Arbeitsblatt Funktionen
|
|
|
- Jonas Stieber
- vor 9 Jahren
- Abrufe
Transkript
1 Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Geistes- und Naturwissenschaft Dozent: Roger Burkhardt Klasse: Brückenkurs 011 Arbeitsblatt Funktionen Büro: Semester: - Modul: Mathematik Datum: Aufgabe Erstellen Sie von den nachstehenden Zusammenhängen ein Balkendiagramm (z.b. mit Excel): (a) Lautstärke von verschiedenen Geräuschen: (b) Höhe einiger Berge: Taschenuhr (ticken) 10ph Schreien 80ph Flüstern 0ph Motorrad 80ph Leise Unterhaltung 40ph Hupe 90ph Büro 50ph Niethammer 110ph Mechanische Werkstatt 60ph Flugzeugmotor 10ph Zugspitze 963m Kilimandscharo 5955m Grossglockner 3800m Mount McKinley 6187m Matterhorn 4484m Aconcagua 6960m Montblanc 4810m Mount Everest 8847m. Aufgabe Erstellen Sie Kreisschaubilder (z.b. mit Excel): (a) Legierungen: Legierung Sn Zn Pb Cu Ni Sonstiges a.) Rotguss 5% 7% 3% 85% - - b.) Zinnbronze 7% 5% - 88% - - c.) Alpaka - 0% - 60% 0% - d.) Nickelin % 30% 3% Mn e.) Neusilber - 41% - 47% 1% - f.) Nirosta-Stahl % 8% 0% Cr, 70% Fe (b) Erdölforderung (Werte in Millionen Tonnen pro Jahr): Rang Land Saudi-Arabien Russland USA Iran Mexiko China Venezuela Kanada Norwegen Vereinigte Arabische Emirate
2 3. Aufgabe Stellen Sie den zeitlichen Verlauf des Ölpreises (Preis in US-Dollar pro Fass) mit einem Kurvenschaubild (Graph) dar (z.b. mit Excel): Aufgabe Stellen Sie die folgenden Punkte in einem (kartesischen) Koordinatensystem dar: P 1 (3, 4) ; P (0, 5) ; P 3 (, ) ; P 4 ( 1, 4) ; P 5 (1, 0) ; P 6 ( 3, 4) 5. Aufgabe Skizzieren Sie die Graphen der folgenden linearen Funktionen: f 1 (x) = x 5 f (x) = x + f 3 (x) = 1 + x 3 f 4 (x) = x f 5 (x) = 3 x 6. Aufgabe Bestimmen Sie die Funktionsvorschriften der linearen Funktionen, welche die angegebenen Punkte beinhalten: (a) P 1 (3, 4) ; P (0, 1) (b) P 1 (3, 4) ; P (0, 4) (c) P 1 (0, 0) ; P (5, 10) (d) P 1 ( 4, ) ; P (6, 1) (e) P 1 (, ) ; P (, 5) 7. Aufgabe Lösen Sie die folgenden Gleichungen graphisch (skizzieren Sie die Graphen der Funktionsterme rechts und links des Gleichheitszeichens und bestimme die x-koordinate des Schnittpunktes): (a) (b) x + 6 = 14 1x = 10x + 8 Seite / 6
3 (c) 4x + 6 = 3x Aufgabe Bestimmen Sie die Umrechnungsfunktionen um die Temperaturen von Grad Celsius nach Grad Fahrenheit umzurechnen (und umgekehrt). Stellen Sie die gefundenen Umrechnungen tabellarisch und graphisch dar. 9. Aufgabe Skizzieren Sie die Graphen der folgenden quadratischen Funktionen (mit einer Wertetabelle): f 1 (x) = 3x f (x) = x 3 f 3 (x) = x 1 f 4 (x) = x 6x + 8 f 5 (x) = 3x + 1x Aufgabe Bestimmen Sie von den Parabeln der vorherigen Aufgabe den Scheitelpunkt und wenn vorhanden die Schnittpunkte mit der x-achse (Nullstellen). 11. Aufgabe Lösen Sie die folgenden quadratischen Gleichungen (a) graphisch, (b) mit der Lösungsformel und (c) mit quadratischer Ergänzung. x 7x = 6 x x = 0 3x 5x + 8 = 0 4x 4x = 3 8x = 1 0x 1. Aufgabe Bestimmen Sie die Funktionsvorschriften der Parabeln durch die angegebenen Punkte: (a) P 1 (1, 1), P (, 1), P 3 (3, 5). (b) P 1 ( 4, 1), P (0, 1), P 3 (6, 5). (c) Scheitelpunkt S(4, ) und y-achsenabschnitt y a = 66. (d) P 1 (3, 3) und den beiden Nullstellen x 1 = 3 und x = 1. (e) P 1 (1, 0), P (3, 1), P 3 (7, 3) Seite 3 / 6
