Systemwissenschaften, Mathematik und Statistik
|
|
|
- Theodor Heidrich
- vor 8 Jahren
- Abrufe
Transkript
1 Systemwissenschaften, Mathematik und Statistik
2 Systemwissenschaften: 1 WS: Systemwissenschaften 1, VO 2std 2 SS: Systemwissenschaften 2, VO 2std Übung zu Systemwissenschaften, UE 2std 3 WS: Systemwissenschaften 3, VU 2std 4 SS: Angewandte Systemwissenschaften, VO 2std
3 Inhalte: Systemwissenschaftliche Basiskonzepte Systemanalyse Wirkungsdiagramme, Feed-back loops Grundkonzepte der Modellierung Stakeholderanalyse Stoffflussanalyse Mathematische Beschreibung von Systemen Numerische Simulation (Vensim) Datenerhebung, Datenunsicherheiten Grenzen der Modellierung Anwendung in Fachschwerpunkt
4 Mathematik und Statistik: 1 WS: Integral- und Differentialrechnung für USW, VU, 4std 2 SS: Vektorrechnung für USW, VU, 3std. 3 WS: Statistik für USW, VO, 2std 3 WS: Proseminar zu Statistik für USW, PS, 1 std
5 Inhalte (Mathematik): Reelle Zahlen und Ungleichungen, komplexe Zahlen Elementare Funktionen und ihre Umkehrfunktionen Grenzwert und Stetigkeit, Folgen Differentialrechnung (in mehreren Veränderlichen) Integralrechnung in einer Veränderlichen Lineare Gleichungssysteme und Vektoren Lineare Abbildungen und Matrizen Koordinatentransformationen inneres Produkt Determinanten, Eigenwerte und Anwendungen
6 Inhalte (Statistik): Ein- und zweidimensionale Daten, Kennzahlen graphische Darstellung Wahrscheinlichkeitsrechnung, Zufallsgrößen und Verteilungen Schätzfunktionen statistische Tests (Ein- und Zweistichprobenprobleme) Chi-quadrat Test
7 SW1: SW2: Einfuehrung, Geschichte, Konzepte Wirkungsdiagramm Regression, empirische Modelle statische und dynamische Mengenbilanzen (mm) System Dynamics (Vensim) Szenarien Modelle mit Differentialgleichungen Daten, Wahrscheinlichkeit, Sensitivitaet
8 Vermittlung eines Eindrucks von Integral- und Differentialrechnung fuer USW SW2: Kinetik chemischer Reaktionen Mathematisches Modell Anpassung an Daten Bakk- oder Masterarbeit: konkretes Beispiel
9 2. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION 47 Beispiel 2.1. Die Biomasse einer Bakterienkultur verdoppele sich alle 3 Stunden. Anfänglich sind 3 g vorhanden. Wie entwickelt sich die Biomasse im Laufe der Zeit? (Zeiteinheit Stunden) Lösung. Es bezeichne B(t) die Biomasse zur Zeit t (in Stunden). Zu Beginn des Experimentes (t = 0) war B(0) = B 0 g Biomasse vorhanden. Da sich die Biomasse alle 3 Stunden verdoppelt, gilt B(t + 3) = 2B(t). Unter der Annahme einer bestandsproportionalen Zuwachsrate folgt mit t = 1 B(t + 1) B(t) = λb(t), also B(t + 1) = rb(t) mit r = λ + 1. Für die unbekannte Konstante r ergibt sich aus die Beziehung Es folgt B(t + 3) = rb(t + 2) = r 2 B(t + 1) = r 3 B(t)! = 2B(t) r 3 = 2, d.h. r = 3 2. B(1) = rb 0, B(2) = rb(1) = r 2 B 0, B(3) = rb(2) = r 3 B 0, etc. Man erkennt das Bildungsgesetz für die Dynamik der Biomasse B(t) = B 0 r t = B 0 2 t 3. Beispiel 2.2. Wir betrachten nun