Biostatistik, WS 2017/18 Exponential- und Logarithmusfunktion

Größe: px
Ab Seite anzeigen:

Download "Biostatistik, WS 2017/18 Exponential- und Logarithmusfunktion"

Transkript

1 1/23 Biostatistik, WS 2017/18 Exponential- und Logarithmusfunktion Matthias Birkner

2 Potenzrechenregeln Es ist a n = a } a {{ a} für n N := {1, 2, 3,... }, n mal also ist (m, n N, a, b R, a, b 0): a m a n = } a {{ a} m mal (a m ) n = (a a) a n b n = a } {{ a} n mal a a }{{} n mal = a m+n } {{ (a a) = a }}{{} m mal m mal } {{ } n mal b b }{{} n mal = (ab) (ab) = (ab) }{{} n n mal Man setzt a 0 := 1, a 1 := 1, damit gelten obige Rechenregeln a auch für m, n Z. ( ( Bsp.: (a 5 ) 2 1) ) 5 2 ( 1 ) 2 = = = (a 5 ) 2 = a 10 = a ( 5)( 2) a a 5 4/23

3 Potenzfunktionen a 2 a 3 a 4 a Für n N ist die Funktion a a n streng monoton wachsend auf [0, ), d.h. a n > b n für a > b 0. a 5/23

4 Wurzelfunktionen b = a a = b a b Die Umkehrfunktion von a a n (für a 0) ist die n-te Wurzel: n b ist dasjenige a mit a n = b Man schreibt b 1 n := n b. Bem.: Für b < 0 ist b 1 n keine reelle Zahl (jedenfalls wenn n gerade ist). 6/23

5 7/23 Potenzrechenregeln: Gebrochene Exponenten sind ok b 1 n = n b ist dasjenige a mit a n = b Für p = m n Q setzt man bp = ( b 1 n Die alten Potenzrechenregeln gelten weiter, wenn man statt ganzzahliger Exponenten rationale zulässt, beispielsweise ist ) m ( ) (b m ) 1 n = b m n = ( b 1 n ) m, denn (( b 1 n ) m ) n ( 1 ) nm (( 1 ) n ) m = b n = b n = (b) m, d.h. die rechte Seite in ( ) erfüllt die Definition der linken Seite.

6 Exponentialfunktionen (Motivation) Erinnerung: Geometrische Folgen: 1 = a 0, a = a 1, a 2, a 3,... (mit einem a > 0) Beispiel: Die Höhe der Schaumkrone in einem frisch eingeschenkten Bierglas betrage 5cm und nehme (gleichmäßig) pro Minute um 30% ab. Zeit [Min] Höhe [cm] 5 5 0,7 5 0, , ,7 4 = 3,5 = 2,45 = 1,715 = 1,2 Frage: Wie hoch ist die Schaumkrone nach 40 Sekunden? Wir erwarten pro Sekunde eine Abnahme um den Faktor (0,7) 1 60, denn 1 Minute = 60 Sekunden und ( ) (0,7) = 0,7. Demnach: 5 ((0,7) ) = 5 0,7 3 = 3,94 [cm]. Allgemein: Höhe nach x Minuten: h(x) = 5 0,7 x (für x R beliebig, in dieser Anwendung ist nur x 0 sinnvoll) 8/23

7 Exponentialfunktionen Für a > 0 ist die Funktion f (x) = a x für x R definiert (und a x > 0). a x x 3 x 0.5 x 0.2 x a x ist monoton wachsend für a > 1, fallend für a < 1. Bemerkung: Die Mathematiker sprechen von einer stetigen Fortsetzung der Funktion a x, die zunächst nur für rationale x erklärt war, auf x R. 9/23

8 10/23 Rechenregeln für allgemeine Exponentialausdrücke Für a, b > 0 und x, y R (beliebig) gilt a x a y = a x+y a 0 = 1 a x = 1 a x (a x ) y = a xy a x b x = (ab) x

9 Logarithmusfunktion(en) als Umkehrung von Exponentialfunktion(en) y = 2 x log 2 (y) x y Die Umkehrfunktion von x a x (für a 0) ist der Logarithmus (zur Basis a): log a y ist dasjenige x mit a x = y Beispiel: log 2 8 = 3, denn 2 3 = 8 11/23

10 Logarithmus: Rechenregeln Für a > 0 gilt ( ) log a (x) + log a (y) = log a (x y), x, y > 0 denn beispielsweise log a ( 1 x ) = loga (x), x > 0 log a (x y ) = y log a (x), a log a (x)+log a (y) = a log a (x) a log a (y) = x y, x > 0, y R d.h. die linke Seite von ( ) erfüllt die Definition der rechten Seite. Bemerkung (Umrechnung der Basis): a, b > 0, x > 0 log b (x) = log a (x) log a (b) denn b = a log a (b), also b log a (x) log a (b) = a log a (b) log a (x) log a (b) = a log a (x) = x 12/23

11 13/23 Exponential- und Logarithmusfunktion Umrechnung der Basis Für a, b > 0, x > 0 gilt log b (x) = log a (x) log a (b) In der Praxis häufige Basen sind 10, 2 und e = 2, (die sog. Eulersche Zahl, man schreibt auch ln(x) für log e (x)). Insbesondere also ln(x) = log 10 (x) log 10 (e) log 10 (x) = ln(x) ln(10) log 2 (x) = log 10 (x) log 10 (2) ( log10 (e) = 0, ) ( ln(10) = 1 log 10 (e) = 2, ) ( log10 (2) = 0, )