4 13. Aufgabe Gegeben seien die folgenden Bilder: a.) b.) c.) d.) e.) f.) g.) h.) Bestimmen Sie (mit Begründung) ob eine Funktion vorliegt (horizontal ist der Definitionsbereich und vertikal der Wertebereich aufgetragen). Wenn es sich um eine Funktion handelt, beurteilen Sie, ob die Funktion injektiv, surjektiv oder bijektiv ist. 14. Aufgabe Skizzieren Sie (z.b. mit Excel) die Graphen der folgenden Funktionen: (a) f : [ 5, 5] R, x mx, m { ± 1, ±1, ±} (b) f : [ 5, 5] R, x x + b, b {0, ±1, ±, ±3} (c) f : [ 5, 5] R, x ax, a { ± 1, ±1, ±} (d) f : [ 5, 5] R, x x + c, c {0, ±1, ±, ±3} (e) f : [ s, 5] R, x x + s, s {0, ±1, ±} (f) f : [0, 5] R, x ax, a {1, 4, 9, 5} (g) f : [ 5, 5] R, x x n, n {1,, 3, 4, 5} (h) f : [ 5, 5] \ {0} R, x x z, z { 1,, 3, 4, 5} (i) f : [ 5, 5] R, x b x, b {, e, 3, 4, 5, 10} (j) f : [ 5, 5] R, x b x, b {, e, 3, 4, 5, 10} (k) f : [ 5, 5] R, x log b (x), b {, e, 3, 4, 5, 10} (l) f : [ 5, 5] R, x log b (x), b { 1, 1, 1, 1, 1, } 1 e Seite 4 / 6
5 (m) f : [ π, π] R, x a sin (x), a { 1, ±1, ±, 5} (n) f : [ π, π] R, x sin (x + d), d { ± π, ± π, ± } π 6 3 (o) f : [ π, π] R, x sin (cx), c { ± 1, ±1, ±, ±5} 15. Aufgabe Skizzieren Sie von Hand die Graphen der folgenden Funktionen, indem Sie von einer Grundfunktion y = f(x) die Transformationen y = g(x) = af(cx + b) + d geschickt anwenden: (a) y = 4 ln(x) + 1 (b) y = 3 x (c) y = sin(4x π) (d) y = sin(4(x π)) (e) y = 1 (x 5) Aufgabe Bestimmen Sie von den folgenden Funktionen die Umkehrfunktionen. Bestimmen Sie zuerst geeignete Definitions- und Wertebereiche, so dass die Funktionen auf einem möglichst grossen Gebiet bijektiv werden. Skizzieren Sie anschliessend (z.b. mit Excel) die gegebene Funktion und deren Umkehrfunktion. (a) f (x) = x 5 (b) f (x) = x 5 (c) f (x) = (x 5) (d) f (x) = x 4x + 5 (e) f (x) = x + 4 (f) f (x) = 5 cos ( x π 3 (g) f (x) = x 1 (h) f (x) = x 3 (i) f (x) = log 3 (x 5) (j) f (x) = x 5 x+1 ) 17. Aufgabe Der Weg-Zeit-Verlauf der Bewegung eines Körpers sei durch die folgende Funktionsvorschrift gegeben: ( ) s (t) = 10me 1 t s t sin 4s (a) Skizzieren Sie den Graphen der Funktion (z.b. mit Excel). (b) Bestimmen Sie den zurückgelegten Weg zu den folgenden Zeitpunkten t {0s, 1s, s, 5s, 10s}. Visualisieren Sie die gefundenen Resultate in der Grafik. (c) Bestimmen Sie für die folgenden Zeitintervalle I 1 = [0s, 0.5s], I = [0s, 1s] und I 3 = [0.5s, 1s] die Durchschnittsgeschwindigkeiten. Visualisieren Sie die gefundenen Resultate in der Grafik. Seite 5 / 6
6 (d) Die Momentangeschwindigkeit ist gleich der Steigung der Tangente an den Weg-Zeit-Graphen zum interessierten Zeitpunkt. Finden Sie aus der Grafik den Zeitpunkt mit maximaler Momentangeschwindigkeit. Schätzen Sie zudem den Wert für die maximale Momentangeschwindigkeit ab. Seite 6 / 6
Lösung Arbeitsblatt Funktionen
Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mathematik und Naturwissenschaften (IMN) Dozent: - Brückenkurs Mathematik 017 Lösung Arbeitsblatt Funktionen Modul: Mathematik
Arbeitsblatt Mathematik 1 (Funktionen) 1. Aufgabe Skizzieren Sie die Graphen der folgenden linearen Funktionen:
Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mathematik und Naturwissenschaften Arbeitsblatt Mathematik 1 (Funktionen) Dozent: - Brückenkurs Mathematik / Physik 2016 Lineare
R2.2 Der Graf einer linearen Funktion f hat die Steigung -2 und enthält den Punkt P(-3 5). Bestimmen Sie die Funktionsgleichung f(x) =...
