Abitur allg. bildendes Gymnasium Wahlteil Analysis 2004 BW Lösung A1.1 Lösungslogik GTR-Einstellungen: Y1= 36/ 16 Y2=

Größe: px
Ab Seite anzeigen:

Download "Abitur allg. bildendes Gymnasium Wahlteil Analysis 2004 BW Lösung A1.1 Lösungslogik GTR-Einstellungen: Y1= 36/ 16 Y2="

Transkript

1 Lösung A1.1 Lösungslogik GTR-Einstellungen: Y1= 36/ 16 Y2= 1 Y3= 1 1,25 Y4= Y5= ,5 a) Verhalten von für. Es handelt sich um eine gebrochen-rationale Funktion mit höchster Potenz im Zähler gleich höchster Potenz im Nenner. Das asymptotische Verhalten errechnet sich dann aus dem Quotienten des Koeffizienten von im Zähler und im Nenner. In diesem Fall sind beide Koeffizienten gleich 1, somit hat die Funktion die waagrechte Asymptote 1. Nachweis der Wendepunkte: Gemäß der NEW-Regel führen Wendepunkte einer Stammfunktion zu Extrempunkten ihrer 1. Ableitung. Bestimmung von!" bzw. # mit dem GTR. b) Kubikmeter Wasser im Kanal: Der GTR liefert 02,25 sowie für 0 die Nullstellen % 6 0 und % 6 0. Das Volumen errechnet sich somit aus dem Betrag der Fläche, die die Achse mit der Kurve im Intervall 6''6 einschließt multipliziert mit der Länge des Kanals. Prozentsatz der Füllung bei 1 ( Wasserstand: 1 ( Füllstand bedeutet 1,25 ( Pegelstand unter Null. Wir schieben deshalb die Kurve um 1,25 Einheiten nach oben, bilden also ) 1,25 und bestimmen die neuen Nullstellen mit dem GTR. Das verringerte Volumen errechnet sich dann aus dem Betrag der Fläche, die die Achse mit der Kurve im Intervall der beiden Nullstellen einschließt multipliziert mit der Länge des Kanals. Das prozentuale Verhältnis ist der Quotient aus * + *,,,- 100.

2 c) Wir zeichnen die beschriebene Situation in das Schaubild ein. Wie nun aus der Zeichnung ersichtlich, ist die Sichtlinie des Beobachters eine Tangente an durch die Kanalsohle. Steht er weiter weg vom Kanal als die Koordinate seines Beobachtungspunktes, kann er den Grund des Kanals nicht mehr sehen. Die Koordinate seines Beobachtungspunktes ergibt sich über den Schnittpunkt der Tangente mit der Geraden 1.5 (Augenhöhe des Beobachters). Der Berührpunkt ist /0 0, damit können wir die Punkt-Steigungsformel der Tangente aufstellen mit: Die Talsohle mit 20 2,25 ist Punkt dieser Tangentengleichung. Wir machen eine Punktprobe mit 2 und erhalten: 2, ,250 Wir bestimmen die Nullstelle dieser Funktion (im Y4-Speicher) mit dem GTR. Der GTR liefert 4. (Die Nullstelle bei 3 0 ist keine Lösung, der Beobachter kann ja nicht in der Mitte des Kanals an Land stehen). Somit haben wir den Wert von 0 gefunden, für den die Tangente 1 durch die Talsohle geht und den Graphen der Funktion 1 in berührt. Die Augenhöhe der Person ist 1,5, dies bedeutet, dass 11,5 sein muss, also: 11, ,50 (Funktion steht im Y5-Speicher) Wir bestimmen die Nullstelle dieser Funktion mit dem GTR, der den Wert 3 9,23 liefert. Die Person muss also höchstens bei 3 9,23 stehen, um bei einer Augenhöhe von 1,5 ( bei leerem Kanal noch die tiefste Stelle sehen zu können. Gefragt ist aber nach dem Abstand der Person zum Kanalrand. Dieser liegt bei Wir müssen deshalb vom 3 -Wert noch 6 abziehen. a) Verhalten von für 1 wegen höchster Potenz im Zähler gleich höchster Potenz im :;( " < Nenner. hat eine waagrechte Asymptote 1. Wendepunkte von : #0,53 für 2,31!" 0,53 für 2,31 liefert nur einen Tief- und einen Hochpunkt, somit hat nur zwei Wendepunkte.

3 b) Volumen bei vollem Kanal: AB EA DC Es befinden sich etwa 6800 ( H Wasser im Kanal, wenn er ganz gefüllt ist. Volumen bei Pegelstand 1 (: ) 1,25 )0 2,67; 2,67,CK?,3 AB ) D,CK EA * +,L *,,,- 100 CMM CN ,17 % Bei 1 ( Füllung befinden sich noch ca. 24 % des Volumens der vollen Füllung im Kanal. c) Höchster Abstand einer Person vom Kanalrand: Tangente durch 20 2,25 und Berührpunkt 40 0 mit Punktprobe mit 2: 2, , ; H 4 Betrachtung für 04 entspricht rechten Kanalrand: 11, ,50 3 9,23 Δ9,236,03,23 Die Person darf höchstens 3,23 ( vom Kanalrand entfernt stehen, um bei einer Augenhöhe von 1,5 ( bei leerem Kanal noch die tiefste Stelle sehen zu können. Lösung A1.2 Lösungslogik GTR-Einstellungen: Y1=0,4Q;R12 1,5 Achtung: GTR-MODE muss auf RADIAN stehen Periodendauer des Schwimmers: Nach der allgemeine Sinusfunktion: S1T Q;R5V1W7 E gilt: X Y Z. Geschwindigkeit des Schwimmers: Die Sinuskurve ist um den Faktor E1,5 in Richtung nach oben verschoben. Um diese Schwingungslinie schwankt die Geschwindigkeit um die Amplitude T0,4.

4 Die Zeitpunkte der stärksten Geschwindigkeitsabnahme sind die Wendepunkte der Funktion mit negativer Steigung: 1 DY ; R \. Der zurückgelegte Weg ist das Produkt aus mittlerer Geschwindigkeit und Zeit für 50 Perioden, bzw. das Integral unter der Kurve von 0 bis zur Zeit 1 von 50 Perioden. Periodendauer des Schwimmers: X Y Z Y Y C Die Periodendauer des Schwimmers beträgt X Y C. Geschwindigkeitsschwankungen des Schwimmers: S!"E T1,5 0,41,9 S # ET1,50,41,1 Die Geschwindigkeit des Schwimmers schwankt zwischen 1,1 (/Q und 1,9 (/Q. Zeitpunkt stärkster Geschwindigkeitsabnahme: Wendepunkte mit negativer Steigung: Für den in 1 Richtung unverschobenen Sinus gilt: 1 ] Y. Sie wiederholen sich alle Vielfachen der Periode, also Y ; HY DY ;. Die Zeitpunkte der stärksten Geschwindigkeitsabnahme sind 1 DY Zurückgelegter Weg in 50 Perioden: 50 Y Q; S1,5 (/Q C QS 11,5 50 Y 12,5 _39,2699 ( C ] QB S1E1 3 B ` Y S1E1 39, Der zurückgelegte Weg beträgt ca. 39,3 (. ; R \. Lösung A2.1 Lösungslogik GTR-Einstellungen: Y1=0,125Q;R 51 WaQ7 1 2WaQ Y2=.32 Achtung: GTR-MODE muss auf RADIAN stehen