12 Exponential- und Logarithmusfunktion Eulersche Zahl und natu rlicher Logarithmus Leonhard Euler, Die Eulersche Zahl e = e1 = limn 1 + n1 )n = 2, spielt in der Mathematik eine besondere Rolle. Man schreibt ha ufig ex = exp(x) und nennt dies die Exponentialfunktion. Ihre Umkehrfunktion, loge (x) heißt natu rlicher Logarithmus und wird oft ln(x) geschrieben. (Wir werden spa ter sehen, was so bemerkenswert natu rlich an e = exp(1) ist.) 14/23

13 Anwendung: exponentielles Wachstum 16/23 Exponentielles Wachstum, Malthusscher Parameter Thomas Robert Malthus An Essay on the Principle of Population, 1798 N(t) = Populationsgröße zur Zeit t Modell: N(t) = N(0)e αt α = Wachstumsparameter oder Malthusscher Parameter, es ist N(t+h) N(t) = N(0) eα(t+h) e αt = N(0)e αt eαh 1 αn(t) h h h (sofern h klein), d.h. Änderung ist proportional zur aktuellen Anzahl. Modell plausibel, wenn N(0) (halbwegs) groß und es keine Ressourcenbeschränkung gibt.

14 Anwendung: exponentielles Wachstum Modell: N(t) = N(0)e αt Beispiel: Eine Hefekultur bestehe zur Zeit t = 0 [h] aus 1000 Zellen, α = 0,17 Wieviele Zellen enthält die Kultur nach 2 Stunden? N(2) = 1000 e 0,17 2 = 1405 Wie lange dauert es, bis sich die Kultur verdoppelt hat? Bestimme t 2 so, dass N(t 2 ) = N(0)e 0,17 t 2 = 2N(0) gilt, d.h. e 0,17 t 2 = 2 oder t2 = ln(2) = 4,1 [h]. 0,17 Beachte: Im Modell bestünde die Kultur nach 20 Tagen aus 1000 e 0, = 2, Zellen. Bei einem mittleren Gewicht von 7, g pro Zelle wöge sie also ca. 2, , = 2, g Zum Vergleich: Die Masse der Erde beträgt ca. 5, g (und das Modell ist in diesem Bereich sinnlos). Samir A. Haddad and Carl C. Lindegren, A Method for Determining the Weight of an Individual Yeast Cell, Appl. Microbiol. 1(3): , (1953). 17/23

15 19/23 Exponential- und Logarithmusfunktion Was ist so bemerkenswert an e? Mehr zur Eulerschen Zahl und natürliche Exponentialfunktion Eulersche Zahl e = 2, (Taylor-)Reihe der Exponentialfunktion ( Exponentialreihe ) e x = exp(x) = x x x x 4 + man kürzt ab n! := n (sprich: n-fakultät ) und vereinbart 0! := 1, z.b. 1! = 1, 2! = 2, 3! = 6, 4! = 24, 5! = 120,..., also exp(x) = x 0 0! + x 1 1! + x 2 2! + x 3 3! + x 4 4! + = n=0 x n n!

16 Mehr zur Eulerschen Zahl und natürliche Exponentialfunktion Exkurs: Geometrische Summenformel: Für n = 1, 2, 3,... und a 1 ist 1 + a + + a n = 1 an+1 1 a, denn (1 + a + a 2 + a a n 1 + a n ) (1 a) = 1 + a + a 2 + a 3 + a n 1 + a n a a 2 a 3 a 4 a n a n+1 = 1 a n+1 Geometrische Reihe: Für a < 1 ist a n =1 + a + a 2 + a 3 + a 4 + n=0 = lim n ( 1 + a + a 2 + a a n 1 + a n) 1 a n+1 = lim n 1 a = 1 1 a (Für a 1 konvergiert die Reihe nicht.) 20/23

17 21/23 Exponential- und Logarithmusfunktion Exkurs: Warum konvergiert die Exponentialreihe? exp(x) = x 0 0! + x 1 1! + x 2 2! + x 3 3! + x 4 Mehr zur Eulerschen Zahl und natürliche Exponentialfunktion 4! + = n=0 Betrachte Quotienten aufeinanderfolgender Summanden: x 2 2! x 1 1! = 1! 2! x = x x 3 2, 3! x 2 2! = 2! 3! x = x x n 3,..., n! x n 1 (n 1)! x n n! x 1 1! x 0 0! = (n 1)! n! x = x n,... Sei n 0 N so, dass 2n 0 1 < x 2n 0, dann ist für n n 0 : x n = x n 0 n! n 0! x n 0 +1 (n 0 +1)! x n 0 n 0! x n 0 +2 (n 0 +2)! x n 0 +1 (n 0 +1)! x n n! x n 1 (n 1)! } {{ } n n 0 Faktoren, jeder 1 2 = x 1, x n 0 ( 1 n n0 = 2 n 0 x n 0! 2) n 0 ( 1 n n 0! 2) Also (Bem.: Wir haben gerade das Quotientenkriterium benutzt/bewiesen.) x n 2 n 0 x n 0 ( 1 ) n < n! n n=n 0! 2 0 n=n 0

18 exp ist seine eigene Ableitung Mehr zur Eulerschen Zahl und natürliche Exponentialfunktion Erinnerung/Vorschau: Ableitung (Steigung einer Funktion) f (x) = x n, so ist f (x) = nx n 1 Wenn summandenweises Ableiten erlaubt ist (was hier der Fall ist): ( x exp 0 (x) = 0! + x 1 1! + x 2 2! + x 3 3! + x ) 4 4! + = 0 + 1x 0 1! + 2x 1 2! + 3x 2 3! + 4x 3 4! + = x 1 2 1! + 3x 2 3 2! + 4x 3 4 3! + = x 0 0! + x 1 1! + x 2 2! + x 3 3! + = exp(x) Dies ist der Grund, warum e x = exp(x) die natürlichste Exponentialfunktion ist, ihre Umkehrfunktion heißt daher auch natürlicher Logarithmus.) 22/23