Repetitions-Aufgaben 2 Funktionen Aufgaben R2.1 Gegeben ist die folgende Funktion f: f : x y = f(x) = x 2 + 1 Bestimmen Sie a) f 3 2 b) f( f( 2-3 ) ) c) f( x 2 +1 ) R2.2 Der Graf einer linearen Funktion
Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende
TEIL 1 (ohne Rechner)
Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Geistes- und Naturwissenschaft Dozent: Roger Burkhardt Klasse: Studiengang ST Lösungen Repetition Algebra Büro:.63 Semester: 2 Modul:
4 Funktionen und Transformationen
4 Funktionen und Transformationen In diesem Arbeitsblatt geht es um Begriffe wie lineare und quadratische Funktionen, Wurzelfunktionen, trigonometrische Funktionen sowie Transformationen von Funktionen.
Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen
Lösung Serie 5 (Polynome)
Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Geistes- und Naturwissenschaft Dozent: Roger Burkhardt Klasse: Studiengang ST Lösung Serie 5 (Polynome) Büro: 4613 Semester: 2
Vorkurs Mathematik (Allgemein) Übungsaufgaben
Justus-Liebig-Universität Gießen Fachbereich 07 Mathematisches Institut Vorkurs Mathematik (Allgemein) Übungsaufgaben PD Dr. Elena Berdysheva Aufgabe. a) Schreiben Sie die folgenden periodischen Dezimalzahlen
Zusammenfassung An1I HS2012 Analysis für Informatiker 1
Zusammenfassung An1I HS2012 Analysis für Informatiker 1 Emanuel Duss [email protected] 19. November 2012 Analysis für Informatiker 1 Inhaltsverzeichnis Inhaltsverzeichnis 1 Grundlagen der Lehre von
Brückenkurs Mathematik zum Sommersemester 2015
HOCHSCHULE HANNOVER UNIVERSITY OF APPLIED SCIENCES AND ARTS Dipl.-Math. Xenia Bogomolec Brückenkurs Mathematik zum Sommersemester 2015 Übungsblatt 1 (Grundlagen) Aufgabe 1. Multiplizieren Sie folgende
Mathematikaufgaben zur Vorbereitung auf das Studium
Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik / Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Kartographie/Geoinformatik Vermessung/Geoinformatik Dresden
MATHEMATIK K1. Gesamtpunktzahl /30 Notenpunkte
MATHEMATIK K1 21.11.2013 Aufgabe 1 2 3 4 5 6 7 Punkte (max) 6 3 4 4 2 10 1 Punkte Gesamtpunktzahl /30 Notenpunkte Der GTR ist nur für die Lösung der Textaufgabe (und zur Kontrolle der andern) zugelassen.
f(x) = x f 1 (x) = x. Aufgabe 2. Welche der folgenden Funktionen sind injektiv, surjektiv, bijektiv?