5 a) Sinnvoller Neigungswinkel b, Höhe c und obere Breite T in Abhängigkeit von b: Wir gehen davon aus, dass Blumentröge oben breiter als unten sind, also ist: 0 ebe90 bzw. fg0 ;90 h. Gemäß nebenstehender Grafik gilt: Q;Rb i cv Q;Rb Z 2 TV!DZ WaQb " Z jkl, Z TV2 V WaQb TV 51 2 WaQb7 Flächeninhalt der Querschnittsfläche: Anwendung der Inhaltsformel für Trapeze m no!]pq!rz c. b) Maximales Volumen eines Troges mit quadratischer Pflanzfläche: In der gegebenen Formel :V 51 2WaQb7 ist :T (vergleiche Teilaufgabe a)). Das Volumen des Troges errechnet sich somit aus der Formel? nost m no!]pq :V 51 WaQb7 Q;Rb V 51 2WaQb7 V H Q;Rb 1 WaQb 51 2WaQb7 und mit V0,5? nost b0,125 Q;Rb 1 WaQb 51 2WaQb7 Wir bestimmen? nost b!" im Intervall 0ebe Y mit dem GTR. Wir erhalten den Wert für b im Bogenmaß und müssen diesen noch ins Gradmaß umrechnen. Der angezeigte Wert entspricht dem Volumen des Troges. Werte von b, bei denen der vollständig gefüllte Trog mindestens viermal 80 Liter enthält: Über die Angabe viermal 80 Liter müssen wir das Volumen des Troges in ( H ermitteln. Wir erhalten den Wert 0,32 ( H. Wir tragen diesen Wert in den Y2 Speicher ein. Jetzt bilden wir? nost b 0,32 und bestimmen die Schnittpunkte mit dem GTR. Die so gefundenen Werte sind Werte im Bogenmaß, die in Gradmaß umgerechnet werden müssen.

6 a) Sinnvoller Neigungswinkel b: Da (in der Regel) Blumentröge oben breiter als unten sind, ist der Neigungswinkel sinnvollerweise größer als 0 und kleiner als 90. f: 0 eb'90 Höhe c und obere Breite T in Abhängigkeit von b: i Z Q;Rb cbv Q;Rb!DZ ; " Z!DZ WaQb; V WaQb V WaQb TV2VWaQb TbV 1 2WaQb Flächeninhalt der Querschnittsfläche: m no!]pq T V c V1 2WaQb V VQ;Rb m no!]pq 2V1 WaQb VQ;Rb mbv 1 WaQb Q;Rb q.e.d. b) Maximales Volumen eines Troges mit quadratischer Pflanzfläche:? nost mb :0,5 1 WaQb Q;Rb 0,5 1 2WaQb?b0,125 Q;Rb 1 WaQb 1 2WaQb?b!" 0,3643 für b 0,7854. Umrechnung Bogenmaß nach Gradmaß: N3 Y 0, Für b45 hat der Trog mit quadratischer Pflanzfläche ein maximales Volumen von 0,364 ( H. Werte von b, bei denen der vollständig gefüllte Trog mindestens viermal 80 Liter enthält:? nost 4 80 :320 : W( H 0,32 ( H?b 0,32 b 0,5275; b 1,0637 Umrechnung Bogenmaß nach Gradmaß: b N3 0,527530,22 ; b Y N3 1,063760,94 Y Zum vollständigen Befüllen eines Troges mit quadratischer Pflanzfläche benötigt man dann mindestens vier Säcke Blumenerde von je 80 Litern Inhalt, wenn der Neigungswinkel b ungefähr zwischen 30,2 und 60,9 liegt.

7 Lösung A2.2 Lösungslogik GTR-Einstellungen: Y1=12v /v 4 Wegen der gegebenen Funktionsschar ist der Einsatz des GTR nur bedingt möglich. a) Drei selbstgewählte Schaubilder: Wir wählen z.b. w0,5, w1 und w3. Verhalten von x für y : Höchste Potenz Zählergrad ist kleiner höchste Potenz Nennergrad. Somit hat die Kurvenschar die waagrechte Asymptote 0. Gemeinsame Eigenschaften siehe. b) Bestimmung des Hochpunkts: Es wird vorausgesetzt, dass alle 9 x nur einen Hochpunkt besitzen, deshalb ist ein Nachweis über die 2. Ableitung nicht erforderlich, wir benötigen lediglich die 1. Ableitung. Quotientenregel erforderlich. Ermittlung der Ortskurve siehe. c) Von Kultur bedeckte Fläche nach 2 Minuten: Die Vergrößerung der Fläche in den ersten beiden Minuten ist das Integral über M in den Grenzen von 0 bis 2. a) Schaubilder siehe Lösungslogik Verhalten von x für y : Höchste Potenz Zählergrad ist kleiner höchste Potenz Nennergrad. Somit hat die Kurvenschar die waagrechte Asymptote 0. Gemeinsame Eigenschaften von 9 x : Sie verlaufen oberhalb der Achse Sie haben die Achse als waagrechte Asymptote Sie besitzen einen Hochpunkt Sie sind achsensymmetrisch zu der Parallelen zur Achse durch den Hochpunkt Sie haben zwei Wendepunkte b) Bestimmung des Hochpunktes: x : 03wv " 0 3wv " Sv " w S 2v " x z{ D z Hxp} 5p,} rx7dp,} Hxp }, p,} rx, Extremwerte über x 0 3wv " v " w2v " 3wv " 0 :3wv " v " w2v " 0 v " w :Rw x ~ L,- :RwHxp H x H w p ƒ rx x

8 Die Hochpunkte von 9 x haben die Koordinaten xˆ :RwAH w Ortskurve Š Œ der Hochpunkte aller Kurven 9 x : Umstellung der Koordinate der Hochpunkte nach w: :Rw2 wv " Ersetzen von w in die -Koordinate H w: a H v" H v" Die Funktionsgleichung aller Hochpunkte von 9 x lautet a H v" ; Schaubild von a siehe obige Grafik. c) Von Kultur bedeckte Fläche nach 2 Minuten: M 12v" v " 4 Δ4B M E 5, In den ersten 2 Minuten vergrößert sich die von der Kultur bedeckte Fläche um ca. 5,1 W(. Lösung A2.3 (1) Induktionsanfang: Für R1 stimmt die Behauptung, denn, wie vorausgesetzt, hat die Funktion c mit c " die Ableitung c ",. (2) Induktionsschritt: Induktionsannahme: Für ein beliebiges wž1 gelte für die Funktion c x mit c x " : c x x " + Induktionsbehauptung: Für die Funktion c xr mit c xr " + gilt dann: c xr xr ", Induktionsbeweis: Um die Produktregel anwenden zu können, Schreiben wir c xr zunächst als Produkt: c xr " c " x c Damit folgt nun unter Verwendung der Produktregel: c xr c x c c c x x " + " ", " x ", ",xr ", Somit gilt die Aussage auch für w 1. Insgesamt ist damit die Behauptung für alle RŽ1 bewiesen.