die Entwicklung einer Bakterienkultur unter der Annahme P (t + t) P (t) λp (t) t. (vgl Beispiel 0.4). Dieser Ansatz ist nur für kurze Zeitintervalle t sinnvoll, da sich während dieser Zeitspanne die Populationsgröße ändert. Für hinreichend kurze Zeitintervalle kann man allerdings davon ausgehen, daß nur die zur Zeit t vorhandenen Bakterien sich vermehren können. Die Populationsgröße zur Zeit t = 0 sei P (0) = P 0, gesucht ist P (t) für t > 0. Lösung. Um P (t) zu berechnen, unterteilt man das Intervall [0, t] in n gleich lange Teilintervalle der Länge t = t n und setzt t i = i nt, i = 0,..., n. Es folgt P (t n ) P (t n 1 ) + λ tp (t n 1 ) = (1 + λ t n )P (t n 1) (1 + λ t n )(P (t n 2) + λ tp (t n 2 )) = (1 + λ t n )2 P (t n 2 ) = (1 + λ t n )n P (t 0 ). Es liegt nahe zu vermuten, daß eine Verfeinerung der Unterteilung des Zeitintervalles [0, t] zu einer besseren Approximation von P (t) führt und im Idealfall P (t) = lim n (1 + λ t n )n P 0
10 48 4. ELEMENTARE FUNKTIONEN gilt. Dieser Grenzwert existiert, denn man kann (mit einigem Aufwand) zeigen lim (1 + x n n )n = e x, x R, wobei e = 2, die Euler sche Zahl bezeichnet. Man erhält somit für die Populationsgröße P (t) = P 0 e λt. Die beiden Beispiele führten uns zwanglos auf einen neuen Typ von Funktionen, bei dem die unabhängige Variable im Exponenten steht: Definition 2.1 (Exponentialfunktion). Die Exponentialfunktion ist definiert durch { R R exp = x lim n (1 + x n )n. Anstelle exp(x) schreibt man auch e x. Man kann zeigen, daß exp(x) tatsächlich mit der reellen Potenz e x übereinstimmt. Dies wurde in der Bezeichnung bereits vorweggenommen. Es gelten somit die Rechenregeln aus Satz 1.4. Manchmal ist es zweckmäßig nicht nur die Eulersche Zahl als Basis für die Exponentialfunktion zur Verfügung zu haben: Satz 2.1 (Satz und Definition). Die Exponentialfunktion zur Basis a > 0, a 1 { R R exp a := x a x hat folgende Eigenschaften: (1) exp a ist stetig. (2) exp a ist eine Bijektion von R auf (0, ). (3) exp a ist streng monoton wachsend für a > 1 und streng monoton fallend für a < 1. (4) Für alle x R gilt exp a (x) > 0, exp a (0) = 1. (5) lim x exp a (x) = und lim x exp a (x) = 0 für a > 1 Abbildung 4.7 illustriert das qualitative Verhalten von exp a für a = 2 und a = 1 2. Satz 2.2. (1) Für positive λ wächst die Exponentialfunktion e λt rascher als jede Potenzfunktion, insbesonders gilt lim t t a = 0, für alle a > 0 eλt (2) Für negative λ konvergiert die Exponentialfunktion e λt rascher gegen Null als jede Potenzfunktion anwächst, insbesonders gilt lim t ta e λt = 0, für alle a > 0 Da jede Exponentialfunktion R bijektiv auf (0, ) abbildet, existiert die Umkehrfunktion: Definition 2.2 (Logarithmusfunktion). (1) Die Umkehrfunktion der Exponentialfunktion exp a : R (0, ), a > 0, a 1 definiert die Logarithmusfunktion zur Basis a log a : (0, ) R (2) Somit gilt: x = log a (y) y = exp a (x) = a x (3) log a (y) heißt Logarithmus von y zur Basis a.