Umkehrfunktionen Aufgabe 1. Sei A = {1, 2, 3, 4}. Definieren Sie eine bijektive Funktion f A A und geben Sie ihre Umkehrfunktion f 1 an. Lösung von Aufgabe 1. Zum Beispiel f, f 1 A A mit f(x) = x f 1 (x)
Konstante, lineare, quadratische Funktion
Aufgaben 10 Funktionstypen Konstante, lineare, quadratische Funktion Lernziele - den Grafen einer konstanten, linearen, quadratischen Funktion skizzieren können. - die Existenz von Nullstellen einer konstanten,
Verschiebung/Streckung von Funktionsgraphen. Verwenden von Schablonen zum Zeichnen von Funktionsgraphen. Idee der Koordinatentransformation
Verschiebung/Streckung von Funktionsgraphen Verwenden von Schablonen zum Zeichnen von Funktionsgraphen Idee der Koordinatentransformation Rahmenlehrplan Berlin P4 9/10: Situationen mit n und Potenzfunktionen
Bestimme dazu die Nullstellen, Scheitelpunkt und Schnittpunkt mit der y-achse und ergänze evtl. einige Punkte durch eine Wertetabelle.
Klasse Art Schwierigkeit Mathematisches Schema Nr. 9 Üben xx Quadratische Funktion 1 Skizziere den Graphen der durch y = 0,5 x 2 + x - 4 gegebenen quadratischen Funktion. Bestimme dazu die Nullstellen,
Mathematik 9. Quadratische Funktionen
Mathematik 9 Funktionen Eine Zuordnung f, die jedem x einer Menge D (Definitionsmenge) genau ein Element y = f(x) einer Menge Z (Zielmenge) zuordnet, heißt Funktion. Dabei heißt y = f(x) Funktionswert
Die gebrochenrationale Funktion
Die gebrochenrationale Funktion Definition: Unter einer gebrochenrationalen Funktion versteht man den Quotienten zweier ganzrationaler Funktionen, d.h. Funktionen der Form f :x! a n xn + a n 1 x n 1 +...+
Lösungen Test 1 Algebra. Ohne el. Hilfsmittel
Fachhochschule Nordwestschweiz FHNW) Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lösungen Test Algebra Dozent: Roger Burkhardt Klasse: Studiengang ST Büro: 4.6 Semester: Modul: Algebra
Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen
A1 Funktionen/Funktionsklassen 1 Grundbegriffe Analysis A 1.1 Gegeben sei die Funktion f mit f(x) = 2 x 2 + x. a) Bestimme, wenn möglich, die Funktionswerte an den Stellen 0, 4 und 2. b) Gib die maximale
FUNKTIONEN. ein Leitprogramm für die Berufsmaturität
FUNKTIONEN ein Leitprogramm für die Berufsmaturität von Johann Berger 2000 Inhaltsverzeichnis Einleitung 3 Arbeitsanleitung 3 1 Der Funktionsbegriff 3 2 Lineare 6 3 Quadratische 10 EINLEITUNG Dieses Leitprogramm
Regel Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind.
Funktionen Station 1 Bestimmung der Steigung einer Geraden durch zwei Punkte Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind. m = f(x 2 ) f(x 1 )
Analysis I für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg WiSe 08/9 c Dr. K. Rothe Analysis I für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben zu Blatt Mengen Darstellung durch: a) Aufzählung
Arbeitsblatt Mengenlehre
Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Geistes- und Naturwissenschaft Arbeitsblatt Mengenlehre Dozent: Roger Burkhardt Klasse: BWZ 2013/2014 Büro: 5.1C05 Semester: -
H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen
H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Rheinland-Pfalz Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis 1 Von der Gleichung
Übungsaufgabe z. Th. lineare Funktionen und Parabeln
Übungsaufgabe z. Th. lineare Funktionen und Parabeln Gegeben sind die Parabeln: h(x) = 8 x + 3 x - 1 9 und k(x) = - 8 x - 1 1 8 x + 11 a) Bestimmen Sie die Koordinaten der Schnittpunkte A und C der Graphen
LMU MÜNCHEN. Mathematik für Studierende der Biologie Wintersemester 2016/17. GRUNDLAGENTUTORIUM 5 - Lösungen. Anmerkung
LMU MÜNCHEN Mathematik für Studierende der Biologie Wintersemester 2016/17 GRUNDLAGENTUTORIUM 5 - Lösungen Anmerkung Es handelt sich hierbei um eine Musterlösung so wie es von Ihnen in einer Klausur erwartet
Mathematikaufgaben zur Vorbereitung auf das Studium
Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengang Bauingenieurwesen Dresden 2005 . Mengen Kenntnisse
Lösung Arbeitsblatt Mengenlehre
Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lösung Arbeitsblatt Mengenlehre Dozent: Roger Burkhardt Klasse: Brückenkurs 2010 Büro: 4.613 Semester:
Funktionen. x : Variable von f oder Argument f x : Funktionswert, Wert der Funktion f an der Stelle x D f. : Definitionsmenge(Urbildmenge)
Funktionen Eine Funktion oder Abbildung ist eine Beziehung zwischen zwei nicht leere Mengen D f und Z, die jedem Element x aus einer Menge D f genau ein Element y aus anderer Menge Z zuordnet. f : D f
Wiederholung Quadratische Funktionen (Parabeln)
SEITE 1 VON 7 Wiederholung Quadratische Funktionen (Parabeln) VON HEINZ BÖER 1. Regeln a) Funktionsvorschriften Normalform f(x) = a x² + b x + c Normalparabel: f(x) = x 2 Graf der Normalparabel Die einfachste
Lineare Gleichungssysteme
Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mathematik und Naturwissenschaften Arbeitsblatt Mathematik 3 (Diverses) Dozent: - Brückenkurs Mathematik / Physik 2016 Lineare
Leitprogramm Funktionen
3. Quadratische Funktionen (Zeit 10 Lektionen) Lernziel: Grundform y = ax + bx + c und Scheitelform y = a(x + m) + n der Funktionsgleichungen quadratischer Funktionen kennen. Bedeutung der Parameter a,
Konstante, lineare, quadratische Funktion
Aufgaben 7 Funktionstypen Konstante, lineare, quadratische Funktion Lernziele - den Grafen einer konstanten, linearen, quadratischen Funktion skizzieren können. - die Existenz von Nullstellen einer konstanten,
gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind
Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl
Vorbereitung auf die erste Klassenarbeit
01 QUADRATISCHE FUNKTIONEN Wiederholungen Alles um Quadratische Funktionen Vorbereitung auf die erste Klassenarbeit Aufgabe 1: Schuljahr 2017/18 Seite 1/12 Aufgabe 2: Schuljahr 2017/18 Seite 2/12 Aufgabe
Kapitel 1:»Rechnen« c 3 c 4 c) b 5 c 4. c 2 ) d) (2x + 3) 2 e) (2x + 0,01)(2x 0,01) f) (19,87) 2
Kapitel :»Rechnen«Übung.: Multiplizieren Sie die Terme so weit wie möglich aus. a /5 a 5 Versuchen Sie, vorteilhaft zu rechnen. Übung.2: Berechnen Sie 9% von 2573. c 3 c 4 b 5 c 4 ( b 2 c 2 ) (2x + 3)
Lösung Serie 1 (Differentialgleichungen 1-ter Ordnung)
Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lösung Serie 1 (Differentialgleichungen 1-ter Ordnung) Dozent: Roger Burkhardt Klasse: Studiengang
Werratalschule Heringen Gesamtschule mit gymnasialer Oberstufe. Aufgaben zur Wiederholung und Vertiefung
Werratalschule Heringen Gesamtschule mit gymnasialer Oberstufe Aufgaben zur Wiederholung und Vertiefung Mathematik Einführungsphase gymnasiale Oberstufe Seite 1 Hinweise zum Umgang mit dem Aufgabenmaterial
Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5
Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1 Inhaltsverzeichnis 1 Grundlagen 2 2 Der Graph einer Funktion
Mathematik Übungsaufgaben zur Vorbereitung auf die 3. Klausur Lösung. 1. Formen Sie die Scheitel(punkt)form der quadratischen Funktion
Datum:.0.0 Thema: Quadratische Funktionen. Formen Sie die Scheitel(punkt)form der quadratischen Funktion f mit f(x) = ( x ) + in die Polynomdarstellung um und bestimmen Sie die Nullstellen und den Schnittpunkt
Mathematik für Wirtschaftswissenschaftler
Mathematik für Wirtschaftswissenschaftler Yves Schneider Universität Luzern Frühjahr 2016 Repetition Kapitel 1 bis 3 2 / 54 Repetition Kapitel 1 bis 3 Ausgewählte Themen Kapitel 1 Ausgewählte Themen Kapitel
Analysis in der Oberstufe. Robert Rothhardt
Analysis in der Oberstufe Robert Rothhardt 10. Juni 2011 2 Inhaltsverzeichnis 3 4 Kapitel 1 Einführung In diesem Kapitel sollen einzelne 1.1 Wozu Analysis? Dieser Abschnitt beschreibt einige Probleme,
Lineare Funktionen Arbeitsblatt 1
Lineare Funktionen Arbeitsblatt 1 Eine Funktion mit der Gleichung y = m x + b heißt lineare Funktion. Ihr Graph ist eine Gerade mit der Steigung m. Die Gerade schneidet die y-achse im Punkt P(0 b). Man
Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius)
Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius) 1 Grundregeln des Rechnens 1.1 Zahlbereiche......... Zahlen N {1, 2, 3,...}......... Zahlen Z {..., 2, 1, 0, 1, 2,...}......... Zahlen Q { a b a Z, b N}.........