Abitur allg. bildendes Gymnasium Wahlteil Analysis 2004 BW Aufgabe A1.1

Abitur allg. bildendes Gymnasium Wahlteil Analysis 2004 BW Aufgabe A1.1 Aufgabe A1.1 Gegeben ist eine Funktion durch ;. Ihr Schaubild sei. a) Zeichnen Sie. Untersuchen Sie das Verhalten von für. Weisen Sie nach, dass genau zwei Wendepunkte besitzt. Nun stellt für 6 6 den Querschnitt

Mehr

Abituraufgaben allgemeinbildendes Gymnasium Wahlteile Analysis ab 2004 Seite 1

Abituraufgaben allgemeinbildendes Gymnasium Wahlteile Analysis ab 2004 Seite 1 Abituraufgaben allgemeinbildendes Gymnasium Wahlteile Analysis ab 2004 Seite 1 Inhaltsverzeichnis Wahlteile Analysis Abiturprüfungen Wahlteile Analysis Seite Wahlteil 2004 Aufgaben 04 Lösungen 06 Wahlteil

Mehr

Abitur allg. bildendes Gymnasium Wahlteil Analysis 2010 BW

Abitur allg. bildendes Gymnasium Wahlteil Analysis 2010 BW Lösung A1.1 Lösungslogik GTR-Einstellungen: Y1=120 20 2 Y2= 1 Y3=3 Y4=1 3.98 0.4 a) Breite des Walls am Fuß: Die Breite des Walls am Fuß ist die Strecke zwischen den beiden Nullstellen von. Lösung per

Mehr

Abitur allg. bildendes Gymnasium Wahlteil Analysis 2009 BW

Abitur allg. bildendes Gymnasium Wahlteil Analysis 2009 BW Lösung A1.1 Lösungslogik GTR-Einstellungen: Y1=6100/ 16 Y2= 1 Y3=1.5 14 a) Asymptoten: Waagrecht: Wir betrachten die Funktionswerte am Rande des Systems ( ). Senkrecht: Wir untersuchen, für welche Werte

Mehr

Abitur allg. bildendes Gymnasium Wahlteil Analysis 2009 BW

Abitur allg. bildendes Gymnasium Wahlteil Analysis 2009 BW Aufgabe A1.1 Gegeben ist eine Funktion mit 6 a) Geben Sie sämtliche Asymptoten des Schaubilds von an. Geben Sie die Nullstellen von an. Skizzieren Sie das Schaubild von samt Asymptoten für 77. Weisen Sie

Mehr

Merksatz. Definition des Begriffs Ableitung

Merksatz. Definition des Begriffs Ableitung Definition des Begriffs Ableitung Merksatz Die Ableitung einer Funktion an der Stelle ist gleich der Steigung der Tangente an die Kurve im Punkt. Sie entsteht über den Grenzwert des Differenzenquotienten

Mehr

. Ihr Schaubild sei &. a) Geben Sie die Asymptoten von & an. b) Bestimmen Sie den Schnittpunkt der Tangente an & im Punkt 1 1 mit der Achse.

. Ihr Schaubild sei &. a) Geben Sie die Asymptoten von & an. b) Bestimmen Sie den Schnittpunkt der Tangente an & im Punkt 1 1 mit der Achse. Aufgabe A4/04 Gegeben ist die Funktion mit 2; 0. Das Schaubild von hat im Punkt 1 die Tangente. Ermitteln Sie eine Gleichung von. Die Tangente schneidet die Achse im Punkt. Bestimmen Sie die Koordinaten

Mehr

Abitur allg. bildendes Gymnasium Wahlteil Analysis 2010 BW

Abitur allg. bildendes Gymnasium Wahlteil Analysis 2010 BW Aufgabe A1.1 Auf einem ebenen Gelände befindet sich ein geradliniger, 500 langer Lärmschutzwall. Das Profil seines Querschnittes wird beschrieben durch die Funktion mit 2, 0 ( und in Meter). a) Wie breit

Mehr

% $ % ' 6 $ ' $ % 3 $ = 0 % ' 3 $ = 0 $ 3 = 0

% $ % ' 6 $ ' $ % 3 $ = 0 % ' 3 $ = 0 $ 3 = 0 Aufgabe 1.1 Lösungslogik 1.1.1 Schnittpunkte von mit den Koordinatenachsen: Schnittpunkt mit der y Achse über 0. Schnittpunkt mit der x Achse über = 0. Lösung per GTR oder WTR. Extrempunkte von : Über

Mehr

Alle zu orthogonalen Tangenten müssen die Steigung 4,32 1 haben. 0, ,2723* 1,2** 6 Punktprobe mit %&1,2'1,2( 2* 3,6* 64,272 4,272 2* 3,6* 1,7280

Alle zu orthogonalen Tangenten müssen die Steigung 4,32 1 haben. 0, ,2723* 1,2** 6 Punktprobe mit %&1,2'1,2( 2* 3,6* 64,272 4,272 2* 3,6* 1,7280 Lösung A1 6 3 a) 1,21,2 64,272 1,23 1,2 4,32 1,2 1,21,2 4,32 1,24,2724,329,456 b) Alle Tangenten zu parallel müssen die Steigung 4,32 haben. 4,323 :3 1,44, 1,2 Für 1,2 siehe Aufgabenteil a). 1,21,2 67,728

Mehr

Gegeben ist die Funktion mit 2 4. Bestimme die Punkte des Graphen von, dessen Tangenten durch den Punkt 1 2 verlaufen.

Gegeben ist die Funktion mit 2 4. Bestimme die Punkte des Graphen von, dessen Tangenten durch den Punkt 1 2 verlaufen. Dokument mit 16 Aufgaben Aufgabe A1 Gegeben ist die Funktion mit 6. a) Bestimme die Gleichung der Tangente an den Graphen von im Punkt 1,21,2. b) Bestimme alle Tangenten an den Graphen, die zu parallel

Mehr

( )** I J 4979 Alternativ: ( )** I J ( )** LME*****

( )** I J 4979 Alternativ: ( )** I J ( )** LME***** Lösung A1 Lösungslogik GTR-Einstellungen: Y1=30 800/ 5 Y2= 1 Y3=1 1 1 Y4=1 a) Aufstellen der Funktionsgleichung: Wir haben eine gebrochen rationale Funktion mit zwei Unbekannten, also benötigen wir zwei

Mehr

Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A

Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A Für jedes a > ist eine Funktion f a definiert durch fa (x) = x (x a) mit x R a Das Schaubild von f

Mehr

Abiturprüfung Mathematik 2007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik 007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (8 Punkte) Das Schaubild einer Polynomfunktion. Grades geht durch den Punkt S(0/) und hat den 3 Wendepunkt

Mehr

(Quelle Abitur BW 2004) Gegeben sind die Schaubilder der Funktion mit, ihrer Ableitungsfunktion, einer Stammfunktion von und der Funktion mit.

