Funktionen (Grundlagen)
|
|
|
- Astrid Adenauer
- vor 6 Jahren
- Abrufe
Transkript
1 Funktionen (Grundlagen) 1. Kapitel aus meinem ANALYSIS - Lehrgang Sprachprofil - Mittelstufe KSOe Ronald Balestra CH Zürich Name: Vorname: 23. November 2011
2 Inhaltsverzeichnis 1 Funktionen (Grundlagen) Einführung Definitionen Darstellungsmethoden Ein Beispiel aus dem Aktienmarkt Funktionen & EXCEL Mengentheoretische Betrachtungen im & am Graphen I
3 1 Funktionen (Grundlagen) 1.1 Einführung Mit dem Begriff der Funktion werden wir ein Hilfsmittel der Mathematik kennenlernen, welches von zentraler Bedeutung ist. Mit Hilfe von Funktionen lassen sich Bewegungsabläufe beschreiben, Vorhersagen über das Bevölkerungswachstum machen, die Bahn eines Satelliten imweltraum berechnen,... und vieles mehr. Mathematisch betrachtet ist eine Funktion nur eine Vorschrift, die einem Element aus der einen Menge genau ein Element in einer anderen Menge zuordnet. Die Eigenschaften und die Diskussion von Funktionen werden im weiteren Mathematikunterricht eine wichtige Rolle spielen. Am Beispiel des (idealen) freien Falls wollen wir uns einen ersten Zugang zum Begriff der Funktion verschaffen und gehen von den folgenden (messbaren) Werten aus: Aufgewendete Zeit [in s] Momentane Geschwindigkeit [in m/s] Zurückgelegter Weg [in m] Wir wollen die Informationen und Zusammenhänge aus der Tabelle graphisch darstellen in dem wir die obigen Werte in ein Koordinatensystem übertragen, beginnen aber mit einer kurzen Wiederholung einiger Grundbegriffe im Zusammenhang mit kartesischen Koordinatensystemen: 1
4 Wir beginnen mit der Darstellung des zurückgelegten Weges in Abhängigkeit von der aufgewendeten Zeit: Aufgewendete Zeit [in s] Zurückgelegter Weg [in m] Wir haben somit Zeitpunkt t Streckenlänge s zugeordnet: Die Streckenlänge s ist also : Die Entwicklung der Streckenlänge lässt sich bildlich darstellen: Mit Hilfe dieser graphischen Dartellung lassen sich die folgenden Fragen (ungefähr) beantworten: Nach 4 Sekunden sind m zurückgelegt worden. Für 600 m freier Fall benötigen wir s. 2
5 Wir wollen nun die momentane Geschwindigkeit in Abhängigkeit von der aufgewendeten Zeit graphisch dar: Aufgewendete Zeit [in s] Momentane Geschwindigkeit [in m/s] und beantworte die folgenden Fragen: Wie gross ist die momentane Geschwindigkeit nach 7.5s freiem Fall? Wann wird eine Geschwindigkeit von 30m/s erreicht? Wann wird eine Geschwindigkeit von 100km/h erreicht und wie viele Meter freier Fall müssen dafür zurückgelegt werden? 3
6 Aufgaben : Stelle die aufgewendete Zeit in Abhängigkeit von der zurückgelegten Strecke graphisch dar: Aufgewendete Zeit [in s] Zurückgelegter Weg [in m] und beantworte die folgenden Fragen: Wieviel Zeit wird für eine Strecke von 250m gebraucht? Wie viele Meter freier Fall werden in 9s zurückgelegt? Formuliere weitere Fragen, die mit der obigen graphischen Darstellung beantwortet werden können: Analysis-Aufgaben: Funktionen(Grundlagen) 1 4
7 Die obigen Fragen liessen sich nur ungefähr beantworten. Wie lässt sich die Genauigkeit der Antworten verbessern? Mit einer Funktionsgleichung erhalten wir eine Vorschrift, die... Beispiel jeder aufgewendeten Zeit genau eine zurückgelegte Wegstrecke zuordnet: s(t) = t2 1. s(2) = Ausgedeutscht bedeutet das 2. s(10) = 3. Bestimme die zurückgelegte Wegstrecke nach 5s 4. Ob wir mit den obigen Resultaten richtig liegen, können wir kontrollieren: 5. Mit s(t) berechnen wir somit... 5
8 Beispiel jeder aufgewendeten Zeit genau eine momentane Geschwindigkeit zuordnet: v(t) = 9.81 t 1. Berechne v(1) = 2. Bestimme die Geschwindigkeit nach 5s freiem Fall 3. Wie lange muss ein Körper fallen, um eine momentane Geschwindigkeit von 75m/s zu erreichen? Aufgaben : Formuliere eine eigene Fragenstellung: Bestimme die zugehörige mathematische Darstellung: Bestimme die Lösung rechnerisch: Beispiel jeder zurückgelegter Strecke genau eine aufgewendete Zeit zuordnet: 2s t(s) = 9.81 Aufgaben : t(20) = t(500) = Bestimme die Zeit, welche für 250m aufgewendet werden müssen. Nach 12s wird welche Strecke zurückgelegt? Der Strecke 100m wird welche Zeit zugeordnet? Der Zeit 5s wird welche Strecke zugeordnet? 6