19 Exponential- und Logarithmusfunktion Mehr zur Eulerschen Zahl und natu rliche Exponentialfunktion Leonhard Euler, /23

Biostatistik, WS 2010/2011 Exponential- und Logarithmusfunktion

Biostatistik, WS 2010/2011 Exponential- und Logarithmusfunktion 1/22 Biostatistik, WS 2010/2011 Exponential- und Logarithmusfunktion Matthias Birkner http://www.mathematik.uni-mainz.de/~birkner/biostatistik1011/ 5.11.2010 2/22 Inhalt Exponential- und Logarithmusfunktion

Mehr

Exponential- und Logarithmusfunktion. Biostatistik, WS 2010/2011. Inhalt. Matthias Birkner Mehr zur Eulerschen Zahl und natürliche

Exponential- und Logarithmusfunktion. Biostatistik, WS 2010/2011. Inhalt. Matthias Birkner Mehr zur Eulerschen Zahl und natürliche Biostatistik, WS 2010/2011 Exponential- und Logarithmusfunktion Matthias Birkner http://www.mathematik.uni-mainz.de/~birkner/biostatistik1011/ 5.11.2010 Inhalt 1 Exponential- und Logarithmusfunktion Potenzen

Mehr

2. Mathematische Grundlagen

2. Mathematische Grundlagen 2. Mathematische Grundlagen Erforderliche mathematische Hilfsmittel: Summen und Produkte Exponential- und Logarithmusfunktionen 21 2.1 Endliche Summen und Produkte Betrachte n reelle Zahlen a 1, a 2,...,

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 17 Potenzreihen Definition 17.1. Es sei (c n ) n N eine Folge von reellen Zahlen und x eine weitere reelle Zahl. Dann heißt

Mehr

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759.

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759. (4) Exponential- und Logarithmusfunktionen Satz Für jedes b > 1 gibt es eine eindeutig bestimmte Funktion exp b : R R + mit folgenden Eigenschaften. exp b (r) = b r für alle r Q Die Funktion exp b ist

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Summen, Exponentialfunktion, Ableitung Prof. Dr. Achim Klenke http://www.aklenke.de 2. Vorlesung: 04.11.2011 1/46 Inhalt 1 Summen und Produkte Summenzeichen Produktzeichen

Mehr

Exponentialfunktion, Logarithmus

Exponentialfunktion, Logarithmus Exponentialfunktion, Logarithmus. Die Exponentialfunktion zu einer Basis > 0 Bei Exponentialfunktionen ist die Basis konstant und der Exponent variabel... Die Exponentialfunktion zu einer Basis > 0. Sei

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Mathematik für Wirtschaftswissenschaftler Yves Schneider Universität Luzern Frühjahr 2016 Repetition Kapitel 1 bis 3 2 / 54 Repetition Kapitel 1 bis 3 Ausgewählte Themen Kapitel 1 Ausgewählte Themen Kapitel

Mehr

Kapitel 6. Exponentialfunktion

Kapitel 6. Exponentialfunktion Kapitel 6. Exponentialfunktion 6.1. Potenzreihen In Kap. 4 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

Kapitel 3 EXPONENTIAL- UND LOGARITHMUS-FUNKTION

Kapitel 3 EXPONENTIAL- UND LOGARITHMUS-FUNKTION Kapitel 3 EXPONENTIAL- UND LOGARITHMUS-FUNKTION Fassung vom 3 Dezember 2005 Mathematik für Humanbiologen und Biologen 39 3 Exponentialfunktion 3 Exponentialfunktion Wir betrachten als einführendes Beispiel

Mehr

Der lange Weg zu den Potenz- und Logarithmengesetzen

Der lange Weg zu den Potenz- und Logarithmengesetzen Der lange Weg zu den Potenz- und Logarithmengesetzen. Schritt: x n, n N, also eine natürliche Zahl ungleich Null). Wie jeder weiß gilt: 0 6 0 3 = } 0 0 0 {{ 0 0 0} 0 } 0 {{ 0} = } 0 0 0 0 0 {{ 0 0 0 0}

Mehr

17 Logarithmus und allgemeine Potenz

17 Logarithmus und allgemeine Potenz 7 Logarithmus und allgemeine Potenz 7. Der natürliche Logarithmus 7.3 Die allgemeine Potenz 7.4 Die Exponentialfunktion zur Basis a 7.5 Die Potenzfunktion zum Exponenten b 7.6 Die Logarithmusfunktion zur

Mehr

Exponentialfunktion & Logarithmus

Exponentialfunktion & Logarithmus Mathematik I für Biologen, Geowissenschaftler und Geoökologen & 31. Oktober 2011 & Potenzen Definitionsbereiche Potenzrechenregeln Beispiel exp Beispiel: Lichtabsorption Definition Injektivität Beispiel:

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

11 Spezielle Funktionen und ihre Eigenschaften

11 Spezielle Funktionen und ihre Eigenschaften 78 II. ANALYSIS 11 Spezielle Funktionen und ihre Eigenschaften In diesem Abschnitt wollen wir wichtige Eigenschaften der allgemeinen Exponentialund Logarithmusfunktion sowie einiger trigonometrischer Funktionen

Mehr

Inhaltsverzeichnis. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematischer Vorkurs.