(Quelle Abitur BW 2004) Gegeben sind die Schaubilder der Funktion mit, ihrer Ableitungsfunktion, einer Stammfunktion von und der Funktion mit. Aufgabe A5/04 Die Abbildung zeigt das Schaubild der Ableitungsfunktion einer Funktion. Welche der folgenden Aussagen über die Funktion sind wahr, falsch oder unentscheidbar? (1) ist streng monoton wachsend

Mehr

Situationsgrafik: a) Maximale momentane Änderungsrate: Bestimmung des Hochpunktes von mit dem GTR.

Situationsgrafik: a) Maximale momentane Änderungsrate: Bestimmung des Hochpunktes von mit dem GTR. Lösung A1.1 Lösungslogik GTR-Einstellungen: Y1=6000, Y2= 1 Y3=4000 Y4= 1 Y5=5000 Situationsgrafik: a) Maximale momentane Änderungsrate: Bestimmung des Hochpunktes von mit dem GTR. Zeitraum Änderungsrate

Mehr

1.4 Schaubild von Schaubild von Schaubild von 1., /

1.4 Schaubild von Schaubild von Schaubild von 1., / Lösung A1 1.1 Das Integral ist größer als Null, da die Fläche die der Graph der - Funktion oberhalb der -Achse größer ist als die Fläche unterhalb der -Achse. 1.2 Aussagen über das Schaubild von sind:

Mehr

Aufgabe A1. Aufgabe A3. Aufgabe A4. 0,125,0,75 3,125 im Bereich 2,5&.05,

Aufgabe A1. Aufgabe A3. Aufgabe A4. 0,125,0,75 3,125 im Bereich 2,5&.05, Dokument mit 9 Aufgaben Aufgabe A1 Gegeben ist die Funktion mit ; R, ihr Schaubild sei. Vom Punkt P aus sollen Tangenten an gelegt werden. Bestimme die Gleichungen der Tangenten und die dazugehörigen Berührpunkte.

Mehr

Die Funktion ist gegeben durch ; 0. a) Die Tangente an den Graphen von im Punkt verläuft durch 0 0,5. Bestimmen Sie die Koordinaten von.

Die Funktion ist gegeben durch ; 0. a) Die Tangente an den Graphen von im Punkt verläuft durch 0 0,5. Bestimmen Sie die Koordinaten von. Aufgabe A1.1 Die Anzahl der Käufer einer neu eingeführen Smartphone-App soll modelliert werden. Dabei wird die momentane Änderungsrate beschrieben durch die Funktion 6000, ; 0 ( in Monaten nach Einführung,

Mehr

Abitur allg. bildendes Gymnasium Wahlteil Analysis 2012 BW

Abitur allg. bildendes Gymnasium Wahlteil Analysis 2012 BW Aufgabe A1.1 Die Abbildung zeigt den Verlauf einer Umgehungsstraße zur Entlastung der Ortsdurchfahrt einer Gemeinde. Das Gemeindegebiet ist kreisförmig mit dem Mittelpunkt und dem Radius 1,5. Die Umgehungsstraße

Mehr

Zum Schluss berechnen wir die Steigung, indem wir

Zum Schluss berechnen wir die Steigung, indem wir Einführung Grafisches Differenzieren (auch grafische Ableitung genannt) gibt uns zum einen die Möglichkeit, die Steigung des Graphen einer Funktion in einem bestimmten Punkt zu ermitteln, ohne dass wir

Mehr

Aufgabe A1. Aufgabe A2. Aufgabe A3 Die Funktion mit 3 3 hat die Nullstelle 1. Bestimmen Sie die weiteren Nullstellen.

Aufgabe A1. Aufgabe A2. Aufgabe A3 Die Funktion mit 3 3 hat die Nullstelle 1. Bestimmen Sie die weiteren Nullstellen. Aufgabe A1 Bilden Sie die Ableitung der Funktion mit 4. Aufgabe A2 Geben Sie eine Stammfunktion der Funktion mit an. Aufgabe A3 Die Funktion mit 3 3 hat die Nullstelle 1. Bestimmen Sie die weiteren Nullstellen.

Mehr

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1...

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1... Pflichtteil... Wahlteil Analysis... 7 Wahlteil Analysis... Wahlteil Analysis... Wahlteil Analytische Geometrie... 9 Wahlteil Analytische Geometrie... 008 Pflichtteil Lösungen zur Prüfung 008: Pflichtteil

Mehr

1.2 Weisen Sie rechnerisch nach, dass das Schaubild der Funktion mit 4P! bei 1 einen Sattelpunkt aufweist.

1.2 Weisen Sie rechnerisch nach, dass das Schaubild der Funktion mit 4P! bei 1 einen Sattelpunkt aufweist. Aufgabe A1 1.1 Erläutere anhand einer Skizze, ob das Integral 3P größer, kleiner oder gleich Null ist. 1.2 Für eine Funktion gilt: (1) 0 für 2 und 1 (2) 23 (3) 13 (4) 2 (5) 1 6 Welche Aussagen lassen sich

Mehr

Zusammenfassung der Kurvendiskussion

Zusammenfassung der Kurvendiskussion Zusammenfassung der Kurvendiskussion Diskussionspunkte 1 Größtmögliche Definitionsmenge D f 2 Symmetrieeigenschaften des Graphen G f 3 Nullstellen, Polstellen, Schnittpunkte mit der y-achse, Vielfachheit

Mehr

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1...

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1... Pflichtteil Wahlteil Analysis 8 Wahlteil Analysis Wahlteil Analysis 9 Wahlteil Analytische Geometrie Wahlteil Analytische Geometrie 9 Lösungen: Pflichtteil Lösungen zur Prüfung : Pflichtteil Benötigte

Mehr

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1...

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1... Pflichtteil... Wahlteil Analysis... Wahlteil Analysis... Wahlteil Analysis 3... 5 Wahlteil Analytische Geometrie... Wahlteil Analytische Geometrie... Lösungen: 00 Pflichtteil Lösungen zur Prüfung 00: Pflichtteil

Mehr

Für jede reelle Zahl ist eine Funktion mit 2 gegeben.

Für jede reelle Zahl ist eine Funktion mit 2 gegeben. Aufgabe A1.1 Der Graph der Funktion mit 0,3 2,8 8,3 7,6 6 beschreibt modellhaft für 0 3,8 das Profil eines Geländequerschnitts (siehe Abbildung). Die positive -Achse weist nach Osten und gibt die Höhe

Mehr

Ü b u n g s a r b e i t

Ü b u n g s a r b e i t Ü b u n g s a r b e i t Aufgabe. a) Die Querschnittsfläche eines Abwasserkanals ist im unteren Teil von einer Parabel k begrenzt, an die sich nach oben die beiden Geraden g und h anschließen. Bestimmen

Mehr

8 5 9 : 8 5 ; 0 85<8. 8 : 8 0 > 1 Der Schnittpunkt mit der x-achse ist? 1 0.