9 1.2 Definitionen Def.: Bem.: Seien A und B zwei nicht-leere Mengen. Eine Abbildung / Funktion f : A B ist eine , die Element aus A ein Element aus B zugeordnet. Sprechweise: Beispiel f(3) = 9 2. f(5) = f( 2) = 4 g(x) = x 1. g(2) = 2 2. g(18) = 3. g( 7) = h(x) = x h(7) = 2. h(3) = 3. h(0) = 4. h( 3) = Analysis-Aufgaben: Funktionen(Grundlagen) 2 7
10 Weitere Schreibweisen & Begriffe: f : A B x f x 2 f(x) = x 2 Beispiel 1.5 f : N Q, x f 1 x 2 1. D(f) = 2. W(f) = 3. die zugehörige Funktionsgleichung lautet: 4. f(3) = 5. f( 1 2 ) = g : N 0 N, t g 2t 3 1. D(g) = 2. W(g) = 3. die zugehörige Funktionsgleichung lautet: 4. g(4) = 5. g(0) = 8
11 3. a : Q Q, a(r) = r 3 r 2, b : Q Q, b(r) = 2r (a) a(1) = (b) b(2) = (c) a b(2) = (d) a b(1) = (e) b a(2) = (f) b b(0) = (g) a b a( 1) = 4. (a) Bestimme den kleinstmöglichen Wertebereich: i. x : Z..., für x(a) = a 2 ii. y : Q..., für y(s) = 0.2 (b) Bestimme den grösstmöglichen Definitionsbereich: i. v :... Z, für v(t) = 1 t ii. w :... Q, für w(g) = 5g 5. Eine Verknüpfung von Funktionen kann sich auch durch eine Funktion darstellen lassen. Wir verwenden f(x) = x + 1, g(x) = x 2 und beginnen mit dem, was wir schon können: (a) f(2) = (b) g(4) = (c) f g(4) = (d) f f(2) = (e) g(a) = (f) f(k 2 ) = (g) f g(x) = (h) g f(x) = Analysis-Aufgaben: Funktionen(Grundlagen) 3 9
12 1.3 Darstellungsmethoden Ein wichtiges Thema in der Mathematik wird später die Diskussion von Funktionen sein. Wir werden dann unter Anwendung weiterer mathematischer Hilfsmittel Extremas, Nullstellen, Monotonieverhalten,... einer Funktion exakt bestimmen. Wenn wir uns vom Verlauf der Funktion ein Bild machen, können wir jetzt schon einige dieser Eigenschaften ungefähr bestimmen. Wir wollen zwei Darstellungsmethoden an der folgenden Funktion besprechen: f : R R, f(x) = x x Wertetabelle: x f(x) 2. Graphische Darstellung: 10
13 Aufgaben : Stelle die folgenden Funktionen in einem Koordinatensystem graphisch dar: (a) f(x) = x 2 6, 25 (b) g(x) = x 4 13x (Verwende als Argumente: -4, -3.5, -3, , 4 und achte auf eine geschickte Wahl der Einheiten: auf der y-achse von -8 bis 40) Bestimme weiter die Nullstellen von f: den Achsenabschnitt von g: den Schnittpunkt von f mit der y-achse: die Schnittpunkte von g mit der x-achse: die Schnittstellen von f und g: Analysis-Aufgaben: Funktionen(Grundlagen) 4, 4b 11
14 1.4 Ein Beispiel aus dem Aktienmarkt Wir wollen am Beispiel des Börsenkurses der Nestle Namensaktie vom 2. Okt. 06 bis zum 2. Nov. 06 unsere bisherigen mathematischen Kenntnisse in die Praxis umsetzen und verwenden dazu die folgende graphische Darstellung: (Quelle: ) Bestimme den Definitions- und Wertebereich Bestimme den Wert der Aktien am 19. Oktober
15 Bestimme die Tage, an welchen der Wert der Aktien grösser als Fr war.... Bestimme den Tag, an welchem der Wert der Aktien am grössten war.... {x D(f) f(x) = minimal}... {x D(f) f(x) < 420}... {x D(f) y > 450}... {x D(f) 420 < y < 430}... Bestimme die Tage, an welchen der Aktienwert kleiner als Fr war.... {y 10 x 23}... {y W(f) 10 x 23}... 13
16 Aufgaben : Suche auf der homepage ein aktuelles Beispiel und formuliere sechs eigene Fragen: drei in deutsch, drei in der mathematisch beschreibenden Form. 14
17 1.5 Funktionen & EXCEL In diesem Abschnitt geht es darum, dass Programm EXCEL als Hilfsmittel zur Darstellung von Funktionen kennenzulernen. Als Grundage dient dazu Analysis-Aufgaben: Funktionen(Grundlagen) 5 Zusammenfassung: Analysis-Aufgaben: Funktionen(Grundlagen) 5 15
18 1.6 Mengentheoretische Betrachtungen im & am Graphen Am folgenden Beispiel der graphischen Darstellung zweier Funktionen wollen wir die folgenden Mengen kennzeichnen: 1. {x R f(x) > 0} 2. {x R g(x) 0} 3. {x R g(x) = 2} 4. {x R f(x) = 2} 5. {x R f(x) < 2} 6. {x N f(x) = g(x)} 16