11 Tabelle 3.2: Stickoxidbildung durch Zerfall einer Donorsubstanz Modellgrößen Größe Einheit Benennung Kommentar t s Zeit c D (t) mol/l Konzentration Donor gesucht c NO (t) mol/l Konzentration NO gesucht c mol/l Anfangskonzentration Donor bekannt o mol/l Konzentration O 2 bekannt k /s Reaktionskonstante Donorzerfall bekannt k l 2 /(mol 2 s) Reaktionskonstante NO-Abbau bekannt dynamische Mengenbilanzen d dt c D(t) = k 1 c D (t), d dt c NO(t) = k 1 c D (t) k 2 o 2 c NO (t) 2. Anfangsbedingungen c D (0) = c 0, c NO (0) = 0. x Abbildung 3.3: Simulation des NO-Experiments k1=3.0000e-003, k2=8.0000e Donor: --,; NO: -,o o o o o o o o o o o o o 0o Simulation: Donor strichliert, NO durchgezogen. gegebene Daten: Donor Sternchen, NO Kreise. t 30
Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759.
(4) Exponential- und Logarithmusfunktionen Satz Für jedes b > 1 gibt es eine eindeutig bestimmte Funktion exp b : R R + mit folgenden Eigenschaften. exp b (r) = b r für alle r Q Die Funktion exp b ist
Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57
Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5
Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57
Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5
2. Mathematische Grundlagen
2. Mathematische Grundlagen Erforderliche mathematische Hilfsmittel: Summen und Produkte Exponential- und Logarithmusfunktionen 21 2.1 Endliche Summen und Produkte Betrachte n reelle Zahlen a 1, a 2,...,
Exponential- und Logarithmusfunktion. Biostatistik, WS 2010/2011. Inhalt. Matthias Birkner Mehr zur Eulerschen Zahl und natürliche
Biostatistik, WS 2010/2011 Exponential- und Logarithmusfunktion Matthias Birkner http://www.mathematik.uni-mainz.de/~birkner/biostatistik1011/ 5.11.2010 Inhalt 1 Exponential- und Logarithmusfunktion Potenzen
Mathematik für Biologen
Dirk Horstmann Mathematik für Biologen 2. überarbeitete und ergänzte Auflage & Springer Spektrum 1 Einstieg und grafische Darstellungen von Messdaten 1 1.1 Grafische Darstellung von Daten und unterschiedliche
Die Exponentialfunktion und ihre Anwendung in der Biologie
Die Exponentialfunktion und ihre Anwendung in der Biologie Escheria coli (kurz E. coli) sind Bakterien, die im Darm von Säugetieren und Menschen leben. Ein junges E. coli Bakterium wächst mit einer konstanten
Exponentialfunktion, Logarithmus
Exponentialfunktion, Logarithmus. Die Exponentialfunktion zu einer Basis > 0 Bei Exponentialfunktionen ist die Basis konstant und der Exponent variabel... Die Exponentialfunktion zu einer Basis > 0. Sei
Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage
Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 4., aktualisierte und erweiterte Auflage Knut Sydsaeter Peter Hammond mit Arne Strom Übersetzt und fach lektoriert durch Dr. Fred Böker
(3) Wurzelfunktionen. Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz
(3) Wurzelfunktionen Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz Definition y = f (x) g(y) = x gilt. Für jedes k N ist
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als
Biostatistik, WS 2010/2011 Exponential- und Logarithmusfunktion
1/22 Biostatistik, WS 2010/2011 Exponential- und Logarithmusfunktion Matthias Birkner http://www.mathematik.uni-mainz.de/~birkner/biostatistik1011/ 5.11.2010 2/22 Inhalt Exponential- und Logarithmusfunktion
17 Logarithmus und allgemeine Potenz
7 Logarithmus und allgemeine Potenz 7. Der natürliche Logarithmus 7.3 Die allgemeine Potenz 7.4 Die Exponentialfunktion zur Basis a 7.5 Die Potenzfunktion zum Exponenten b 7.6 Die Logarithmusfunktion zur
Springers Mathematische Formeln
г Lennart Rade Bertil Westergren Springers Mathematische Formeln Taschenbuch für Ingenieure, Naturwissenschaftler, Wirtschaftswissenschaftler Übersetzt und bearbeitet von Peter Vachenauer Inhaltsverzeichnis