8 5 9 : 8 5 ; 0 85<8. 8 : 8 0 > 1 Der Schnittpunkt mit der x-achse ist? 1 0. Aufgabe M04A1 Gegeben ist die Funktion mit. Ein Teil des Graphen ist abgebildet. a) Geben Sie die maximale Definitionsmenge von und Gleichungen der Asymptoten von an. besitzt einen Schnittpunkt mit der

Mehr

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13 Musteraufgaben ab 08 Pflichtteil Aufgabe Seite / BEISPIEL A. Geben Sie Lage und Art der Nullstellen der Funktion f mit f( x) ( x ) ( x ) ; x IR an.. Bestimmen Sie die Gleichung der Tangente in P( f ())

Mehr

1.2 Berechne den Inhalt der Fläche, die das Schaubild von mit 5P der -Achse einschließt.

1.2 Berechne den Inhalt der Fläche, die das Schaubild von mit 5P der -Achse einschließt. Diese Aufgaben sind zu bearbeiten. Sie können nicht abgewählt werden. Aufgabe A1 1. Gegeben ist die Funktion mit 2 3; 1.1 Eine der folgenden Abbildung zeigt das Schaubild. 6P Untersuche für jede der Abbildungen,

Mehr

Abitur 2017 Mathematik Infinitesimalrechnung II

Abitur 2017 Mathematik Infinitesimalrechnung II Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung II Die Abbildung zeigt den Graphen der in R definierten Funktion g : x p + q sin p, q, r N. ( π r x ) mit Gegeben

Mehr

Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung

Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 211 G8 Musterabitur Mathematik Infinitesimalrechnung I Teilaufgabe 1 (3 BE) Bestimmen Sie die Nullstellen der Funktion f : x (e x 2) (x 3 2x ) mit Definitionsbereich

Mehr

B Anwendungen der Differenzialrechnung

B Anwendungen der Differenzialrechnung B Anwendungen der Differenzialrechnung Kurvendiskussionen Um den Verlauf eines Funktionsgraphen zu bestimmen, kann eine Wertetabelle aufgestellt werden. Dies kann jedoch sehr mühselig sein und es ist nicht

Mehr

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13 Pflichtteil Aufgabe BEISPIEL A. Geben Sie Lage und Art der Nullstellen der Funktion f mit 4 f( x) ( x ) ( x ) ; x IR an.. Bestimmen Sie die Gleichung der Tangente in P( f ()) an das Schaubild der Funktion

Mehr

Ableitungen Tangente und Normale Seite 1

Ableitungen Tangente und Normale Seite 1 Ableitungen Tangente und Normale Seite 1 Kapitel mit 157 Aufgaben Seite WIKI Regeln und Formeln 03 Level 1 Grundlagen Aufgabenblatt 1 (19 Aufgaben) 11 Lösungen zum Aufgabenblatt 1 12 Aufgabenblatt 2 (22

Mehr

Prüfungsteil 1, Aufgabe 3. Analysis. Nordrhein-Westfalen 2012 GK. Aufgabe a (1) Aufgabe a (2) Abitur Mathematik: Musterlösung

Prüfungsteil 1, Aufgabe 3. Analysis. Nordrhein-Westfalen 2012 GK. Aufgabe a (1) Aufgabe a (2) Abitur Mathematik: Musterlösung Abitur Mathematik: Prüfungsteil 1, Aufgabe 3 Nordrhein-Westfalen 2012 GK Aufgabe a (1) 1. SCHRITT: BEDINGUNG FÜR PUNKTSYMMETRIE ZUM URSPRUNG PRÜFEN Der Graph der Funktion : ist genau dann punktsymmetrisch

Mehr

Analysis 2. f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt:

Analysis 2.  f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: Analysis 2 www.schulmathe.npage.de Aufgaben 1. Gegeben ist die Funktion f durch f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: f (x) = 6(x

Mehr

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1...

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1... Pflichtteil Wahlteil Analysis 7 Wahlteil Analysis Wahlteil Analysis 7 Wahlteil Analytische Geometrie Wahlteil Analytische Geometrie 8 Lösungen: Pflichtteil Lösungen zur Prüfung : Pflichtteil Benötigte

Mehr

Abituraufgaben BG Teil 2 bis 4 (mit Hilfsmittel) Mustersatz 1 Teil2 - Analysis / Anwendungsorientierte Analysis Lösung A1

Abituraufgaben BG Teil 2 bis 4 (mit Hilfsmittel) Mustersatz 1 Teil2 - Analysis / Anwendungsorientierte Analysis Lösung A1 Teil2 - Analysis / Anwendungsorientierte Analysis Lösung A1 1.1 Nur Abbildung C ist das Schaubild der Funktion mit 2 3. hat in 0 eine doppelte Nullstelle und in 3 eine einfache Nullstelle. Dies trifft

Mehr

ARBEITSBLATT 6-5. Kurvendiskussion

ARBEITSBLATT 6-5. Kurvendiskussion ARBEITSBLATT 6-5 Kurvendiskussion Die mathematische Untersuchung des Graphen einer Funktion heißt Kurvendiskussion. Die Differentialrechnung liefert dabei wichtige Dienste. Intuitive Erfassung der Begriffe

Mehr

Bayern Teil 1. Aufgabe 1. Abitur Mathematik: Musterlösung. Der Term unter der Wurzel darf nicht negativ werden. Es muss also gelten:

Bayern Teil 1. Aufgabe 1. Abitur Mathematik: Musterlösung. Der Term unter der Wurzel darf nicht negativ werden. Es muss also gelten: Abitur Mathematik: Bayern 2013 Teil 1 Aufgabe 1 a) 1. SCHRITT: DEFINITIONSMENGE BESTIMMEN Der Term unter der Wurzel darf nicht negativ werden. Es muss also gelten: 3x + 9 0 x 3 2. SCHRITT: NULLSTELLEN

Mehr

Lösungsblatt zu: Gebrochen rationale, Exponential- und Logarithmus Funktionen

Lösungsblatt zu: Gebrochen rationale, Exponential- und Logarithmus Funktionen Lösungsblatt zu: Gebrochen rationale, Exponential- und Logarithmus Funktionen Das hast du schon gelernt: Aufgabe : a) Definitionsbereich TIPP: Definitionsbereich Nenner darf nicht Null werden x 0 x

Mehr

Flächenberechnungen mit Integralen. Aufgaben und Lösungen.