Abitur 2014 Mathematik Infinitesimalrechnung I
Seite http://www.abiturloesung.de/ Seite 2 Abitur 204 Mathematik Infinitesimalrechnung I Die Abbildung zeigt den Graphen einer Funktion f. Teilaufgabe Teil A (5 BE) Gegeben ist die Funktion f : x x ln
Algebra. Roger Burkhardt Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft
Algebra Roger Burkhardt [email protected] Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft FS 2010 Roger Burkhardt [email protected] Algebra
Aufgaben zum Vorkurs Mathematik: Allgemeine Übungsaufgaben
Aufgaben zum Vorkurs Mathematik: Allgemeine Übungsaufgaben Fachbereich Mathematik Vorkurs Mathematik WS 2012/13 Dies ist eine Sammlung von Aufgaben, die hauptsächlich Mittelstufenstoff wiederholen. Dabei
Mathematikaufgaben zur Vorbereitung auf das Studium
Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik / Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Betriebswirtschaft International Business Dresden 05 . Mengen
y x oder y 3x. Nenne eine Gleichung einer Parabel, die den Scheitelpunkt im Ursprung hat und nach oben geöffnet ist.
Parabeln Magische Wand Parabeln Magische Wand 10.1 10. 10.3 10.4 10.5 0.1 0. 0.3 0.4 0.5 30.1 30. 30.3 30.4 30.5 50.1 50. 50.3 50.4 50.5 70.1 70. 70.3 70.4 70.5 100.1 100. 100.3 100.4 100.5 10.1 10.1 10.1
Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x.
Skripten für die Oberstufe Kurvendiskussion x 3 f (x) x f (x)dx = e x H. Drothler 0 www.drothler.net Kurvendiskussion Zusammenfassung Seite Um Funktionsgraphen möglichst genau zeichnen zu können, werden
x 0 0,5 1 2 3 4 0,5 1 2. Die Quadratfunktion ist für x 0 streng monoton fallend und für x 0 streng monoton steigend.
Quadratische Funktionen ================================================================= 1. Die Normalparabel Die Funktion f : x y = x 2, D = R, heißt Quadratfunktion. Ihr Graph heißt Normalparabel. Wertetabelle
Quadratische Funktionen Arbeitsblatt 1
Quadratische Funktionen Arbeitsblatt 1 Spezielle quadratische Funktion Die Funktionsgleichung einer speziellen quadratischen Funktion hat die Form y = 3 x 2. Der dazugehörige Graph heißt Parabel. Bei einer
Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate
Mathematik-Lexikon HM00 Abszisse Die x-koordinate eines Punktes -> Ordinate Aufstellen von Funktionstermen Gesucht: Ganzrationale Funktion n-ten Grades: ƒ(x) = a n x n + a n-1 x n-1 + a n- x n- +... +
Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1
Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1 1. (a) Lösen Sie das lineare Gleichungssystem für die Werte a = 1, b = 2. x + 3y + 2z = 0 2x + ay + 3z = 1 3x + 4y + z = b (b) Für welche Werte von
Münchner Volkshochschule. Themen
Themen Logik und Mengenlehre Zahlensysteme und Arithmetik Gleichungen und Ungleichungen Lin. Gleichungssysteme und spez. Anwendungen Geometrie und Trigonometrie Vektoren in der Ebene und Punktemengen Funktionen
