNKTION Kapitel 3 EXPONENTIAL- UND LOGARITHMUS-FUNKTION Fassung vom 3 Dezember 2005 Mathematik für Humanbiologen und Biologen 39 3 Exponentialfunktion 3 Exponentialfunktion Wir betrachten als einführendes Beispiel

Mehr

Teil 2. Hier: Verwendung von Methoden aus der Analysis. Wachstumsrate, Wachstumsgeschwindigkeit Differenzialgleichung. Auch mit CAS-Einsatz

Teil 2. Hier: Verwendung von Methoden aus der Analysis. Wachstumsrate, Wachstumsgeschwindigkeit Differenzialgleichung. Auch mit CAS-Einsatz Themenheft Exponentielles Wachstum Teil 2 Hier: Verwendung von Methoden aus der Analysis. Wachstumsrate, Wachstumsgeschwindigkeit Differenzialgleichung Auch mit CAS-Einsatz Datei Nr. 45810 Stand 23. Februar

Mehr

Mathematik für Wirtschaftswissenschaftler. gehalten von Claus Diem

Mathematik für Wirtschaftswissenschaftler. gehalten von Claus Diem Mathematik für Wirtschaftswissenschaftler gehalten von Claus Diem Übungen Die Seminare / Übungsgruppen / Tutorien finden wöchentlich statt. Alle zwei Wochen am Montag wird ein Übungsblatt ausgegeben. Dies

Mehr

Zusätzliche Aufgabe 5:

Zusätzliche Aufgabe 5: D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas Zusätzliche Aufgabe 5: Populationsmodelle Um die Entwicklung einer Population zu modellieren, gibt es diskrete Modelle, wobei die Zeit t bei diskreten

Mehr

6. Radioaktive Stoffe zerfallen nach dem Gesetz t

6. Radioaktive Stoffe zerfallen nach dem Gesetz t 1. Ein Distrikt eines Entwicklungslandes hatte Ende 1993 rund 120 000 Einwohner. Die Bevölkerungszahl nimmt laut Statistik jährlich um 2,5 % zu. a) Wie viele Einwohner wird dieser Distrikt Ende 2005 voraussichtlich

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik / Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Betriebswirtschaft International Business Dresden 05 . Mengen

Mehr

Thema 4 Limiten und Stetigkeit von Funktionen

Thema 4 Limiten und Stetigkeit von Funktionen Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.

Mehr

2. Funktionen einer Variablen

2. Funktionen einer Variablen . Funktionen einer Variablen Literatur: [SH, Kapitel 4].1. Definitionen.. Typen von Funktionen..1. Lineare Funktionen... Quadratische Funktionen..3. Polynome..4. Potenzfunktionen..5. Exponentialfunktionen..6.

Mehr

die Wachstumsrate ist proportional zur Anzahl der vorhandenen Individuen.

die Wachstumsrate ist proportional zur Anzahl der vorhandenen Individuen. Exponentielles Wachstum und Zerfall Angenommen, man möchte ein Modell des Wachstums oder Zerfalls einer Population erarbeiten, dann ist ein Gedanke naheliegend: die Wachstumsrate ist proportional zur Anzahl

Mehr

Abitur 2012 Mathematik Infinitesimalrechnung I

Abitur 2012 Mathematik Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 212 Mathematik Infinitesimalrechnung I Geben Sie zu den Funktionstermen jeweils den maximalen Definitionsbereich sowie einen Term der Ableitungsfunktion

Mehr

d dy f 1 (y) = 1 d dy x = 1 (f 1 ) (y) Ein bekannter Satz zur Inversionsregel lautet: Ableitung = 1 durch Ableitung der Umkehrfunktion.

d dy f 1 (y) = 1 d dy x = 1 (f 1 ) (y) Ein bekannter Satz zur Inversionsregel lautet: Ableitung = 1 durch Ableitung der Umkehrfunktion. Inversionsregel Motivation Eine eher sonderbare, jedoch sehr praktische Ableitungsregel, gerade beim Ableiten von Arkusfunktionen stellt die sogenannte Inversionsregel dar. Sie ermöglicht es, eine Funktion

Mehr

x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B.

x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B. SBP Mathe Grundkurs 1 # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten

Mehr

SBP Mathe Grundkurs 1 # 0 by Clifford Wolf. SBP Mathe Grundkurs 1

SBP Mathe Grundkurs 1 # 0 by Clifford Wolf. SBP Mathe Grundkurs 1 SBP Mathe Grundkurs 1 # 0 by Clifford Wolf SBP Mathe Grundkurs 1 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen

Mehr

Integral- und Differentialrechnungen für USW Lösungen der Beispiele des 10. Übungsblatts

Integral- und Differentialrechnungen für USW Lösungen der Beispiele des 10. Übungsblatts Integral- und Differentialrechnungen für USW Lösungen der Beispiele des. Übungsblatts. Flächeninhalt unter einer Kurve: (a) Das bestimmte Integral von y(x) x zwischen x und x ist x dx x + + x ( ) x / (b)

Mehr

17 Logarithmus und allgemeine Potenz

17 Logarithmus und allgemeine Potenz 7 Logarithmus und allgemeine Potenz 7. Der natürliche Logarithmus 7.3 Die allgemeine Potenz 7.4 Die Exponentialfunktion zur Basis a 7.5 Die Potenzfunktion zum Exponenten b 7.6 Die Logarithmusfunktion zur

Mehr

Übungsaufgaben zur Analysis

Übungsaufgaben zur Analysis Serie Übungsaufgaben zur Analysis. Multiplizieren Sie folgende Klammern aus: ( + 3y)( + 4a + 4b) (a b )( + 3y 4) (3 + )(7 + y) + (a + b)(3 + ). Multiplizieren Sie folgende Klammern aus: 6a( 3a + 5b c)

Mehr

Exponentialfunktion, Logarithmus

Exponentialfunktion, Logarithmus Exponentialfunktion, Logarithmus. Die Exponentialfunktion zu einer Basis > 0 Bei Exponentialfunktionen ist die Basis konstant und der Exponent variabel... Die Exponentialfunktion zu einer Basis > 0. Sei

Mehr

5 Kontinuierliches Wachstum

5 Kontinuierliches Wachstum 5 Kontinuierliches Wachstum Kontinuierlich meßbare Größe Wir betrachten nun eine Größe a, die man kontinuierlich messen kann. Den Wert von a zum Zeitpunkt t schreiben wir nun als a(t). Wir können jedem

Mehr

K2 - Klausur Nr. 2. Wachstumsvorgänge modellieren mit der Exponentialfunktion. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

K2 - Klausur Nr. 2. Wachstumsvorgänge modellieren mit der Exponentialfunktion. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. K2 - Klausur Nr. 2 Wachstumsvorgänge modellieren mit der Exponentialfunktion Pflichtteil keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere

Mehr

2.3 Exponential- und Logarithmusfunktionen

2.3 Exponential- und Logarithmusfunktionen 26 2.3 Exponential- und Logarithmusfunktionen Die natürliche Exponentialfunktion f(x) = e x ist definiert durch die Potenzreihe e x = + x! + x2 2! + x3 3! + = für alle x in R. Insbesondere ist die Eulersche

Mehr

Lösungen ==================================================================

Lösungen ================================================================== Lösungen ================================================================== Aufgabe Bestimme f '(x) a) f(x) = e x f '(x) = e x ( ) = 4 e c x b) f(x) = x e x f '(x) = e x ( ) = + e x c) f(x) = 3 e (x+)

Mehr

Biostatistik, WS 2010/2011 Exponential- und Logarithmusfunktion

Biostatistik, WS 2010/2011 Exponential- und Logarithmusfunktion 1/22 Biostatistik, WS 2010/2011 Exponential- und Logarithmusfunktion Matthias Birkner http://www.mathematik.uni-mainz.de/~birkner/biostatistik1011/ 5.11.2010 2/22 Inhalt Exponential- und Logarithmusfunktion

Mehr

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( )

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( ) 64 Die Tangente in x 0 eignet sich also als lokale (lineare) Näherung der Funktion in der Nähe des Punktes P. Oder gibt es eine noch besser approximierende Gerade? Satz 4.9 Unter allen Geraden durch den

Mehr

allgemeine Informationen

allgemeine Informationen allgemeine Informationen Für das Zerfallsgesetz gilt der Zusammenhang N t =N 0 e t, wobei t die Zeit, N t die Anzahl der Kerne zum Zeitpunkt t, N 0 die Anzahl der Kerne zum Zeitpunkt t=0 (also zu Beginn

Mehr

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 203/4 Blatt 20.0.204 Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag 4. a) Für a R betrachten wir die Funktion

Mehr

Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 28. September Mathematik. Teil-2-Aufgaben. Korrekturheft

Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 28. September Mathematik. Teil-2-Aufgaben. Korrekturheft Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS 28. September 2017 Mathematik Teil-2-Aufgaben Korrekturheft Aufgabe 1 Aktivität und Altersbestimmung a) Lösungserwartung: A(t) = N (t)

Mehr

Nach der Halbwertszeit τ ist nur noch die Hälfte der Atomkerne vorhanden. Durch diese Angabe ist b bestimmt.