Flächenberechnungen mit Integralen. Aufgaben und Lösungen. Flächenberechnungen mit Integralen Aufgaben und Lösungen http://www.elearning-freiburg.de 2 Aufgabe 1: Gegeben sei die Funktion f = 2 + 4 + 4. f = 2 + 4 + 4 a) Berechnen Sie die Fläche, die die Kurve mit

Mehr

M I N I S T E R I U M F Ü R K U L T U S, J U G E N D U N D S P O R T. Berufsoberschule (BOS) SO/TO/WO. 2 2x

M I N I S T E R I U M F Ü R K U L T U S, J U G E N D U N D S P O R T. Berufsoberschule (BOS) SO/TO/WO. 2 2x Mathematik (43) Musteraufgabe Gruppe I: Analysis ohne Hilfsmittel ab 07 Seite /3 Gegeben ist die Funktion f mit 4 3 f(x) x x 3x 4x ; xir. 6 Bestimmen Sie den Bereich, in dem das Schaubild von f rechtsgekrümmt

Mehr

Trigonometrische Funktionen Luftvolumen

Trigonometrische Funktionen Luftvolumen Trigonometrische Funktionen Luftvolumen Die momentane Änderungsrate des Luftvolumens in der Lunge eines Menschen kann durch die Funktion f mit f(t) = 1 2 sin(2 5 πt) modelliert werden, f(t) in Litern pro

Mehr

Mathematik LK13 Kursarbeit Musterlösung Aufgabe I:

Mathematik LK13 Kursarbeit Musterlösung Aufgabe I: Mathematik LK13 Kursarbeit 1 6.11.14 Musterlösung Aufgabe I: Analysis I 1. Spaß mit natürlichen Eponentialfunktionen Gegeben sind die Funktionen f ()=e ( + ) und g ( )=5 e Untersuchen Sie beide Funktionen

Mehr

Abitur 2014 Mathematik Infinitesimalrechnung I

Abitur 2014 Mathematik Infinitesimalrechnung I Seite http://www.abiturloesung.de/ Seite 2 Abitur 204 Mathematik Infinitesimalrechnung I Die Abbildung zeigt den Graphen einer Funktion f. Teilaufgabe Teil A (5 BE) Gegeben ist die Funktion f : x x ln

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Trigonometrische Funktionen. Gegeben ist die Funktion f() = (sin( π )) Ihr Graph sei K. a) Skizzieren Sie K im Intervall [0,]. Geben Sie die Periode von f an. Geben Sie alle Hoch- und Tiefpunkte von K

Mehr

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x.

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x. Skripten für die Oberstufe Kurvendiskussion x 3 f (x) x f (x)dx = e x H. Drothler 0 www.drothler.net Kurvendiskussion Zusammenfassung Seite Um Funktionsgraphen möglichst genau zeichnen zu können, werden

Mehr

Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen

Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen A1 Funktionen/Funktionsklassen 1 Grundbegriffe Analysis A 1.1 Gegeben sei die Funktion f mit f(x) = 2 x 2 + x. a) Bestimme, wenn möglich, die Funktionswerte an den Stellen 0, 4 und 2. b) Gib die maximale

Mehr

Pflichtteilaufgaben zu Funktionenkompetenz. Baden-Württemberg

Pflichtteilaufgaben zu Funktionenkompetenz. Baden-Württemberg Pflichtteilaufgaben zu Funktionenkompetenz Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com September 016 1 Übungsaufgaben: Ü1: Die Abbildung zeigt

Mehr

Mathematik Name: Nr.4 K1 Punkte: /30 Note: Schnitt:

Mathematik Name: Nr.4 K1 Punkte: /30 Note: Schnitt: K Punkte: / Note: Schnitt: 9.5.6 Pflichtteil (etwa 4 min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet werden

Mehr

Differentialquotient. Aufgabe 1. o Gegeben: Das Bild zeigt den Graphen der Funktion f mit f(x) = 0,5x 3 1,5x²

Differentialquotient. Aufgabe 1. o Gegeben: Das Bild zeigt den Graphen der Funktion f mit f(x) = 0,5x 3 1,5x² Differentialquotient Aufgabe 1 Das Bild zeigt den Graphen der Funktion f mit f(x) = 0,5x 3 1,5x² a) Bestimmen Sie die Nullstellen der Funktion. Berechnen Sie in diesen Nullstellen die Steigung des Graphen

Mehr

1. Fall: 2. Fall: Lösungsblatt zu: Differentialquotient. Tipp: Nullstellen. Tipp: Es reicht, wenn einer der Faktoren Null wird.

1. Fall: 2. Fall: Lösungsblatt zu: Differentialquotient. Tipp: Nullstellen. Tipp: Es reicht, wenn einer der Faktoren Null wird. Lösungsblatt zu: Differentialquotient Aufgabe 1: Gegeben: f(x) = 0,5x 3 1,5x² a) Bestimmen Sie die Nullstellen: Nullstellen f(x) = 0 0,5x 3 1,5x 2 = 0 ( 0,5x 2 ausklammern) 0,5x 2 (x + 3) = 0 Es reicht,

Mehr

Abitur 2018 Mathematik Infinitesimalrechnung I

Abitur 2018 Mathematik Infinitesimalrechnung I Seite 1 Abitur 2018 Mathematik Infinitesimalrechnung I Teilaufgabe Teil A 1 (4 BE) Geben Sie für die Funktionen f 1 und f 2 jeweils die maximale Definitionsmenge und die Nullstelle an. f 1 : x 2x + 3 x

Mehr

2) 2 4 in der größtmöglichen Definitionsmenge

2) 2 4 in der größtmöglichen Definitionsmenge Abschlussprüfung Berufliche Oberschule 009 Mathematik 13 Nichttechnik - A I - Lösung Teilaufgabe 1.0 Gegeben ist die Funktion f( x) ln ( x ) 4 in der größtmöglichen Definitionsmenge D f IR. Ihr Graph wird

Mehr

K2 KLAUSUR Pflichtteil

K2 KLAUSUR Pflichtteil K2 KLAUSUR 10.02.2012 MATHEMATIK Pflichtteil: Aufgabe 1 2 3 4 5 6 7 8 Punkte (max) 2 2 3 4 5 3 4 3 Punkte Wahlteil Analysis Aufgabe a b c Punkte (max) 9 5 4 Punkte Wahlteil Geometrie Aufgabe a b c Punkte

Mehr

Analysis II. Abitur Mathematik Bayern 2012 Musterlösung. Bayern Teil 1. Aufgabe 1. Aufgabe 2. Abitur Mathematik: Musterlösung.

Analysis II. Abitur Mathematik Bayern 2012 Musterlösung. Bayern Teil 1. Aufgabe 1. Aufgabe 2. Abitur Mathematik: Musterlösung. Abitur Mathematik: Musterlösung Bayern 2012 Teil 1 Aufgabe 1 2x + 3 f(x) = x² + 4x + 3 DEFINITIONSMGE Nullstellen des Nenners:! x² + 4x + 3=0 Lösungen x 1,2 = 4 ± 16 12 2 = 2 ± 1, d.h. x 1 = 3 und x 2

Mehr

Abituraufgaben allg. bildendes Gymnasium Pflichtteil 2007 BW Aufgabe A1

Abituraufgaben allg. bildendes Gymnasium Pflichtteil 2007 BW Aufgabe A1 Aufgabe A1 Bilden Sie die Ableitung der Funktion mit 1. Aufgabe A2 Berechnen Sie das Integral. Aufgabe A3 Lösen Sie die Gleichung 2 0. Aufgabe A4 Gegeben ist die Funktion mit. a) Bestimmen Sie die Punkte

Mehr

Abschlussprûfung Berufskolleg. (Fachhochschulreife) Prüfungsaufgaben aus Baden-Württemberg. Analysis 2 Ganzrationale Funktionen.