19 7. {(x y) x = 2.5} 8. {(x y) y = 0} 9. {(x y) x 2 y < 4} 10. {(x y) x = 1 y = f(x) > 2} 11. {(x y) x = 1 y = f(x) > 3} 12. {(x y) y = g(x)} 17
20 Von grosser Bedeutung ist auch die Betrachtung des Graphen einer Funktion als eine Menge. Versuche, in dem Du einige Elemente (Punkte) eines Graphen bestimmst, mit Hilfe der folgenden Beispiele den Graphen einer Funktion als eine Menge zu beschreiben: Def.: Sei f : R R eine Funktion. Dann gilt: graph(f) := {... 18
21 Aufgaben : Wir gehen von der folgenden Funktion aus: f(x) = 3x Welche der folgenden Punkte sind Elemente des Graphen von f: (Begründe deine Antwort!) (a) A = (0/ 2) (b) B = (3/7) (c) C = ( 3/ 7) (d) D = ( 2 3 /0) 2. Bestimme die fehlende Koordinate so, dass der Punkt auf dem Graphen von f liegt: (a) E = (1/y E ) (b) F = (x F / 1) (c) G = ( 5/y G ) (d) H = (x H / 35) Analysis-Aufgaben: Funktionen(Grundlagen) 6, 6b 19
Potenz- & Exponentialfunktionen
Potenz- & Exponentialfunktionen 4. Kapitel aus meinem ANALYSIS - Lehrgang MNprofil - MIttelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 24. Oktober 2011 Überblick über
Mengenlehre - KurzVersion
Mengenlehre - KurzVersion 1. Kapitel aus meinem ALGEBRA - Lehrgang Sprachprofil / WRProfil - Mittelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 18. August 2014 Inhaltsverzeichnis
Affine Funktionen. ANALYSIS Kapitel 2 MNProfil - Mittelstufe KZN. Ronald Balestra CH Zürich
Affine Funktionen ANALYSIS Kapitel 2 MNProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 6. Juni 2017 Überblick über die bisherigen ANALYSIS - Themen: (* nur
Affine Funktionen. ANALYSIS Kapitel 2 SprachProfil - Mittelstufe KZN. Ronald Balestra CH Zürich
Affine Funktionen ANALYSIS Kapitel 2 SprachProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 11. August 2016 Überblick über die bisherigen ANALYSIS - Themen:
Quadratische Funktionen
Quadratische Funktionen ANALYSIS Kapitel 3 SprachProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 7. Januar 2017 Überblick über die bisherigen Analysis - Themen:
Rationale Funktionen
Rationale Funktionen ANALYSIS Kapitel 6 WRProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 15. August 2016 Überblick über die bisherigen ANALYSIS - Themen:
Mengenlehre. ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN. Ronald Balestra CH Zürich Name: Vorname:
Mengenlehre ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 21. August 2016 Inhaltsverzeichnis 1 Mengenlehre 1 1.1 Die Menge im mathematischen
Quadratische Funktionen
Quadratische Funktionen 3. Kapitel aus meinem Lehrgang ANALYSIS Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch 1. März 2011 Überblick über die bisherigen Analysis - Themen: 1 Funktionen (Grundlagen)
Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag,
Lineare Funktionen Aufgabe 1: Welche der folgenden Abbildungen stellen eine Funktion dar? Welche Abbildungen stellen eine lineare Funktion dar? Ermittle für die linearen Funktionen eine Funktionsgleichung.
Lineare Funktionen Arbeitsblatt 1
Lineare Funktionen Arbeitsblatt 1 Eine Funktion mit der Gleichung y = m x + b heißt lineare Funktion. Ihr Graph ist eine Gerade mit der Steigung m. Die Gerade schneidet die y-achse im Punkt P(0 b). Man
Kapitel 8: Funktionen
In der Mathematik ist eine Funktion eine Beziehung zwischen zwei Mengen, die jedem Element der einen Menge (Funktionsargument, unabhängige Variable, x-wert) genau ein Element der anderen Menge (Funktionswert,
Quadratische Funktionen
Quadratische Funktionen ANALYSIS Kapitel 3 MNProfil - Mittelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch 27. Februar 2016 Überblick über die bisherigen Analysis - Themen: 1 Funktionen
Kantonsschule Solothurn RYS SS11/ Nach welcher Vorschrift wird der Funktionswert y aus x berechnet? Welcher Definitionsbereich ID ist sinnvoll?