Die Funktion f (x) = e ix
Die Funktion f (x) = e ix Wir wissen e ix = 1, liegt also auf dem Einheitskreis. Mit wachsendem x läuft e ix immer wieder um den Einheitskreis herum. Die Laufrichtung ist gegen den Uhrzeigersinn (mathematisch
Abitur 2012 Mathematik Infinitesimalrechnung I
Seite 1 Abitur 2012 Mathematik Infinitesimalrechnung I Geben Sie zu den Funktionstermen jeweils den maximalen Definitionsbereich sowie einen Term der Ableitungsfunktion an. Teilaufgabe Teil 1 1a (2 BE)
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: [email protected] Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fax:
1. Teil Repetitionen zum Thema (bisherige) Funktionen
Analysis-Aufgaben: Rationale Funktionen 2 1. Teil Repetitionen zum Thema (bisherige) Funktionen 1. Die folgenden Funktionen sind gegeben: f(x) = x 3 x 2, g(x) = x 4 + 4 (a) Bestimme die folgenden Funktionswerte/-
Brückenkurs Mathematik
Technische Universität Hamburg Harburg WiSe 016/17 Kai Rothe Brückenkurs Mathematik Beispielaufgaben 5 Aufgabe 1: Für folgende Funktionen gebe man den Definitionsbereich D und Wertebereich W an und berechne,
1. Zeichnen Sie ein kartesisches Koordinatensystem mit folgenden Punkten: P 1 (3/2); P 2 (-2,4), P 3 (-3/-2), P 4 (1/-2), P 4 (-2/4)
Aufgaben analytische Geometrie:. Zeichnen Sie ein kartesisches Koordinatensystem mit folgenden Punkten: P (/2); P 2 (-2,4), P (-/-2), P 4 (/-2), P 4 (-2/4) 2. In welchem Quadranten liegt folgender Punkt?
Förderaufgaben EF Arbeitsblatt 1 Abgabe Zeichne die Tangenten bei x=6 und bei x = 4 ein und bestimme die zugehörige Geradengleichung.
Förderaufgaben EF Arbeitsblatt 1 Abgabe 20.1.15 1. Zeichne die Tangenten bei x=6 und bei x = 4 ein und bestimme die zugehörige Geradengleichung. 2. Bestimme f (x): a) f(x) = x 3 + 4x 2 x + 1 b) f(x) =
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus:
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kompetenzen für die zentralen Prüfungen der 10. Klasse - Mathematik - Funktionen Das komplette Material finden Sie hier: School-Scout.de
Kapitel 6. Funktionen. Josef Leydold Mathematik für VW WS 2017/18 6 Funktionen 1 / 49
Kapitel 6 Funktionen Josef Leydold Mathematik für VW WS 2017/18 6 Funktionen 1 / 49 Reelle Funktion Reelle Funktionen sind Abbildungen, in denen sowohl die Definitionsmenge als auch die Wertemenge Teilmengen
Übungsaufgaben Analysis hilfsmittelfrei
Übungsaufgaben Analysis hilfsmittelfrei Aufgabe 1 Der Graph der Funktion f (x) = 0,5x3+ 1,5x2+ 4,5x 3,5 hat im Punkt T( 1 6) einen relativen (lokalen) Tiefpunkt und im Punkt H(3 10) einen relativen (lokalen)
Quadratische Funktion
Quadratische Funktion Wolfgang Kippels 6. Oktober 018 Inhaltsverzeichnis 1 Vorwort Zusammenstellung der Grundlagen 3.1 Nullstellen................................... 3. Scheitelpunkt.................................