Abschlussprûfung Berufskolleg. (Fachhochschulreife) Prüfungsaufgaben aus Baden-Württemberg. Analysis 2 Ganzrationale Funktionen. Abschlussprûfung Berufskolleg (Fachhochschulreife) Prüfungsaufgaben aus Baden-Württemberg Analysis 2 Ganzrationale Funktionen zusammen mit Exponentialfunktionen Jahrgänge 2009 bis 2016 Text Nr. 74302 Stand

Mehr

Flächenberechnung mit Integralen. Flächenberechnung mit Integralen. Flächenberechnung mit Integralen. Flächenberechnungen mit Integralen

Flächenberechnung mit Integralen. Flächenberechnung mit Integralen. Flächenberechnung mit Integralen. Flächenberechnungen mit Integralen Flächenberechnungen mit Integralen Aufgabe 1: Gegeben sei die Funktion = 44. = 44 Aufgaben und Lösungen a) Berechnen Sie die Fläche, die die Kurve mit den Koordinatenachsen einschließt. b) Berechnen Sie

Mehr

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt Aufgaben für Analysis in der Oberstufe Robert Rothhardt 14. Juni 2011 2 Inhaltsverzeichnis 1 Modellierungsaufgaben 5 1.1 Musterabitur S60................................ 5 1.2 Musterabitur 3.1.4 B / S61..........................

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der

Mehr

Abitur 2017 Mathematik Infinitesimalrechnung I

Abitur 2017 Mathematik Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung I Gegeben ist die Funktion g : x 2 4 + x 1 mit maximaler Definitionsmenge D g. Der Graph von g wird mit G g bezeichnet.

Mehr

Hauptprüfung 2007 Aufgabe 3

Hauptprüfung 2007 Aufgabe 3 Hauptprüfung 7 Aufgabe. Gegeben sind die Funktionen f, g und h mit f (x) = sin x g (x) = sin(x) +, x h(x) = sin x Ihre Schaubilder sind Beschreiben Sie, wie hervorgehen.. Skizzieren Sie K g. K f, K f,

Mehr

Analysis: Trigonometr. Funktionen Analysis Trigonometrische Funktionen Pflicht- und Wahlteilaufgaben

Analysis: Trigonometr. Funktionen Analysis Trigonometrische Funktionen Pflicht- und Wahlteilaufgaben Analysis Trigonometrische Funktionen Pflicht- und Wahlteilaufgaben Gymnasium Oberstufe J oder J Alexander Schwarz www.mathe-aufgaben.com Dezember 0 Pflichtteilaufgaben (ohne GTR): Aufgabe : Leite die folgenden

Mehr

Abiturprüfung Mathematik 2017 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 2 Lösungen der Aufgaben A 2.1 und A 2.

Abiturprüfung Mathematik 2017 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 2 Lösungen der Aufgaben A 2.1 und A 2. 1 Abiturprüfung Mathematik 2017 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 2 Lösungen der Aufgaben A 2.1 und A 2.2 klaus_messner@web.de www.elearning-freiburg.de 2 Aufgabe A 2.1

Mehr

Die Kettenregel Seite 1

Die Kettenregel Seite 1 Die Kettenregel Seite 1 Kapitel mit 124 Aufgaben Seite WIKI Regeln und Formeln 03 Level 1 Grundlagen Aufgabenblatt 1 (26 Aufgaben) 07 Lösungen zum Aufgabenblatt 1 09 Aufgabenblatt 2 (34 Aufgaben) 11 Lösungen

Mehr

12,25 4,25. & 11/12,25

12,25 4,25. & 11/12,25 Anwendungsorientierte Analysis Musteraufgaben mit Hilfsmittel) Lösung A1 2.1 Trigonometrische Funktion der Messergebnisse: Die Messergebnisse können entweder mit einer Sinusfunktion ) oder aber auch mit

Mehr

Abiturprüfung Mathematik 2010 Baden-Württemberg (ohne CAS) Wahlteil - Aufgaben Analysis I 3 Aufgabe I 3: m Ein Segelboot gleitet mit der konstanten Geschwindigkeit 160 min an einem ruhenden Motorboot vorbei.

Mehr

Abitur 2015 Mathematik Infinitesimalrechnung II

Abitur 2015 Mathematik Infinitesimalrechnung II Seite 1 Abitur 2015 Mathematik Infinitesimalrechnung II Gegeben ist die Funktion g : x ln(2x + 3) mit maximaler Definitionsmenge D und Wertemenge W. Der Graph von g wird mit G g bezeichnet. Teilaufgabe

Mehr

0;! ' 2 * +, 0 * +, 0 *

0;! ' 2 * +, 0 * +, 0 * Teil2 - Analysis / Anwendungsorientierte Analysis Lösung A1 1.1 22sin Das Schaubild von geht aus dem Schaubild von hervor durch: (1) Streckung in -Richtung mit dem Faktor 2; (2) Streckung in -Richtung

Mehr

Merksatz Begriff der Funktion

Merksatz Begriff der Funktion Der Begriff Funktion Um uns klar zu machen, was eine Funktion (lateinisch functio) ist, betrachten wir uns die Gegenüberstellung nachfolgender Situationen. Die Temperatur eines Gewässers wird in verschiedenen

Mehr

Funktionen-Katalog. I. Geraden. f(x) = 1 oder y = 1. x = 1. eine Gerade parallel zur x-achse. Gerade parallel zur y- Achse (keine Funktion) f(x) = - x

Funktionen-Katalog. I. Geraden. f(x) = 1 oder y = 1. x = 1. eine Gerade parallel zur x-achse. Gerade parallel zur y- Achse (keine Funktion) f(x) = - x Funktionen-Katalog I. Geraden II. Ganzrationale Funktion: Parabeln -ten Grades 3-ten Grades Parabeln höheren Grades III. Gebrochenrationale Funktionen: Asymptoten, Polstellen... IV. Eponentialfunktionen

Mehr

und geben Sie die Gleichungen und Art aller Asymptoten an. an, bestimmen Sie die Koordinaten der Achsenschnittpunkte von G f auflösen x x 2 2 ( 2/ 0)

und geben Sie die Gleichungen und Art aller Asymptoten an. an, bestimmen Sie die Koordinaten der Achsenschnittpunkte von G f auflösen x x 2 2 ( 2/ 0) Abiturprüfung Berufliche Oberschule Mathematik Nichttechnik - A II - Lösung Teilaufgabe. x Gegeben ist die Funktion f( x) ( x ) in ihrer maximalen Definitionsmenge D f IR. Der zugehörige Graph heißt. Teilaufgabe.

Mehr

Hinweis: Dieses Aufgabeblatt enthält auch Teilaufgaben zum grafischen Integrieren. Tipp: NEW-Regel anwenden für alle Aufgaben.