RYS SS11/1 - Übungen 1. Nach welcher Vorschrift wird der Funktionswert y aus berechnet? Welcher Definitionsbereich ID ist sinnvoll? a) : Seitenlänge eines Quadrates (in cm) y: Flächeninhalt des Quadrates
1. Teil Repetitionen zum Thema (bisherige) Funktionen
Analysis-Aufgaben: Rationale Funktionen 2 1. Teil Repetitionen zum Thema (bisherige) Funktionen 1. Die folgenden Funktionen sind gegeben: f(x) = x 3 x 2, g(x) = x 4 + 4 (a) Bestimme die folgenden Funktionswerte/-
Trigonometrie. Geometrie - Kapitel 3 Sprachprofil - Mittelstufe KSOe. Ronald Balestra CH Zürich
Trigonometrie Geometrie - Kapitel 3 Sprachprofil - Mittelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 31. Januar 2013 Überblick über die bisherigen ALGEBRA - Themen:
Einführung in GeoGebra
Fachtage Herbst 10 KSOe Einführung in GeoGebra Klasse 3v (R. Balestra) 10. Dezember 2010 Inhaltsverzeichnis 1 Einleitung und Zielsetzung 2 1.1 Arbeitsablauf............................. 3 2 Repetitionen
Logarithmusfunktion zur Basis 2, Aufgaben. 7-E Vorkurs, Mathematik
Logarithmusfunktion zur Basis 2, Aufgaben 7-E Vorkurs, Mathematik Logarithmusfunktion zur Basis 2: Aufgaben 7-9 Aufgabe 7: Bestimmen Sie eine vertikale Asymptote für die folgenden Funktionen: f ( x) =
Repetitionsaufgaben: Einführung des Begriffes Funktion
Kantonale Fachschaft Mathematik Repetitionsaufgaben: Einführung des Begriffes Funktion Zusammengestellt von Jörg Donth, KSR Lernziele: - Sie kennen die Begriffe Funktion, Funktionswert, Argument der Funktion,
HTBLA VÖCKLABRUCK STET
HTBLA VÖCKLABRUCK STET Relationen und Funktionen 2 INHALTSVERZEICHNIS 1. RELATIONEN... 3 2. FUNKTIONEN... 4 2.1. LINEARE FUNKTION... 6 Relationen und Funktionen 3 1. RELATIONEN Def.: Eine Relation zwischen
Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung)
Ergänzungsprüfung zum Erwerb der Fachhochschulreife 005 Prüfungsfach: Mathematik (technische Ausbildungsrichtung) Prüfungstag: Donnerstag, 16. Juni 005 Prüfungsdauer: 09:00-1:00 Uhr Hilfsmittel: elektronischer,
Potenzen, Wurzeln & Logarithmen
Potenzen, Wurzeln & Logarithmen 4. Kapitel aus meinem ALGEBRA - Lehrgang Sprachprofil - Mittelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch 22. November 2011 Überblick über die bisherigen
Mathematik - Arbeitsblatt Lineare Funktionen
Mathematik - Arbeitsblatt Lineare Funktionen 1.(a) Welche der drei roten Graphen gehört zur Funktion == +5? Wie lautet die Funktionsgleichung des blauen Graphen? Bestimme rechnerisch die Nullstelle des
Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5
Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1 Inhaltsverzeichnis 1 Grundlagen 2 2 Der Graph einer Funktion
Thema aus dem Bereich Analysis Funktionen 1.Grades
Thema aus dem Bereich Analysis -. Funktionen.Grades Inhaltsverzeichnis Einführung in den Funktionsbegriff Der Funktionsgraph und die Wertetabelle Was ist eine Funktion.Grades? Die Steigung einer Geraden
Analysis-Aufgaben: Funktionen (Grundlagen) 7. Anwendungen GeoGebra
Analysis-Aufgaben: Funktionen (Grundlagen) 7 Anwendungen GeoGebra 1. Wir beginnen diese Aufgabenserie mit einer kurzen Wiederholung der Definitionen & Begriffe im Zusammenhang mit Funktionen: (a) Definiere
Potenz- & Exponentialfunktionen
Potenz- & Exponentialfunktionen ANALYSIS Kapitel 4 Sprachprofil - Oberstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch 17. Januar 2012 Überblick über die bisherigen ANALYSIS - Themen:
Trigonometrie. Geometrie Kapitel 3 MnProfil - Mittelstufe KSOe. Ronald Balestra CH Zürich
Trigonometrie Geometrie Kapitel 3 MnProfil - Mittelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch 29. Januar 2012 Inhaltsverzeichnis 3 Trigonometrie 1 3.1 Warum Trigonometrie........................