Inhaltsverzeichnis. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematischer Vorkurs. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Exponentialfunktionen und Logarithmen Inhaltsverzeichnis 1 Einführung 2 2

Mehr

Mathematischer Vorbereitungskurs für Ökonomen. Exponentialfunktionen und Logarithmen

Mathematischer Vorbereitungskurs für Ökonomen. Exponentialfunktionen und Logarithmen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Exponentialfunktionen und Logarithmen Inhalt:. Zinsrechnung. Exponential- und Logaritmusfunktionen

Mehr

Grundkurs Mathematik II

Grundkurs Mathematik II Prof. Dr. H. Brenner Osnabrück SS 2017 Grundkurs Mathematik II Vorlesung 53 Die rationalen Exponentialfunktionen Zu einer positiven Zahl b K aus einem angeordenten Körper K haben wir in der 27. Vorlesung

Mehr

x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B.

x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B. SBP Mathe Grundkurs 1 # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten

Mehr

SBP Mathe Grundkurs 1 # 0 by Clifford Wolf. SBP Mathe Grundkurs 1

SBP Mathe Grundkurs 1 # 0 by Clifford Wolf. SBP Mathe Grundkurs 1 SBP Mathe Grundkurs 1 # 0 by Clifford Wolf SBP Mathe Grundkurs 1 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

Potenzen, Wurzeln, Logarithmen

Potenzen, Wurzeln, Logarithmen KAPITEL 3 Potenzen, Wurzeln, Logarithmen 3.1 Funktionen und Umkehrfunktionen.............. 70 3.2 Wurzeln............................ 72 3.3 Warum ist a 2 + b 2 a + b?................. 73 3.4 Potenzfunktion........................

Mehr

lim Der Zwischenwertsatz besagt folgendes:

lim Der Zwischenwertsatz besagt folgendes: 2.3. Grenzwerte von Funktionen und Stetigkeit 35 Wir stellen nun die wichtigsten Sätze über stetige Funktionen auf abgeschlossenen Intervallen zusammen. Wenn man sagt, eine Funktion f:[a,b] R, definiert

Mehr

Weitere einfache Eigenschaften elementarer Funktionen

Weitere einfache Eigenschaften elementarer Funktionen Kapitel 6 Weitere einfache Eigenschaften elementarer Funktionen 6.1 Polynome Geg.: Polynom vom Grad n p(x) = a 0 + a 1 x +... + a n 1 x n 1 + a n x n, also mit a n 0. p(x) = x n ( a 0 x + a 1 n x +...

Mehr

Folgen, Reihen, Potenzreihen, Exponentialfunktion

Folgen, Reihen, Potenzreihen, Exponentialfunktion Ferienkurs Seite 1 Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Wintersemester 2011/12 Folgen, Reihen, Potenzreihen, Exponentialfunktion 20.03.2012 Inhaltsverzeichnis 1 Folgen 2

Mehr

Kapitel 7. Exponentialfunktion

Kapitel 7. Exponentialfunktion Kapitel 7. Exponentialfunktion 7.1. Potenzreihen In Kap. 5 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

Funktionenfolgen, Potenzreihen, Exponentialfunktion

Funktionenfolgen, Potenzreihen, Exponentialfunktion Kapitel 8 Funktionenfolgen, Potenzreihen, Exponentialfunktion Der in Definition 7. eingeführte Begriff einer Folge ist nicht auf die Betrachtung reeller Zahlen eingeschränkt und das Beispiel {a n } = {x

Mehr

Potenzen - Wurzeln - Logarithmen

Potenzen - Wurzeln - Logarithmen Potenzen - Wurzeln - Logarithmen Anna Geyer 4. Oktober 2006 1 Potenzrechnung Potenz Produkt mehrerer gleicher Faktoren 1.1 Definition (Potenz): (i) a n : a... a, n N, a R a... Basis n... Exponent od. Hochzahl

Mehr

differenzierbare Funktionen

differenzierbare Funktionen Kapitel IV Differenzierbare Funktionen 18 Differenzierbarkeit und Rechenregeln für differenzierbare Funktionen 19 Mittelwertsätze der Differentialrechnung mit Anwendungen 20 Gleichmäßige Konvergenz von

Mehr

3. DER NATÜRLICHE LOGARITHMUS

3. DER NATÜRLICHE LOGARITHMUS 3. DER NATÜRLICHE LOGARITHMUS ln Der natürliche Logarithmus ln(x) betrachtet als Funktion in x, ist die Umkehrfunktion der Exponentialfunktion exp(x). Das bedeutet, für reelle Zahlen a und b gilt b = ln(a)

Mehr

Kapitel 5 GRENZWERTE

Kapitel 5 GRENZWERTE Kapitel 5 GRENZWERTE Fassung vom 3. Februar 2006 Mathematik für Humanbiologen und Biologen 69 5. Der Begri des Grenzwertes 5. Der Begri des Grenzwertes An den Messungen der Hefevermehrung (vgl. Beispiel

Mehr

Monotone Funktionen. Definition Es sei D R. Eine Funktion f : D R heißt. (ii) monoton fallend, wenn für alle x, x D gilt. x < x f (x) f (x ).

Monotone Funktionen. Definition Es sei D R. Eine Funktion f : D R heißt. (ii) monoton fallend, wenn für alle x, x D gilt. x < x f (x) f (x ). Monotone Funktionen Definition 4.36 Es sei D R. Eine Funktion f : D R heißt (i) monoton wachsend, wenn für alle x, x D gilt x < x f (x) f (x ). Wenn sogar die strikte Ungleichung f (x) < f (x ) folgt,

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis Übungsaufgaben 3. Übung: Woche vom 27. 10. bis 31. 10. 2010 Heft Ü1: 3.14 (c,d,h); 3.15; 3.16 (a-d,f,h,j); 3.17 (d); 3.18 (a,d,f,h,j) Übungsverlegung für Gruppe VIW 05: am Mo., 4.DS, SE2 / 022 (neuer Raum).

Mehr

Thema 4 Limiten und Stetigkeit von Funktionen

Thema 4 Limiten und Stetigkeit von Funktionen Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.