f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5
11. Lineare Funktionen Übungsaufgaben: 11.1 Zeichne jeweils den Graphen der zugehörigen Geraden a. y = 0,5x 0,25 b. y = 0,1x + 2 c. y = 2x 2 d. 2x + 4y 5 = 0 e. y = x f. y = 0,2x g. y = 1,5x + 5 h. y =
9 Funktionen und ihre Graphen
57 9 Funktionen und ihre Graphen Funktionsbegriff Eine Funktion ordnet jedem Element aus einer Menge D f genau ein Element aus einer Menge W f zu. mit = f(), D f Die Menge aller Funktionswerte nennt man
Umkehrfunktionen 1-E. Ma 1 Lubov Vassilevskaya
Umkehrfunktionen 1-E Wiederholung: Funktion als eine Abbildung Abb. 1-1: Darstellung einer Abbildung Eine Funktion f (x) beschreibt eine Abbildung von X nach Y f X Y, x f x Der erste Ausdruck charakterisiert
g 2 g 1 15/16 I Übungen 2 EF Be Sept. 15 p 1 p 2
15/16 I Übungen EF Be Sept. 15 Nr. 1: a) Funktion oder Relation? Welcher Graph gehört zu einer Funktion, welcher nicht? Begründe Deine Antwort kurz. a) und d) sind keine Funktionen, da die Zuordnungen
1 Mengenlehre. Maturavorbereitung GF Mathematik. Aufgabe 1.1. Aufgabe 1.2. Bestimme A \ B. Aufgabe 1.3. Aufgabe 1.4. Bestimme B \ A. Aufgabe 1.
Maturavorbereitung GF Mathematik Kurzaufgaben 1 Mengenlehre Aufgabe 1.1 Gegeben sind die Mengen A = {1, 2, 3} und B = {2, 3, 6, 8}. Bestimme A B. Aufgabe 1.2 Gegeben sind die Mengen A = {1, 2, 3} und B
H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Schleswig-Holstein. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen
H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Schleswig-Holstein Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis 1 Von der Gleichung
Vierte Schularbeit Mathematik Klasse 4E am
Vierte Schularbeit Mathematik Klasse 4E am 21.05.2015 SCHÜLERNAME: Gruppe A Lehrer: Dr. D. B. Westra Punkteanzahl : von 24 Punkten NOTE: NOTENSCHLÜSSEL 23-24 Punkte Sehr Gut (1) 20-22 Punkte Gut (2) 16-19
Mathematikaufgaben zur Vorbereitung auf das Studium
Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Allgemeiner Maschinenbau Fahrzeugtechnik Dresden 2002
Der Funktionsbegri und elementare Kurvendiskussion
Der Funktionsbegri und elementare Kurvendiskussion Christoph Jansen Institut für Statistik, LMU München Formalisierungspropädeutikum 6. Oktober 2017 1 / 25 Allgemeiner Funktionsbegri Eine Funktion f ist
Lösungen lineare Funktionen
lineare Funktionen Lösungen 1 Lösungen lineare Funktionen Schnittpunkt gegeben bestimme Funktionsvorschrift. Flächeninhalt von eingeschlossenem Dreieck berechnen. Schnittwinkel gegeben, berechne Steigung.
FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.
FH Gießen-Friedberg, Sommersemester 010 Skript 9 Diskrete Mathematik (Informatik) 30. April 010 Prof. Dr. Hans-Rudolf Metz Funktionen Einige elementare Funktionen und ihre Eigenschaften Eine Funktion f
KOMPETENZHEFT ZU STAMMFUNKTIONEN
KOMPETENZHEFT ZU STAMMFUNKTIONEN 1. Aufgabenstellungen Aufgabe 1.1. Finde eine Funktion F (x), die F (x) = f(x) erfüllt. a) f(x) = 5 x 2 2 x + 8 e) f(x) = 1 + x x 2 b) f(x) = 1 x4 10 f) f(x) = e x + 2
Einführungsphase Mathematik. Thema: Quadratische Funktionen. quadratische Gleichungen
Thema: Quadratische Funktionen quadratische Gleichungen Normalform einer linearen Funktion Normalform einer quadratischen Funktion Handelt es sich um quadratische Funktionen??? Ja, denn a = 3, b = 0, c
Mathematik 1 Übungsserie 3+4 ( )
Technische Universität Ilmenau WS 2017/2018 Institut für Mathematik Thomas Böhme BT, EIT, II, MT, WSW Aufgabe 1 : Mathematik 1 Übungsserie 3+4 (23.10.2017-04.11.2017) Sei M eine Menge. Für eine Teilmenge
Lösung Serie 3 (Modellieren (SIMULINK + MATLAB))
Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lösung Serie 3 (Modellieren (SIMULINK + MATLAB Dozent: Roger Burkhardt Klasse: Studiengang ST Büro:
Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren. Man nennt die Untersuchung von Funktionen auch Kurvendiskussion.
Tutorium Mathe 1 MT I Funktionen: Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren Man nennt die Untersuchung von Funktionen auch Kurvendiskussion 1 Definitionsbereich/Wertebereich