Celle. Betragsfunktion 1-E1. Vorkurs, Mathematik
Celle Betragsfunktion 1-E1 1-E2 Betragsfunktion y = x : Aufgabe 1 Abb. 1: Graph der Betragsfunktion y = x Die Abb. 3-1 zeigt die Betragsfunktion y = x. Beschreiben Sie die Eigenschaften dieser Funktion:
Funktionen in der Mathematik
R. Brinkmann http://brinkmann-du.de Seite 05.0.008 Funktionen in der Mathematik Bei der mathematischen Betrachtung natürlicher, technischer oder auch alltäglicher Vorgänge hängt der Wert einer Größe oft
Differentialquotient. Aufgabe 1. o Gegeben: Das Bild zeigt den Graphen der Funktion f mit f(x) = 0,5x 3 1,5x²
Differentialquotient Aufgabe 1 Das Bild zeigt den Graphen der Funktion f mit f(x) = 0,5x 3 1,5x² a) Bestimmen Sie die Nullstellen der Funktion. Berechnen Sie in diesen Nullstellen die Steigung des Graphen
Mathematik - 1. Semester. folgenden Zahlenpaare die gegebene Gleichung erfüllen:
Mathematik -. Semester Wi. Ein Beispiel Lineare Funktionen Gegeben sei die Gleichung y x + 3. Anhand einer Wertetabelle sehen wir; daß die folgenden Zahlenpaare die gegebene Gleichung erfüllen: x 0 6 8
Lineare Funktionen. 6. Zeichne die zu den Funktionen gehörenden Graphen in ein Koordinatensystem und berechne ihren gemeinsamen Schnittpunkt.
FrauOelschlägel Mathematik8 Lineare Funktionen Ü Datum 1. Die Punkte A 0 4 und liegen auf der Geraden h. und Q8,5,5 B10 0 liegen auf der Geraden g, die Punkte P 0,5 11 Bestimme durch Rechnung die Funktionsgleichungen
Beschränktheit, Monotonie & Symmetrie
Beschränktheit, Monotonie & Symmetrie ein Referat Dies ist eine Beilage zum Gruppen-SOL - Projekt Potenz- & Exponentialfunktionen Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch November 2015 Inhaltsverzeichnis
Potenz- & Exponentialfunktionen
Potenz- & Exponentialfunktionen 4. Kapitel aus meinem Lehrgang ANALYSIS Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch e-mail: [email protected] 8. Februar 2009 Überblick über die bisherigen
Klassenarbeit Mathematik Bearbeitungszeit 90 min. Di SG10 D Gruppe A NAME:
R. Brinkmann http://brinkmann-du.de Seite 8.. Klassenarbeit Mathematik Bearbeitungszeit 9 min. Di 8.. SG D Gruppe A NAME: Hilfsmittel: Taschenrechner Alle Ergebnisse sind soweit möglich durch Rechnung
Trigonometrie - die Grundlagen in einem Tag
Trigonometrie - die Grundlagen in einem Tag Fachtage Dezember 2012 an der Kantonsschule Zürich Nord Klasse W3n R. Balestra Name: Vorname: 6. Dezember 2012 Inhaltsverzeichnis 1 Zielsetzung & Ablauf 1 2
Was ist eine Funktion?
Lerndomino zum Thema Funktionsbegriff Kopiereen Sie die Seite (damit Sie einen Kontrollbogen haben), schneiden Sie aus der Kopie die "Dominosteine" zeilenweise aus, mischen Sie die "Dominosteine" und verteilen
SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten
Mathematik (Grundkursniveau) Arbeitszeit: 20 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung
Quadratische Funktionen Arbeitsblatt 1
Quadratische Funktionen Arbeitsblatt 1 Spezielle quadratische Funktion Die Funktionsgleichung einer speziellen quadratischen Funktion hat die Form y = 3 x 2. Der dazugehörige Graph heißt Parabel. Bei einer
Bestimme dazu die Nullstellen, Scheitelpunkt und Schnittpunkt mit der y-achse und ergänze evtl. einige Punkte durch eine Wertetabelle.
Klasse Art Schwierigkeit Mathematisches Schema Nr. 9 Üben xx Quadratische Funktion 1 Skizziere den Graphen der durch y = 0,5 x 2 + x - 4 gegebenen quadratischen Funktion. Bestimme dazu die Nullstellen,
Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung)
Ergänzungsprüfung zum Erwerb der Fachhochschulreife 007 Prüfungsfach: Mathematik (technische Ausbildungsrichtung) Prüfungstag: Donnerstag,. Juni 007 Prüfungsdauer: 09:00 :00 Uhr Hilfsmittel: Elektronischer,
Statistik. Ronald Balestra CH St. Peter
Statistik Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch 17. Januar 2010 Inhaltsverzeichnis 1 Statistik 1 1.1 Beschreibende Statistik....................... 1 1.2 Charakterisierung von Häufigkeitsverteilungen...........