Mehr

Vorlesung. Mathematik 1. Prof. Dr. M Herty (IGPM) MATHEMATIK 1 8. SEPTEMBER / 30

Vorlesung. Mathematik 1. Prof. Dr. M Herty (IGPM) MATHEMATIK 1 8. SEPTEMBER / 30 Vorlesung Mathematik 1 Prof. Dr. M Herty (IGPM) MATHEMATIK 1 8. SEPTEMBER 2016 1 / 30 Vorlesung Mathematik 1 Prof. Dr. M Herty Diese Vorlesung: Mengen Reelle Zahlen Elementare Funktionen Anwendungsbeispiel:

Mehr

f : x 2 x f : x 1 Exponentialfunktion zur Basis a. Für alle Exponentialfunktionen gelten die Gleichungen (1) a x a y = a x+y (2) ax a y = ax y

f : x 2 x f : x 1 Exponentialfunktion zur Basis a. Für alle Exponentialfunktionen gelten die Gleichungen (1) a x a y = a x+y (2) ax a y = ax y 5. Die natürliche Exponentialfunktion und natürliche Logarithmusfunktion ================================================================== 5.1 Die natürliche Exponentialfunktion f : x 2 x f : x 1 2 x

Mehr

Systemwissenschaften, Mathematik und Statistik

Systemwissenschaften, Mathematik und Statistik Systemwissenschaften, Mathematik und Statistik Systemwissenschaften: 1 WS: Systemwissenschaften 1, VO 2std 2 SS: Systemwissenschaften 2, VO 2std Übung zu Systemwissenschaften, UE 2std 3 WS: Systemwissenschaften

Mehr

REIHENENTWICKLUNGEN. [1] Reihen mit konstanten Gliedern. [2] Potenzreihen. [3] Reihenentwicklung von Funktionen. Eine kurze Einführung Herbert Paukert

REIHENENTWICKLUNGEN. [1] Reihen mit konstanten Gliedern. [2] Potenzreihen. [3] Reihenentwicklung von Funktionen. Eine kurze Einführung Herbert Paukert Reihenentwicklungen Herbert Paukert 1 REIHENENTWICKLUNGEN Eine kurze Einführung Herbert Paukert [1] Reihen mit konstanten Gliedern [2] Potenzreihen [3] Reihenentwicklung von Funktionen Reihenentwicklungen

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

2.3 Exponential- und Logarithmusfunktionen

2.3 Exponential- und Logarithmusfunktionen 26 2.3 Exponential- und Logarithmusfunktionen Die natürliche Exponentialfunktion f(x) = e x ist definiert durch die Potenzreihe e x = + x! + x2 2! + x3 3! + = für alle x in R. Insbesondere ist die Eulersche

Mehr

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $ $Id: stetig.tex,v 1.11 2012/06/26 15:40:18 hk Exp $ 9 Stetigkeit 9.1 Eigenschaften stetiger Funktionen Am Ende der letzten Sitzung hatten wir eine der Grundeigenschaften stetiger Funktionen nachgewiesen,

Mehr

4.1. Grundlegende Definitionen. Elemente der Analysis I Kapitel 4: Funktionen einer Variablen. 4.2 Graphen von Funktionen

4.1. Grundlegende Definitionen. Elemente der Analysis I Kapitel 4: Funktionen einer Variablen. 4.2 Graphen von Funktionen 4.1. Grundlegende Definitionen Elemente der Analysis I Kapitel 4: Funktionen einer Variablen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 22./29. November 2010 http://www.mathematik.uni-trier.de/

Mehr

A5 Exponentialfunktion und Logarithmusfunktion

A5 Exponentialfunktion und Logarithmusfunktion A5 Exponentialfunktion und Logarithmusfunktion A5 Exponentialfunktion und Logarithmusfunktion Wachstums- und Zerfallsprozesse. Beispiel: Bakterien können sich sehr schnell vermehren. Eine bestimmte Bakterienart

Mehr

Kapitel 5 Reihen 196

Kapitel 5 Reihen 196 Kapitel 5 Reihen 96 Kapitel 5. Definition und Beispiele 97 Das Material dieses Kapitels können Sie nachlesen in: MICHAEL SPIVAK, Calculus, Kapitel 22 DIRK HACHENBERGER, Mathematik für Informatiker, Kapitel

Mehr

Monotonie, Konkavität und Extrema

Monotonie, Konkavität und Extrema Kapitel 8 Monotonie, Konkavität und Extrema Josef Leydold Auffrischungskurs Mathematik WS 2017/18 8 Monotonie, Konkavität und Extrema 1 / 55 Monotonie Eine Funktion f heißt monoton steigend, falls x 1

Mehr

Die Exponentialfunktion. exp(x)

Die Exponentialfunktion. exp(x) Die Exponentialfunktion exp(x) Wir erinnern: Ist f : R R eine glatte Funktion, dann bezeichnet f (x) die Steigung von f im Punkt x. f (x) x x 0 x Wie sehen Funktionen aus mit 3 2 f f (x) = f(x) -3-2 -1

Mehr

Die Exponentialfunktion und ihre Anwendung in der Biologie

Die Exponentialfunktion und ihre Anwendung in der Biologie Die Exponentialfunktion und ihre Anwendung in der Biologie Escheria coli (kurz E. coli) sind Bakterien, die im Darm von Säugetieren und Menschen leben. Ein junges E. coli Bakterium wächst mit einer konstanten

Mehr

Potenzgesetze und Logarithmengesetze im Komplexen

Potenzgesetze und Logarithmengesetze im Komplexen Potenzgesetze und Logarithmengesetze im Komplexen Man kennt die Potenzgesetze und die Logarithmengesetze gewöhnlich schon aus der Schule und ist es gewohnt, mit diesen leicht zu agieren und ohne große