Nach der Halbwertszeit τ ist nur noch die Hälfte der Atomkerne vorhanden. Durch diese Angabe ist b bestimmt. 1 9. Exponentieller Zerfall Von einer radioaktiven Substanz sind zu Beginn (0) Atome vorhanden. () ist die Anzahl der radioaktiven Atomkerne im Zeitpunkt t. () nimmt exponentiell ab, d.h. es gilt ()=(0)

Mehr

Das zyklische Wachstum wird mit Hilfe trigonometrischer Funktionen - meist der Sinusfunktion. f(x) = a sin(bx + c) + d.

Das zyklische Wachstum wird mit Hilfe trigonometrischer Funktionen - meist der Sinusfunktion. f(x) = a sin(bx + c) + d. 1 Arten von Wachstum Wachstum bedeutet, dass eine Größe über die Zeit zu- oder abnimmt. Dabei kann diese Zu- oder Abnahme regelmäßigen Gesetzen folgen oder unregelmäßig sein. Uns interessieren die regelmäßigen

Mehr

differenzierbare Funktionen

differenzierbare Funktionen Kapitel IV Differenzierbare Funktionen 18 Differenzierbarkeit und Rechenregeln für differenzierbare Funktionen 19 Mittelwertsätze der Differentialrechnung mit Anwendungen 20 Gleichmäßige Konvergenz von

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Karlsruher Institut für Technologie Institut für Analysis Dr. I. Anapolitanos Dipl.-Math. Sebastian Schwarz SS 7 4.5.7 Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Mehr

Biostatistik, WS 2017/18 Exponential- und Logarithmusfunktion

Biostatistik, WS 2017/18 Exponential- und Logarithmusfunktion 1/23 Biostatistik, WS 2017/18 Exponential- und Logarithmusfunktion Matthias Birkner http://www.staff.uni-mainz.de/birkner/biostatistik1718/ 27.10.2017 Potenzrechenregeln Es ist a n = a } a {{ a} für n

Mehr

Grundwissen 10. Überblick: Gradmaß rπ Länge eines Bogens zum Mittelpunktswinkels α: b = α

Grundwissen 10. Überblick: Gradmaß rπ Länge eines Bogens zum Mittelpunktswinkels α: b = α Grundwissen 0. Berechnungen an Kreis und Kugel a) Bogenmaß Beispiel: Gegeben ist ein Winkel α=50 ; dann gilt: b = b = π 50 0,8766 r r 360 Die (reelle) Zahl ist geeignet, die Größe eines Winkels anzugeben.

Mehr

Der Funktionsbegri und elementare Kurvendiskussion

Der Funktionsbegri und elementare Kurvendiskussion Der Funktionsbegri und elementare Kurvendiskussion Christoph Jansen Institut für Statistik, LMU München Formalisierungspropädeutikum 5. Oktober 2016 1 / 24 Allgemeiner Funktionsbegri Eine Funktion f ist

Mehr

Übungen Mathematik - Exponentialfunktion und Wachstumsprozesse

Übungen Mathematik - Exponentialfunktion und Wachstumsprozesse Übungen Mathematik - Eponentialfunktion und Wachstumsprozesse Aufgabe 1: Erstelle für die folgenden Funktionen f eine Wertetabelle von = -5 bis = 5 und zeichne ihren Graphen. a) f() = 0,8 b) f() = 1,25

Mehr

Exponentalfunktion und Logarithmus

Exponentalfunktion und Logarithmus A. Mentzendorff Geändert: September 2008 Eponentalfunktion und Logarithmus Inhaltsverzeichnis Wachstum und Zerfall 2 2 Der Logarithmus als Stammfunktion 4 3 Eponentialfunktionen 8 3. Die natürliche Eponentialfunktion........................

Mehr