Mathematik für Wirtschaftswissenschaftler
Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,
Mathematik für Studienanfänger
Mathematik für Studienanfänger von Dr. G. Tinhofer mit 191 Bildern Carl Hanser Verlag München Wien 1977 Kapitel 1: Grundbegriffe der Mathematik 1 1.1 Mengen 1 1.2 Eigenschaften von Objekten - Eigenschaften
Springers Mathematische Formeln
Lennart Rade Bertil Westergren Springers Mathematische Formeln Taschenbuch für Ingenieure, Naturwissenschaftler, Informatiker, Wirtschaftswissenschaftler Übersetzt und bearbeitet von Peter Vachenauer Dritte,
A5 Exponentialfunktion und Logarithmusfunktion
A5 Exponentialfunktion und Logarithmusfunktion A5 Exponentialfunktion und Logarithmusfunktion Wachstums- und Zerfallsprozesse. Beispiel: Bakterien können sich sehr schnell vermehren. Eine bestimmte Bakterienart
Mathematik für Wirtschaftswissenschaftler
Knut Sydsæter Peter Hammond mit Arne Strøm Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 4., aktualisierte Auflage Übersetzt und fachlektoriert durch Dr. Fred Böker Professor für
Vorwort Abbildungsverzeichnis Teil I Mathematik 1
Inhaltsverzeichnis Vorwort Abbildungsverzeichnis V XIII Teil I Mathematik 1 1 Elementare Grundlagen 3 1.1 Grundzüge der Mengenlehre... 3 1.1.1 Darstellungsmöglichkeiten von Mengen... 4 1.1.2 Mengenverknüpfungen...
lim Der Zwischenwertsatz besagt folgendes:
2.3. Grenzwerte von Funktionen und Stetigkeit 35 Wir stellen nun die wichtigsten Sätze über stetige Funktionen auf abgeschlossenen Intervallen zusammen. Wenn man sagt, eine Funktion f:[a,b] R, definiert
Inhaltsverzeichnis. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematischer Vorkurs.
Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Exponentialfunktionen und Logarithmen Inhaltsverzeichnis 1 Einführung 2 2
Mathematische und statistische Hilfsmittel für Pharmazeuten
Mathematische und statistische Hilfsmittel für Pharmazeuten Dr. Helga Lohöfer Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Fassung vom September 2003 Inhaltsverzeichnis I Elementare
Exponentialfunktion & Logarithmus
Mathematik I für Biologen, Geowissenschaftler und Geoökologen & 31. Oktober 2011 & Potenzen Definitionsbereiche Potenzrechenregeln Beispiel exp Beispiel: Lichtabsorption Definition Injektivität Beispiel:
Mathematik I/II für Verkehrsingenieurwesen 2007/08/09
Prof. Dr. habil. M. Ludwig Mathematik I/II für Verkehrsingenieurwesen 2007/08/09 Inhalt der Vorlesung Mathematik I Schwerpunkte: 0 Vorbetrachtungen, Mengen 1. Lineare Algebra 1.1 Matrizen 1.2 Determinanten
I. Zahlen, Rechenregeln & Kombinatorik
XIV. Wiederholung Seite 1 I. Zahlen, Rechenregeln & Kombinatorik 1 Zahlentypen 2 Rechenregeln Brüche, Wurzeln & Potenzen, Logarithmen 3 Prozentrechnung 4 Kombinatorik Möglichkeiten, k Elemente anzuordnen
Mathematik 2 für Nichtmathematiker
Mathematik 2 für Nichtmathematiker Funktionen - Folgen und Reihen - Differential- und Integralrechnung - Differentialgleichungen - Ordnung und Chaos von Professor Dr. Manfred Precht Dipl.-Math. Karl Voit
Basiswissen Mathematik, Statistik. und Operations Research für. Wirtschaftswissenschaftler. von. Prof. Dr. Gert Heinrich DHBW Villingen-Schwenningen
Basiswissen Mathematik, Statistik und Operations Research für Wirtschaftswissenschaftler von Prof. Dr. Gert Heinrich DHBW Villingen-Schwenningen 5., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis
Mathematik 1. ^A Springer. Albert Fetzer Heiner Fränkel. Lehrbuch für ingenieurwissenschaftliche Studiengänge
Albert Fetzer Heiner Fränkel Mathematik 1 Lehrbuch für ingenieurwissenschaftliche Studiengänge Mit Beiträgen von Akad. Dir. Dr. rer. nat. Dietrich Feldmann Prof. Dr. rer. nat. Albert Fetzer Prof. Dr. rer.