Mehr

Der natürliche Logarithmus. logarithmus naturalis

Der natürliche Logarithmus. logarithmus naturalis Der natürliche Logarithmus ln logarithmus naturalis Zur Erinnerung: Die Exponentialfunktion y = exp(x) ist festgelegt durch 2 y = exp(x) y (x) = y(x) 0 x y(0) = 2 Zur Erinnerung: e := y() 2.78 exp(x) =

Mehr

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16)

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) 1 Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) Kapitel 7: Konvergenz und Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Mathematik 3 für Informatik im Februar/März 2016 Teil 1: Analysis

Mathematik 3 für Informatik im Februar/März 2016 Teil 1: Analysis Mathematik 3 für Informatik im Februar/März 2016 Teil 1: Analysis Funktionen, Stetigkeit Dierentialrechnung Funktionen mit mehreren Variablen Integralrechnung Dierentialgleichungen Teil 2: Wahrscheinlichkeitsrechnung

Mehr

Exponential- u. Logarithmusfunktionen. Funktionen. Exponentialfunktion u. Logarithmusfunktionen. Los geht s Klick auf mich!

Exponential- u. Logarithmusfunktionen. Funktionen. Exponentialfunktion u. Logarithmusfunktionen. Los geht s Klick auf mich! Exponential- u. Logarithmusfunktionen Los geht s Klick auf mich! Melanie Gräbner Inhalt Exponentialfunktion Euler sche Zahl Formel für Wachstum/Zerfallsfunktionen Logarithmen Logarithmusfunktionen Exponentialgleichung

Mehr

Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version 1.0 (11.

Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version 1.0 (11. Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version.0. September 05) E. Cramer, U. Kamps, M. Kateri, M. Burkschat 05 Cramer, Kamps, Kateri, Burkschat

Mehr

e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme sin(x+y) = cos(x) sin(y)+sin(x) cos(y). und f. Für eine reelle Zahl x R gilt e ix = 1.

e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme sin(x+y) = cos(x) sin(y)+sin(x) cos(y). und f. Für eine reelle Zahl x R gilt e ix = 1. 8. GRENZWERTE UND STETIGKEIT VON FUNKTIONEN 51 e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme cos(x+y) = cos(x) cos(y) sin(x) sin(y) und sin(x+y) = cos(x) sin(y)+sin(x) cos(y). f. Für eine

Mehr

2.4 Exponential - und Logarithmus - Funktionen

2.4 Exponential - und Logarithmus - Funktionen 25.05.20 2.4 Eponential - und Logarithmus - Funktionen Mit Hilfe der Potenz a t definiert man eine weitere Funktionsart, indem man statt der Basis den Eponenten durch die Variable ersetzt: Für a ε R >

Mehr

Die komplexe Exponentialfunktion und die Winkelfunktionen

Die komplexe Exponentialfunktion und die Winkelfunktionen Die komplexe Exponentialfunktion und die Winkelfunktionen In dieser Zusammenfassung werden die für uns wichtigsten Eigenschaften der komplexen und reellen Exponentialfunktion sowie der Winkelfunktionen

Mehr

Univariate Analysis. Analysis und nichtlineare Modelle Sommersemester

Univariate Analysis. Analysis und nichtlineare Modelle Sommersemester Analysis und nichtlineare Modelle Sommersemester 9 5 Univariate Analysis C. Berechnen Sie ohne Taschenrechner(!). Runden Sie die Ergebnisse auf ganze Zahlen. (a) 7 :, (b) 795 :.. Berechnen Sie ohne Taschenrechner(!):

Mehr

Kapitel 4. Folgen und Reihen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 4 Folgen und Reihen 1 / 38

Kapitel 4. Folgen und Reihen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 4 Folgen und Reihen 1 / 38 Kapitel 4 Folgen und Reihen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 4 Folgen und Reihen 1 / 38 Folgen Eine Folge ist eine Anordnung von reellen Zahlen. Die einzelnen Zahlen heißen Glieder

Mehr

Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts

Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts 1. Stetigkeit und Grenzwerte: (a) Aus der folgenden grafischen Darstellung von y 1 (x) = x 2/3 /(1 + x 2 ) ist

Mehr

Mathematik I - Woche 10

Mathematik I - Woche 10 Mathematik I - Woche 0 Philip Müller Reihen. Was ist eine Reihe Wir hatten bis jetzt Folgen. Eine Folge (a n ) n N ist eine Vorschrift, die von den natürlichen Zahlen, in die reellen Zahlen abbildet. Ein

Mehr

17 Exponentialfunktion und Logarithmus

17 Exponentialfunktion und Logarithmus 17 Exponentialfunktion und Logarithmus Die Exponentialfunktion gilt als die wichtigste Funktion der Analysis. Sie hat sowohl theoretische als auch praktische Bedeutung. Sie tritt in vielen Anwendungen

Mehr

11 Logarithmus und allgemeine Potenzen

11 Logarithmus und allgemeine Potenzen Logarithmus und allgemeine Potenzen Bevor wir uns mit den Eigenschaften von Umkehrfunktionen, und insbesondere mit der Umkehrfunktion der Eponentialfunktion ep : R R + beschäftigen, erinnern wir an den

Mehr

2. Funktionen einer Variablen

2. Funktionen einer Variablen . Funktionen einer Variablen Literatur: [SH, Kapitel 4].1. Definitionen.. Typen von Funktionen..1. Lineare Funktionen... Quadratische Funktionen..3. Polynome..4. Potenzfunktionen..5. Exponentialfunktionen..6.