Hinweis: Dieses Aufgabeblatt enthält auch Teilaufgaben zum grafischen Integrieren. Tipp: NEW-Regel anwenden für alle Aufgaben. Dokument mit 33 Aufgaben Hinweis: Dieses Aufgabeblatt enthält auch Teilaufgaben zum grafischen Integrieren. Tipp: NEW-Regel anwenden für alle Aufgaben. Aufgabe A1 gegründet Stellung. (1) besitzt im Intervall

Mehr

Ganzrationale Funktionen 1.) Parabeln 2-ten Grades f(x) = x² (Parabel) I. Geraden. f(x) = -x². f(x) = 1 oder y = 1. x = 2

Ganzrationale Funktionen 1.) Parabeln 2-ten Grades f(x) = x² (Parabel) I. Geraden. f(x) = -x². f(x) = 1 oder y = 1. x = 2 Mathematik in der Kursstufe: Analysis () Mathematik in der Kursstufe: Analysis () Analysis (): Funktionen-Katalog I. Geraden II. Ganzrationale Funktion: Parabeln -ten Grades 3-ten Grades Parabeln höheren

Mehr

Crashkurs sin 2 x + 5 cos 2 x = sin 2 x 2 sin x = 3

Crashkurs sin 2 x + 5 cos 2 x = sin 2 x 2 sin x = 3 Crashkurs. Funktion mit Parameter/Ortskurve - Wahlteil Analysis.. Gegeben sei für t > die Funktion f t durch f t (x) = 4 x 4t x 2 ; x R\{}. a) Welche Scharkurve geht durch den Punkt Q( 4)? b) Bestimme

Mehr

Hauptprüfung Fachhochschulreife Baden-Württemberg

Hauptprüfung Fachhochschulreife Baden-Württemberg Hauptprüung Fachhochschulreie 204 Baden-Württemberg Augabe 2 Analysis Hilsmittel: graikähiger Taschenrechner Beruskolleg Alexander Schwarz www.mathe-augaben.com September 204 Gegeben ist die Funktion mit

Mehr

Analysis 8.

Analysis 8. Analysis 8 www.schulmathe.npage.de Aufgaben Gegeben sind die Funktionen f a durch f a (x) = a x x + (x R x ; a R a ) a) Geben Sie die Koordinaten der Schnittpunkte der Graphen der Funktionen f a mit den

Mehr

c) Das Schaubild von verläuft im Schnittpunkt mit der y-achse steiler als die erste Winkelhalbierende.

c) Das Schaubild von verläuft im Schnittpunkt mit der y-achse steiler als die erste Winkelhalbierende. VP b) Das Schaubild von hat für 36 genau zwei Wendepunkte. c) Das Schaubild von verläuft im Schnittpunkt mit der y-achse steiler als die erste Winkelhalbierende. 3. Gegeben ist die Funktionenschar mit

Mehr

Bayern Musterlösung zu Klausur Analysis, Aufgabengruppe I

Bayern Musterlösung zu Klausur Analysis, Aufgabengruppe I Diese Lösung wurde erstellt von Tanja Reimbold. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus. Teil 1 Aufgabe 1 Definitionsbereich: Bestimmung der Nullstelle

Mehr

Diese Funktion ist mein Typ!

Diese Funktion ist mein Typ! Diese Funktion ist mein Typ! Überblick über die wichtigsten Funktionstypen der 10.Jgst.: Lineare Funktionen Quadratische Funktionen Ganzrationale Funktionen Gebrochen-rationale Funktionen Trigonometrische

Mehr

Arbeiten mit Funktionen

Arbeiten mit Funktionen Arbeiten mit Funktionen Wir wählen den Funktioneneditor (Ë W) und geben dort die Funktion f(x) = x³ - x² - 9x + 9 ein. Der TI 92 stellt uns eine Reihe von Funktionsbezeichnern zur Verfügung (y 1 (x), y

Mehr

Mathematik für Studierende der Biologie Wintersemester 2017/18. Grundlagentutorium 4 Lösungen

Mathematik für Studierende der Biologie Wintersemester 2017/18. Grundlagentutorium 4 Lösungen Mathematik für Studierende der Biologie Wintersemester 207/8 Grundlagentutorium 4 Lösungen Sebastian Groß Termin Mittwochs 5:45 7:45 Großer Hörsaal Biozentrum (B00.09) E-Mail gross@bio.lmu.de Sprechzeiten

Mehr

Lösungen zur Prüfung 2014: Pflichtteil

Lösungen zur Prüfung 2014: Pflichtteil Pflichtteil Lösungen zur Prüfung : Pflichtteil Benötigte Kenntnisse: Analysis: Ableiten mit Produktregel, Integral mit Stammfunktion berechnen, Gleichung lösen, Kosinusfunktion, Nullstellen, Funktionswerte

Mehr

a) Begründen Sie, dass der Graph von achsensymmetrisch zur #-Achse ist. Zeigen Sie, dass die Nullstellen der Funktion unabhängig von sind.

a) Begründen Sie, dass der Graph von achsensymmetrisch zur #-Achse ist. Zeigen Sie, dass die Nullstellen der Funktion unabhängig von sind. Aufgabe M08A2.1 Ein Klimaforscher beschreibt die Entwicklung der globalen Durchschnittstemperatur modellhaft durch die Funktion mit 2,8, 0,0311,1 0 200. Dabei gibt die Zeit in Jahren seit Beginn des Jahres

Mehr

Aufgabe 2: Analysis (WTR)

Aufgabe 2: Analysis (WTR) Abitur Mathematik: Nordrhein-Westfalen 2013 Aufgabe 2 a) (1) STARTPUNKT BERECHNEN Der x Wert des Startpunktes ist mit 8 gegeben. Der zugehörige y Wert ist 8 1 50 8 3 106 8 4,24. 4 25 Der Startpunkt liegt

Mehr

Überblick über die Winkelfunktionen Sinusfunktion

Überblick über die Winkelfunktionen Sinusfunktion Überblick über die Winkelfunktionen Sinusfunktion -x2 -x1 x1 x2 Die Funktion x sin x ; x ℝ heißt Sinusfunktion und ihr Graph Sinuskurve. Die Sinusfunktion ist punktsymmetrisch (blau in der Zeichnung) zum

Mehr

Spiralen DEMO. Text Nr Stand 9. März 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Spiralen DEMO. Text Nr Stand 9. März 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Spiralen Text Nr. 5435 Stand 9. März 06 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 5435 Spiralen Vorwort Es gibt eine ganze Reihe von spiralähnlichen Kurven. Einige davon habe ich für diesen

Mehr

Abitur 2013 Mathematik Infinitesimalrechnung II

Abitur 2013 Mathematik Infinitesimalrechnung II Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 213 Mathematik Infinitesimalrechnung II Teilaufgabe Teil 1 1 (5 BE) Geben Sie für die Funktion f mit f(x) = ln(213 x) den maximalen Definitionsbereich

Mehr