Biostatistik, Sommer 2018
1/37 Biostatistik, Sommer 2018 Folgen, Summen, Exponentialfunktion, Lambert-Beer Prof. Dr. Achim Klenke http://www.aklenke.de 1. Vorlesung: 20.04.2018 2/37 Inhalt 1 Organisatorisches Themen Literatur 2
Mathematik für Wirtschaftswissenschaftler
Fred Böker Mathematik für Wirtschaftswissenschaftler Das Übungsbuch 2., aktualisierte Auflage Higher Education München Harlow Amsterdam Madrid Boston San Francisco Don Mills Mexico City Sydney a part of
Mathematischer Vorbereitungskurs für Ökonomen. Exponentialfunktionen und Logarithmen
Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Exponentialfunktionen und Logarithmen Inhalt:. Zinsrechnung. Exponential- und Logaritmusfunktionen
Kapitel 6. Exponentialfunktion
Kapitel 6. Exponentialfunktion 6.1. Potenzreihen In Kap. 4 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.
2. Funktionen einer Variablen
. Funktionen einer Variablen Literatur: [SH, Kapitel 4].1. Definitionen.. Typen von Funktionen..1. Lineare Funktionen... Quadratische Funktionen..3. Polynome..4. Potenzfunktionen..5. Exponentialfunktionen..6.
Mathematik für Wirtschaftswissenschaftler
Mathematik für Wirtschaftswissenschaftler Yves Schneider Universität Luzern Frühjahr 2016 Repetition Kapitel 1 bis 3 2 / 54 Repetition Kapitel 1 bis 3 Ausgewählte Themen Kapitel 1 Ausgewählte Themen Kapitel
Mathematik- Vorkurs. Übungs- und Arbeitsbuch für Studienanfänger
Mathematik- Vorkurs Übungs- und Arbeitsbuch für Studienanfänger Von Prof. Dr. rer. nat. habil. Wolfgang Schäfer Oberstudienrat Kurt Georgi und Doz. Dr. rer. nat. habil. Gisela Trippier Unter Mitarbeit
Mathematik anschaulich dargestellt
Peter Dörsam Mathematik anschaulich dargestellt für Studierende der Wirtschaftswissenschaften 15. überarbeitete Auflage mit zahlreichen Abbildungen PD-Verlag Heidenau Inhaltsverzeichnis 1 Lineare Algebra
Etwa mehr zu Exponential- und Logarithmusfunktion
Etwa mehr zu Exponential- und Logarithmusfunktion Will man einen Logarithmus definieren, so liegt es nahe, diesen als Umkehrfunktion zur Exponentialfunktion zu definieren. Solch eine kann es aber nicht
Monotone Funktionen. Definition Es sei D R. Eine Funktion f : D R heißt. (ii) monoton fallend, wenn für alle x, x D gilt. x < x f (x) f (x ).
Monotone Funktionen Definition 4.36 Es sei D R. Eine Funktion f : D R heißt (i) monoton wachsend, wenn für alle x, x D gilt x < x f (x) f (x ). Wenn sogar die strikte Ungleichung f (x) < f (x ) folgt,
Mathematik für Wirtschaftswissenschaftler
Fred Böker Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug Das Übungsbuch ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney
Mathematik für Naturwissenschaftler
Mathematik für Naturwissenschaftler von Prof. Dr. Bartel Leendert van der Waerden Universität Zürich Wissenschaftsverlag Mannheim/Wien/Zürich INHALTSVERZEICHNIS 1. Teil: Analytische Geometrie und Vektorrechnung
Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an.
Analysis I, WiSe 2013/14, 04.02.2014 (Iske), Version A 1 Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. a) Welche der folgenden Aussagen über Folgen sind sinnvoll und
REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth
REPETITORIUM DER HÖHEREN MATHEMATIK Gerhard Merziger Thomas Wirth 6 INHALTSVERZEICHNIS Inhaltsverzeichnis Fl Formelsammlung F2 Formelsammlung Alphabete 11 Zeichenindex 12 1 Grundbegriffe 14 1.1 Logische
Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)
1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. Dezember 2011)
Mathematik zum Studieneinstieg
Gabriele Adams Hermann-Josef Kruse Diethelm Sippel Udo Pfeiffer Mathematik zum Studieneinstieg Grundwissen der Analysis für Wirtschaftswissenschaftler, Ingenieure, Naturwissenschaftler und Informatiker
$Id: stetig.tex,v /06/26 15:40:18 hk Exp $
$Id: stetig.tex,v 1.11 2012/06/26 15:40:18 hk Exp $ 9 Stetigkeit 9.1 Eigenschaften stetiger Funktionen Am Ende der letzten Sitzung hatten wir eine der Grundeigenschaften stetiger Funktionen nachgewiesen,
RRL GO- KMK EPA Mathematik. Ulf-Hermann KRÜGER Fachberater für Mathematik bei der Landesschulbehörde, Abteilung Hannover
RRL GO- KMK EPA Mathematik Jahrgang 11 Propädeutischer Grenzwertbegriff Rekursion /Iteration Ableitung Ableitungsfunktion von Ganzrationalen Funktionen bis 4. Grades x 1/(ax+b) x sin(ax+b) Regeln zur Berechnung
Formelsammlung für Wirtschaftswissenschaftler
Fred Böker Formelsammlung für Wirtschaftswissenschaftler Mathematik und Statistik PEARSON.. ;. ; ; ; *:;- V f - - ' / > Щ DtUClllirn ein Imprint von Pearson Education München Boston San Francisco Harlow,
Kapitel 4. Folgen und Reihen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 4 Folgen und Reihen 1 / 38
Kapitel 4 Folgen und Reihen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 4 Folgen und Reihen 1 / 38 Folgen Eine Folge ist eine Anordnung von reellen Zahlen. Die einzelnen Zahlen heißen Glieder
Inhaltsverzeichnis Grundlagen Analysis von Funktionen einer Veränderlichen Reihen 189
Inhaltsverzeichnis 1 Grundlagen 1 1.1 Logische Grundlagen........................... 2 1.2 Grundlagen der Mengenlehre...................... 8 1.3 Abbildungen................................ 15 1.4 Die
Logarithmusfunktion zur Basis 2, Aufgaben. 7-E Vorkurs, Mathematik
Logarithmusfunktion zur Basis 2, Aufgaben 7-E Vorkurs, Mathematik Logarithmusfunktion zur Basis 2: Aufgaben 7-9 Aufgabe 7: Bestimmen Sie eine vertikale Asymptote für die folgenden Funktionen: f ( x) =
Inhalt 1 GRUNDLAGEN Zahlen Natürliche Zahlen Ganze Zahlen Rationale Zahlen Reelle Zahlen 4
Inhalt 1 GRUNDLAGEN 1 1.1 Zahlen 1 1.1.1 Natürliche Zahlen 1 1.1.2 Ganze Zahlen 2 1.1.3 Rationale Zahlen 3 1.1.4 Reelle Zahlen 4 1.2 Rechnen mit reellen Zahlen 8 1.2.1 Grundgesetze der Addition 8 1.2.2
Inhaltsverzeichnis. 1 Lineare Algebra 12
Inhaltsverzeichnis 1 Lineare Algebra 12 1.1 Vektorrechnung 12 1.1.1 Grundlagen 12 1.1.2 Lineare Abhängigkeit 18 1.1.3 Vektorräume 22 1.1.4 Dimension und Basis 24 1.2 Matrizen 26 1.2.1 Definition einer
Mathematik für Anwender I
Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 17 Potenzreihen Definition 17.1. Es sei (c n ) n N eine Folge von reellen Zahlen und x eine weitere reelle Zahl. Dann heißt
Basiswissen Mathematik, Statistik und Operations Research für Wirtschaftswissenschaftler
Basiswissen Mathematik, Statistik und Operations Research für Wirtschaftswissenschaftler Bearbeitet von Gert Heinrich 5., korr. Aufl. 2013. Taschenbuch. XV, 399 S. Paperback ISBN 978 3 486 75491 9 Format
Inhalt. 1 Rechenoperationen Gleichungen und Ungleichungen... 86
Inhalt 1 Rechenoperationen.................................. 13 1.1 Grundbegriffe der Mengenlehre und Logik............................. 13 1.1.0 Vorbemerkung.................................................
Höhere Mathematik für Naturwissenschaftler und Ingenieure
Günter Bärwolff Höhere Mathematik für Naturwissenschaftler und Ingenieure unter Mitarbeit von Gottfried Seifert ELSEVIER SPEKTRUM AKADEMISCHER VERLAG Spekt rum K-/1. AKADEMISCHER VERLAG AKADEMISC Inhaltsverzeichnis
Großes Lehrbuch der Mathematik für Ökonomen
Großes Lehrbuch der Mathematik für Ökonomen Von Professor Dr. Karl Bosch o. Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim und Professor Dr. Uwe Jensen R. Oldenbourg
11 Logarithmus und allgemeine Potenzen
Logarithmus und allgemeine Potenzen Bevor wir uns mit den Eigenschaften von Umkehrfunktionen, und insbesondere mit der Umkehrfunktion der Eponentialfunktion ep : R R + beschäftigen, erinnern wir an den
differenzierbare Funktionen
Kapitel IV Differenzierbare Funktionen 18 Differenzierbarkeit und Rechenregeln für differenzierbare Funktionen 19 Mittelwertsätze der Differentialrechnung mit Anwendungen 20 Gleichmäßige Konvergenz von
Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik
e Exponentialfunktionen Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik Exponentialfunktionen Potenzfunktion: y = x 9 Exponentialfunktion: y = 9 x Die Potenz- und die Exponentialfunktionen
Differential- und Integralrechnung
Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik
Mathematik für Studierende der Biologie und des Lehramtes Chemie
Mathematik für Studierende der Biologie und des Lehramtes Chemie Dominik Schillo Universität des Saarlandes 03.11.2017 (Stand: 02.11.2017, 23:25 Uhr) Mathematik für Studierende der Biologie und des Lehramtes
Grundlagen der Mathematik, der Statistik und des Operations Research für Wirtschaftswissenschaftler
Grundlagen der Mathematik, der Statistik und des Operations Research für Wirtschaftswissenschaftler Von Professor Dr. Gert Heinrich 3., durchgesehene Auflage R.Oldenbourg Verlag München Wien T Inhaltsverzeichnis
Funktionen. Mathematik-Repetitorium
Funktionen 4.1 Funktionen einer reellen Veränderlichen 4.2 Eigenschaften von Funktionen 4.3 Die elementaren Funktionen 4.4 Grenzwerte von Funktionen, Stetigkeit Funktionen 1 4. Funktionen Funktionen 2
Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016
Mathematik I+II für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 I. Wiederholung Schulwissen 1.1. Zahlbereiche 1.2. Rechnen mit reellen Zahlen 1.2.1. Bruchrechnung 1.2.2. Betrag 1.2.3. Potenzen 1.2.4. Wurzeln
Ingenieurmathematik mit Computeralgebra-Systemen
Hans Benker Ingenieurmathematik mit Computeralgebra-Systemen AXIOM, DERIVE, MACSYMA, MAPLE, MATHCAD, MATHEMATICA, MATLAB und MuPAD in der Anwendung vieweg X Inhaltsverzeichnis 1 Einleitung 1 1.1 Ingenieurmathematik
Kapitel 3 EXPONENTIAL- UND LOGARITHMUS-FUNKTION
Kapitel 3 EXPONENTIAL- UND LOGARITHMUS-FUNKTION Fassung vom 3 Dezember 2005 Mathematik für Humanbiologen und Biologen 39 3 Exponentialfunktion 3 Exponentialfunktion Wir betrachten als einführendes Beispiel
Inhaltsverzeichnis Grundlagen Analysis von Funktionen einer Veränderlichen Reihen 191
Inhaltsverzeichnis 1 Grundlagen 1 1.1 Logische Grundlagen........................... 2 1.2 Grundlagen der Mengenlehre...................... 8 1.3 Abbildungen................................ 15 1.4 Die
Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)
Vorlesung Mathematik für Ingenieure (Wintersemester 2008/09) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 9. November 2008) Die
Monotonie, Konkavität und Extrema
Kapitel 8 Monotonie, Konkavität und Extrema Josef Leydold Auffrischungskurs Mathematik WS 2017/18 8 Monotonie, Konkavität und Extrema 1 / 55 Monotonie Eine Funktion f heißt monoton steigend, falls x 1
Monotonie, Konkavität und Extrema
Kapitel 8 Monotonie, Konkavität und Extrema Josef Leydold Auffrischungskurs Mathematik WS 2017/18 8 Monotonie, Konkavität und Extrema 1 / 55 Monotonie Eine Funktion f heißt monoton steigend, falls x 1
19. Weitere elementare Funktionen
19. Weitere elementare Funktionen 1. Der Arcussinus Die Sinusfunktion y = f(x) = sin x (mit y = cos x) ist im Intervall [ π, π ] streng monoton wachsend und somit existiert dort eine Umkehrfunktion. f
Mathematische Grundlagen in Biologie und Geowissenschaften Kurs 2004/2005
Ina Kersten Mathematische Grundlagen in Biologie und Geowissenschaften Kurs 2004/2005 TgX-Bearbeitung von Ben Müller und Christian Kierdorf Universitätsdrucke Göttingen 2004 Zahlen und Abbildungen 10 1
K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis
Übungsaufgaben 3. Übung: Woche vom 27. 10. bis 31. 10. 2010 Heft Ü1: 3.14 (c,d,h); 3.15; 3.16 (a-d,f,h,j); 3.17 (d); 3.18 (a,d,f,h,j) Übungsverlegung für Gruppe VIW 05: am Mo., 4.DS, SE2 / 022 (neuer Raum).
Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag
MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 203/4 Blatt 20.0.204 Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag 4. a) Für a R betrachten wir die Funktion
Kapitel 6. Funktionen. Josef Leydold Mathematik für VW WS 2017/18 6 Funktionen 1 / 49
Kapitel 6 Funktionen Josef Leydold Mathematik für VW WS 2017/18 6 Funktionen 1 / 49 Reelle Funktion Reelle Funktionen sind Abbildungen, in denen sowohl die Definitionsmenge als auch die Wertemenge Teilmengen
Exponentielles Wachstum
Exponentielles Wachstum ein (Kurz-)Referat Dies ist eine Beilage zum Gruppen-SOL - Projekt Potenz- & Exponentialfunktionen Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch 16. Februar 2016 Inhaltsverzeichnis
Übungen zu Einführung in die Analysis
Übungen zu Einführung in die Analysis (Nach einer Zusammengestellung von Günther Hörmann) Sommersemester 2011 Vor den folgenden Aufgaben werden in den ersten Wochen der Übungen noch jene zur Einführung
Folgen, Reihen, Potenzreihen, Exponentialfunktion
Ferienkurs Seite 1 Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Wintersemester 2011/12 Folgen, Reihen, Potenzreihen, Exponentialfunktion 20.03.2012 Inhaltsverzeichnis 1 Folgen 2