Mehr

Dezimalzahlen. Analysis 1

Dezimalzahlen. Analysis 1 Dezimalzahlen Definition. Eine endliche Dezimalzahl besteht aus - einem Vorzeichen +,, oder 0 - einer natürlichen Zahl d 0 - einer endlichen Folge von Ziffern d 1,...,d l von 0 bis 9. Die Länge l kann

Mehr

1 Beschreibung der Grundlagen

1 Beschreibung der Grundlagen Westsächsische Hochschule Zwickau Fachgruppe Mathematik Grundlagen Inhaltsverzeichnis Aufgaben zu den Grundlagen findet man über den folgenden Link: Aufgaben zu den Grundlagen 01 1 Beschreibung der Grundlagen

Mehr

Klausur zur Analysis I WS 01/02

Klausur zur Analysis I WS 01/02 Klausur zur Analysis I WS 0/0 Prof. Dr. E. Kuwert. Februar 00 Aufgabe (4 Punkte) Berechnen Sie unter a) und b) jeweils die Ableitung von f für x (0, ): a) f(x) = e sin x b) f(x) = x α log x a) f (x) =

Mehr

KAPITEL 2. Folgen und Reihen

KAPITEL 2. Folgen und Reihen KAPITEL 2 Folgen und Reihen 1. Konvergenz und Divergenz Definition 2.1 (Folgen). Eine Abbildung a : N R (bzw. a : N 0 R) nennt man Folge. Statt a : N R schreibt man meist (a n ) n N und a n statt a(n).

Mehr

INGENIEURMATHEMATIK. 8. Reihen. Sommersemester Prof. Dr. Gunar Matthies

INGENIEURMATHEMATIK. 8. Reihen. Sommersemester Prof. Dr. Gunar Matthies Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik INGENIEURMATHEMATIK 8. Reihen Prof. Dr. Gunar Matthies Sommersemester 2016 G. Matthies Ingenieurmathematik

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die 3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die eindeutig den natürlichen Zahlen zugeordnet sind ( n N, auch

Mehr

Differentialrechnung

Differentialrechnung Katharina Brazda 5. März 007 Inhaltsverzeichnis Motivation. Das Tangentenproblem................................... Das Problem der Momentangeschwindigkeit.......................3 Differenzenquotient und

Mehr

Analysis I. Vorlesung 13. Gleichmäßige Stetigkeit

Analysis I. Vorlesung 13. Gleichmäßige Stetigkeit Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 13 Gleichmäßige Stetigkeit Die Funktion f: R + R +, x 1/x, ist stetig. In jedem Punkt x R + gibt es zu jedem ǫ > 0 ein δ > 0 mit f(u (x,δ))

Mehr

Stetigkeit vs Gleichmäßige Stetigkeit.

Stetigkeit vs Gleichmäßige Stetigkeit. Stetigkeit vs Gleichmäßige Stetigkeit. Beispiel: Betrachte ie Funktion f(x) = 1/x auf em Intervall D = (0, 1]. f ist in jeem Punkt p (0, 1] stetig. Denn: Sei p (0, 1] un ε > 0 gegeben. Setze δ = min (

Mehr

Exponential- und Logarithmusfunktion

Exponential- und Logarithmusfunktion Exponential- und Logarithmusfunktion (BOS 2 Jahrgangsstufe) c 2005, Thomas Barmetler Stand: 7 Mai 2005 Kontakt und weitere Infos: wwwbarmetlerde Inhaltsverzeichnis Einführung 3 Die Euler sche Zahl 3 2

Mehr

Funktionen. Kapitel Der Funktionsbegriff

Funktionen. Kapitel Der Funktionsbegriff Kapitel 6 Funktionen 6. Der Funktionsbegriff Eine Funktion f(x) ist durch eine Vorschrift f definiert, die jedem Element x D (Definitionsbereich) ein Element f(x) W (Wertebereich) zuordnet. Für reelle

Mehr

Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe. a 0 + a 1 + a 2 +

Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe. a 0 + a 1 + a 2 + 8 Reihen 38 8 Reihen Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe a 0 + a + a 2 + zu bilden. Wir wollen nun erklären, was wir darunter verstehen wollen. Zunächst kann man die

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine Universität Düsseldorf 13. Oktober 2010 Hinweise Internetseite zur Vorlesung: http://blog.ruediger-braun.net Dort können Sie Materialien

Mehr

Viele Statistiken werden durch endliche Folgen beschrieben. (z.b. Anzahl der Studierenden an der TU München in den Jahren 1962 bis 1976)

Viele Statistiken werden durch endliche Folgen beschrieben. (z.b. Anzahl der Studierenden an der TU München in den Jahren 1962 bis 1976) Kapitel 9 Folgen und Reihen 9.1 Folgen 9.1.1 Was ist eine Folge? Abbildungen, die auf N definiert sind (mit Werten z.b. in R), heißen (unendliche) Folgen. Abb., die auf einer endlichen Menge aufeinander

Mehr

1 Das Problem, welches zum Logarithmus führt

1 Das Problem, welches zum Logarithmus führt 1 Das Problem, welches zum Logarithmus führt Gegeben sei die folgende Gleichung: a = x n Um nun die Basis hier x) auszurechnen, muss man die n-te Wurzel aus a ziehen: a = x n n ) n a = x Soweit sollte

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 008/09 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

3. Folgen und Reihen. 3.1 Folgen und Grenzwerte. Denition 3.1 (Folge) Kapitelgliederung

3. Folgen und Reihen. 3.1 Folgen und Grenzwerte. Denition 3.1 (Folge) Kapitelgliederung Kapitelgliederung 3. Folgen und Reihen 3.1 Folgen und Grenzwerte 3.2 Rechenregeln für konvergente Folgen 3.3 Monotone Folgen und Teilfolgen 3.4 Ein Algorithmus zur Wurzelberechnung 3.5 Reihen 3.6 Absolut