Regel Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind.
Funktionen Station 1 Bestimmung der Steigung einer Geraden durch zwei Punkte Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind. m = f(x 2 ) f(x 1 )
Abitur 2012 Mathematik Infinitesimalrechnung I
Seite 1 Abitur 2012 Mathematik Infinitesimalrechnung I Geben Sie zu den Funktionstermen jeweils den maximalen Definitionsbereich sowie einen Term der Ableitungsfunktion an. Teilaufgabe Teil 1 1a (2 BE)
Thema aus dem Bereich Analysis Funktionen 1.Grades
Thema aus dem Bereich Analysis -.3 Funktionen.Grades Inhaltsverzeichnis Checkliste Einführung in den Funktionsbegriff 3 Der Funktionsgraph und die Wertetabelle 3 Was ist eine Funktion.Grades? 5 Die Steigung
Systeme von linearen Ungleichungen
Systeme von linearen Ungleichungen ALGEBRA Kapitel 6 WRProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 28. Februar 2016 Überblick über die bisherigen ALGEBRA
Lineare Funktion Eigenschaften von linearen Funktionen Übungen Bearbeite zu jeder der gegebenen Funktionen die Fragen:
Lineare Funktion Eigenschaften von linearen Funktionen Übungen - 3 2.0 Bearbeite zu jeder der gegebenen Funktionen die Fragen: steigt oder fällt der Graph der Funktion? schneidet der Graph die y-achse
Übungsaufgaben zu linearen Funktionen
Übungsaufgaben zu linearen Funktionen Aufgabe 1: Erstelle eine Wertetabelle und zeichne den dazugehörigen Graphen zur folgenden Funktionen: a) f(x) = 4x + 6 b) f(x) = 2x + 4 c) f(x) = 2 3 x + 4 5 d) f(x)
SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten
Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung
FUNKTIONEN. ein Leitprogramm für die Berufsmaturität
FUNKTIONEN ein Leitprogramm für die Berufsmaturität von Johann Berger 2000 Inhaltsverzeichnis Einleitung 3 Arbeitsanleitung 3 1 Der Funktionsbegriff 3 2 Lineare 6 3 Quadratische 10 EINLEITUNG Dieses Leitprogramm
2.2 Funktionen 1.Grades
. Funktionen.Grades (Thema aus dem Bereich Analysis) Inhaltsverzeichnis Was ist eine Funktion.Grades? Die Steigung einer Geraden. Die Definition der Steigung.................................... Die Berechnung
Die abschnittsweise definierte Funktion
Die abschnittsweise definierte Funktion Beispiel: In folgendem Beispiel ist die Geschwindigkeit eines Autos (in m/s) in Abhängigkeit der gefahrenen Zeit t (in Sekunden) dargestellt. Physikalische Interpretation:
Quadratische Funktionen Die Normalparabel
Quadratische Funktionen Die Normalparabel Kreuze die Punkte an, die auf der Normalparabel liegen. A ( 9) B ( ) C ( 9) D ( ) E (9 ) F (0 0) Die Punkte A bis J sollen auf der Normalparabel liegen. Gib, falls
Arbeitsblatt Dierentialrechnung
1 Darmerkrankung Das Robert-Koch-Institut in Berlin hat den Verlauf der Darmerkrankung EHEC untersucht. Die Zahl der Erkrankten kann näherungsweise durch folgende Funktionsgleichung dargestellt werden:
Klasse Dozent. Musteraufgaben. f(x) = g(x) = Bestimme die zu den abgebildeten Graphen. gehörenden Funktionsgleichungen!0.
Fach: Mathematik - Quadratische Funktionen Anzahl Aufgaben: 51 Musteraufgaben Diese Aufgabensammlung wurde mit KlasseDozent erstellt. Sie haben diese Aufgaben zusätzlich als KlasseDozent-Importdatei (.xml)
Abitur 2014 Mathematik Infinitesimalrechnung II
Seite 1 Abiturloesung.de - Abituraufgaben Abitur 2014 Mathematik Infinitesimalrechnung II Geben Sie jeweils den Term einer in R definierten periodischen Funktion an, die die angegebene Eigenschaft hat.
Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung)
Ergänzungsprüfung zum Erwerb der Fachhochschulreife 006 Prüfungsfach: Mathematik (technische Ausbildungsrichtung) Prüfungstag: Donnerstag,. Juni 006 Prüfungsdauer: 09:00 1:00 Uhr Hilfsmittel: Elektronischer,
Definition, Funktionsgraph, erste Beispiele
5. Vorlesung im Brückenkurs Mathematik 07 Reelle Funktionen Dr. Markus Herrich Markus Herrich Reelle Funktionen Definition, Funktionsgraph, erste Beispiele Markus Herrich Reelle Funktionen Definition Eine
Mathematik 9. Quadratische Funktionen
Mathematik 9 Funktionen Eine Zuordnung f, die jedem x einer Menge D (Definitionsmenge) genau ein Element y = f(x) einer Menge Z (Zielmenge) zuordnet, heißt Funktion. Dabei heißt y = f(x) Funktionswert
WM.3.1 Die Polynomfunktion 1. Grades
WM.3.1 Die Polynomfunktion 1. Grades Wenn zwischen den Elementen zweier Mengen D und W eine eindeutige Zuordnungsvorschrift vorliegt, dann ist damit eine Funktion definiert (s. Abb1.), Abb1. wobei D als
Einführungsbeispiel Kostenfunktion
Einführungsbeispiel Kostenfunktion Sie bauen eine Fabrik für Luxusautos auf und steigern die Produktion jeden Monat um 1000 Stück. Dabei messen Sie die jeweiligen Kosten und stellen sie grafisch dar. Die
unabhängigen Variablen Eine Funktion dient der Beschreibung von Zusammenhängen zwischen mehreren verschiedenen Faktoren.
Funktionsbegriff 2.1 2 Funktionen mit einer unabhängigen Variablen 2.1 Funktionsbegriff Eine Funktion dient der Beschreibung von Zusammenhängen zwischen mehreren verschiedenen Faktoren. In den Wirtschaftswissenschaften
Didaktik der Mathematik der Sekundarstufe II. Funktionen und funktionales Denken. Rodner/Neumann 1
Didaktik der Mathematik der Sekundarstufe II Funktionen und funktionales Denken Rodner/Neumann 1 Didaktik der Mathematik der Sekundarstufe II - Funktionen, funktionales Denken Aspekte funktionalen Denkens
Klassenarbeit Mathematik Bearbeitungszeit 90 min. Di SB22 Z Gruppe A NAME:
R. Brinkmann http://brinkmann-du.de Seite 0..0 Klassenarbeit Mathematik Bearbeitungszeit 90 min. Di.0.0 SB Z Gruppe A NAME: Hilfsmittel: Taschenrechner Alle se sind soweit möglich durch Rechnung zu begründen..
Zusatzmaterialien Funktionen von R. Brinkmann
Zusatzmaterialien Funktionen von R. Brinkmann http://brinkmann-du.de 6..0 Ausführliche Lösungen Kapitel. U U Finden Sie weitere Beispiele für solche Abhängigkeiten. Die Leistung eines Verbrennungsmotors
Abitur 2017 Mathematik Infinitesimalrechnung I
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung I Gegeben ist die Funktion g : x 2 4 + x 1 mit maximaler Definitionsmenge D g. Der Graph von g wird mit G g bezeichnet.
Abitur 2017 Mathematik Infinitesimalrechnung II
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung II Die Abbildung zeigt den Graphen der in R definierten Funktion g : x p + q sin p, q, r N. ( π r x ) mit Gegeben
Einführung. Ablesen von einander zugeordneten Werten
Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,
1 Benenne Gemeinsamkeiten und Unterschiede der beiden Graphen und gib die zugehörigen Funktionsgleichungen an.
Teste dich! - (/6) Benenne Gemeinsamkeiten und Unterschiede der beiden Graphen und gib die zugehörigen Funktionsgleichungen an. 0 Cornelsen Verlag, Berlin. Alle Rechte vorbehalten. Gemeinsamkeiten: Beide
Abitur 2014 Mathematik Infinitesimalrechnung I
Seite http://www.abiturloesung.de/ Seite 2 Abitur 204 Mathematik Infinitesimalrechnung I Die Abbildung zeigt den Graphen einer Funktion f. Teilaufgabe Teil A (5 BE) Gegeben ist die Funktion f : x x ln
2) 2 4 in der größtmöglichen Definitionsmenge
Abschlussprüfung Berufliche Oberschule 009 Mathematik 13 Nichttechnik - A I - Lösung Teilaufgabe 1.0 Gegeben ist die Funktion f( x) ln ( x ) 4 in der größtmöglichen Definitionsmenge D f IR. Ihr Graph wird
K2 MATHEMATIK KLAUSUR 2
K2 MATHEMATIK KLAUSUR 2 12.12.2018 Aufgabe 1 2 3 4 5 9 Punkte (max) 2 2 2 4 4 1 Punkte Wahlteil A a b c d Punkte (max) 4 5 3 3 Punkte Wahlteil B 6 7a b c Punkte (max) 7 4 1 3 Punkte Gesamtpunktzahl /30
Funktionsbegriff Einführende Beispiele und Erklärungen Grundwissen. Beispiele zu den wichtigen Funktionsarten des Mathematikunterrichts
Funktionsbegriff Einführende Beispiele und Erklärungen Grundwissen Funktionen Beispiele zu den wichtigen Funktionsarten des Mathematikunterrichts Ein Lesetext Informationen - Überblick Datei Nr. 800 Stand:
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Funktionen an der Berufsschule: Übungsaufgaben
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lineare Funktionen an der Berufsschule: Übungsaufgaben Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT Übungsaufgaben:
Systeme von linearen Ungleichungen
Systeme von linearen Ungleichungen ALGEBRA Kapitel 6 MNProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 28. Februar 2016 Überblick über die bisherigen ALGEBRA
SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten
Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung
Geben Sie an, welche dieser vier Funktionen im gesamten Definitionsbereich monoton steigend sind, und begründen Sie Ihre Entscheidung!
Aufgabe 3 Funktionen vergleichen Gegeben sind vier reelle Funktionen f, g, h und i mit den nachstehenden Funktionsgleichungen: f() = 3 mit g() = 3 mit h() = 3 mit i() = sin(3) mit Geben Sie an, welche
Fachabiturprüfung 2016 zum Erwerb der Fachhochschulreife an
Fachabiturprüfung 016 zum Erwerb der Fachhochschulreife an Fachoberschulen und Berufsoberschulen M A T H E M A T I K Ausbildungsrichtung Technik Dienstag, 31. Mai 016, 9.00-1.00 Uhr Die Schülerinnen und
Grundwissen Mathematik Klasse 8
Grundwissen Mathematik Klasse 8 1. Funktionen allgemein (Mathehelfer 2: S.47) Erstellen einer Wertetabelle bei gegebener Funktionsgleichung Zeichnen des Funktionsgraphen Ablesen von Wertepaaren ( x / f(x)
M A T H E M A T I K mit CAS
Fachabiturprüfung 016 zum Erwerb der Fachhochschulreife an Fachoberschulen und Berufsoberschulen M A T H E M A T I K mit CAS Ausbildungsrichtung Technik Dienstag, 31. Mai 016, 9.00-1.00 Uhr Die Schülerinnen
Einführung in GeoGebra
ICT an der KZN Einführung in GeoGebra Funktionen (Grundlagen) Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 21. Februar 2015 Inhaltsverzeichnis 1 Einleitung und Zielsetzung 2 2
Thema. Lineare Funktionen. Mathematik. Lineare Funktionen. Lernlandkarte. Datei: LB-Mathe _LinFktn_03.doc.
Thema 1 Mathematik Lineare Funktionen Lernlandkarte Lineare Funktionen Thema: Lineare Funktionen LE 1.1: 15 min Seite 1 Ich kann beschreiben, was man unter einer Funktion versteht. Ich kann die drei Darstellungsformen
Mathematik 1 für Wirtschaftsinformatik
Mathematik 1 für Wirtschaftsinformatik Wintersemester 01/13 Hochschule Augsburg Mathematik : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren
Lösungen zum Arbeitsblatt: y = mx + b Alles klar???
I. Zeichnen von Funktionen a) Wertetabelle x -4-3 - -1 0 1 3 4 y =,5x -10-7,5-5 -,5 0,5 5 7,5 10 y = - x,7 1,3 0,7 0-0,7-1,3 - -,7 3 y = x 1,5-9,5-7,5-5,5-3,5-1,5 0,5,5 4,5 6,5 y = - 1 x + 4 3,5 3,5 1,5
2.5 Funktionen 2.Grades (Thema aus dem Bereich Analysis)
.5 Funktionen.Grades (Thema aus dem Bereich Analysis) Inhaltsverzeichnis 1 Definition einer Funktion.Grades. Die Verschiebung des Graphen 5.1 Die Verschiebung des Graphen in y-richtung.........................
Trigonometrie. 3. Kapitel aus meinem Lehrgang Geometrie. Ronald Balestra CH St. Peter
Trigonometrie 3. Kapitel aus meinem Lehrgang Geometrie Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch 17. August 2008 Inhaltsverzeichnis 3 Trigonometrie 46 3.1 Warum Trigonometrie........................
SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten
Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung
Abitur 2015 Mathematik Infinitesimalrechnung II
Seite 1 Abitur 2015 Mathematik Infinitesimalrechnung II Gegeben ist die Funktion g : x ln(2x + 3) mit maximaler Definitionsmenge D und Wertemenge W. Der Graph von g wird mit G g bezeichnet. Teilaufgabe
Exponentielles Wachstum
Exponentielles Wachstum ein (Kurz-)Referat Dies ist eine Beilage zum Gruppen-SOL - Projekt Potenz- & Exponentialfunktionen Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch 16. Februar 2016 Inhaltsverzeichnis
Funktionen. x : Variable von f oder Argument f x : Funktionswert, Wert der Funktion f an der Stelle x D f. : Definitionsmenge(Urbildmenge)
Funktionen Eine Funktion oder Abbildung ist eine Beziehung zwischen zwei nicht leere Mengen D f und Z, die jedem Element x aus einer Menge D f genau ein Element y aus anderer Menge Z zuordnet. f : D f
2. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner
. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: AG1.1 Wissen über die Zahlenmengen,,, verständig einsetzen können