Mehr

Polynomiale Approximation. und. Taylor-Reihen

Polynomiale Approximation. und. Taylor-Reihen Polynomiale Approximation und Taylor-Reihen Heute gehts um die Approximation von glatten (d.h. beliebig oft differenzierbaren) Funktionen f nicht nur durch Gerade (sprich Polynome vom Grade 1) und Polynome

Mehr

Kap. 10: Folgen und Reihen. Eine Funktion a : N Ñ R

Kap. 10: Folgen und Reihen. Eine Funktion a : N Ñ R Definition: Zahlenfolge Kap. 10: Folgen und Reihen 10.1 Definition: Zahlenfolge Eine Funktion a : N Ñ R poder Cq heißt reelle (oder komplexe) Zahlenfolge. Man nennt a n apnq das n-te Folgenglied und schreibt

Mehr

x k = s k=1 y k = y konvergent. Dann folgt (cx k ) = cx für c K. Partialsummenfolge konvergiert

x k = s k=1 y k = y konvergent. Dann folgt (cx k ) = cx für c K. Partialsummenfolge konvergiert 4 Reihen Im Folgenden sei K R oder K C. 4. Definition. Es sei (x k ) Folge in K. Wir schreiben x k s und sagen, die Reihe x k konvergiere, falls die sogenannte Partialsummen-Folge s n x k n, 2,... in K

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 016/17 Dr. K. Rothe Analsis I für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben zu Blatt 3 Gegeben sei eine Funktion f :

Mehr

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 203/4 Blatt 20.0.204 Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag 4. a) Für a R betrachten wir die Funktion

Mehr

Analysis 1. Einführung. 22. März Mathe-Squad GbR. Einführung 1

Analysis 1. Einführung. 22. März Mathe-Squad GbR. Einführung 1 Analysis 1 Einführung Mathe-Squad GbR 22. März 2017 Einführung 1 y 10 9 8 7 6 5 4 3 2 1 10 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 910 2 x /* */ Einführung Allgemeines 2 Allgemeines Funktion f(x) bildet jeden

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker II Sommersemester 2004) Lösungen zu Aufgabenblatt

Mehr

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen 1 Einleitung Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis 1 aus dem Wintersemester 2008/09

Mehr

8 Reelle Funktionen. 16. Januar

8 Reelle Funktionen. 16. Januar 6. Januar 9 54 8 Reelle Funktionen 8. Reelle Funktion: Eine reelle Funktion f : D f R ordnet jedem Element x D f der Menge D f R eine reelle Zahl y R zu, und man schreibt y = f(x), x D. Die Menge D f heißt

Mehr

Häufungspunkte und Satz von Bolzano und Weierstraß.

Häufungspunkte und Satz von Bolzano und Weierstraß. Häufungspunkte und Satz von Bolzano und Weierstraß. Definition: Sei (a nk ) k N eine konvergente Teilfolge der Folge (a n ) n N.Dannwirdder Grenzwert der Teilfolge (a nk ) k N als Häufungspunkt der Folge

Mehr

1 Reihen von Zahlen. Inhalt:

1 Reihen von Zahlen. Inhalt: 5 Kapitel 3 Reihen Reihen von Zahlen Inhalt: Konvergenz und Divergenz von Reihen reeller oder komplexer Zahlen, geometrische Reihe, harmonische Reihe, alternierende Reihen. Cauchy-Kriterium, absolute Konvergenz,

Mehr

U. Rausch, 2010 Potenzrechnung 1

U. Rausch, 2010 Potenzrechnung 1 U. Rausch, 2010 Potenzrechnung 1 Potenzrechnung 1 Schreibweise und Potenzrechenregeln Unter einer Potenz versteht man ein Symbol der Form a x, gesprochen a hoch x, wobei a und x (reelle) Zahlen sind. Dabei

Mehr

Zahlenfolgen, endliche Summen und deren Grenzwerte

Zahlenfolgen, endliche Summen und deren Grenzwerte Zahlenfolgen, endliche Summen und deren Grenzwerte Wichtige Begriffsbildungen, darunter die reellen Zahlen R, Exponentialfunktion und Logarithmus sowie Stetigkeit, Ableitung und Integral von Funktionen

Mehr

2 RECHENGESETZE 2 auch dieses Rechengesetz gilt, wenn einmal bewiesen, natürlich vorwärts wie rückwärts, also gilt dann ebenfalls: Es folgt wieder der

2 RECHENGESETZE 2 auch dieses Rechengesetz gilt, wenn einmal bewiesen, natürlich vorwärts wie rückwärts, also gilt dann ebenfalls: Es folgt wieder der 1 DEFINITION DER POTENZIERUNG 1 Potenzgesetze 1 Definition der Potenzierung Wir definieren für eine rationale Zahl a und eine natürliche Zahl n die Potenzierung wie folgt: a n := a a a ::: a Diese Art

Mehr

Folgen und Reihen. Katharina Brazda 9. März 2007

Folgen und Reihen. Katharina Brazda 9. März 2007 Katharina Brazda 9. März 2007 Inhaltsverzeichnis 1 Folgen 2 1.1 Definition von Folgen - explizite und rekursive Darstellung.............. 2 1.2 Wachstumsverhalten von Folgen - Monotonie und Beschränktheit..........

Mehr

Folgen und Reihen. Zahlenfolgen , ,

Folgen und Reihen. Zahlenfolgen , , 97 Wegener Math/5_Reihen Mittwoch 04.04.2007 8:38:52 Folgen und Reihen Zahlenfolgen Eine Zahlenfolge a besteht aus Zahlen a,a 2,a 3,a 4,a 5,... Die einzelnen Zahlen einer Folge heißen Glieder oder Terme.

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr