Beispiellösung Serie 7

Größe: px
Ab Seite anzeigen:

Download "Beispiellösung Serie 7"

Transkript

1 D-MAVT FS 2014 K. Nipp A. Hiltebrand NUMERISCHE MATHEMATIK Beispiellösung Serie 7 1. a) Exakt: ( L = Rückwärts einsetzen Lz = b : z 1 = 0.5, z 2 = = 99 Rx = z : x 2 = 99, x = ( ) = b) Mit Runden ( ρ( 199) L = Rückwärts einsetzen ), R = ( ) ( , R = Lz = b : z 1 = 0.5, z 2 = = 99 Rx = z : x 2 = , x = ( ) 200 = 0 (Auslöschung!) (0, 0.5) schlechte Näherung der exakten Lösung ( 100, 99 ) c) Mit Runden und Vertauschen der Zeilen (relative Spaltenmaximumstrategie) ( ) ( ) ρ(0.995) L =, R = Rückwärts einsetzen Lz = y : z 1 = 1, z 2 = Rx = z : x 2 = 0.5, x 1 = = 0.5 Gute Näherung: (0.5, 0.5) = (ρ( ), ρ( )) ) ) Bitte wenden!

2 2. Entscheidend für die Konvergenz eines Iterationsverfahrens x k+1 = T x k + b ist der Spektralradius der Matrix T : Es muss gelten: ρ(t ) < 1. Mit M = A, B oder C gilt beim Jacobi-Verfahren T jac = D 1 (M D) und beim Gauss-Seidel-Verfahren T gs = (D + L) 1 R, wobei M = D + L + R (Skript S ). Der Spektralradius der Iterationsmatrix für das Jacobi- bzw. Gauss-Seidel-Verfahren kann z.b. wie folgt bestimmt werden: D=diag(diag(M)); R=triu(M)-D; L=tril(M)-D; Tjac=-D\(M-D); Tgs=-(D+L)\R; rho_jac=max(abs(eig(tjac))) rho_gs=max(abs(eig(tgs))) Dies liefert ρ(a) ρ(b) ρ(c) Jacobi Gauss-Seidel Das Jacobi-Verfahren konvergiert also nur für die Matrix A. Das Gauss-Seidel-Verfahren konvergiert für die Matrizen A und C (symmetrisch positiv definit!). Bemerkung: Die Matrix A ist strikt diagonal dominant. Das ist ein alternativer Weg, um zu sehen, dass für A sowohl das Jacobi- als auch das Gauss-Seidel-Verfahren konvergieren (vgl. S. 29). Siehe nächstes Blatt!

3 3. a) function [x, iter, time] = jac(a,b,x0,tol) tic D=diag(diag(A)); L=tril(A)-D; R=triu(A)-D; x=x0; % start with initial guess maxiter=2e3; iter=0; while (iter<maxiter) iter=iter+1; xold=x; x=d\((-l-r)*x+b); % Jacobi iteration without inverse if (norm(x-xold)<norm(x)*tol+tol) break; end % converged! end time=toc; if (iter==maxiter) disp([ no convergence after,int2str(iter), iterations ]); end; b) tol=1e-5; k_vec=10:5:40; iter_vec=zeros(1,length(k_vec)); for i=1:length(k_vec) k=k_vec(i); A=model(k); b=rhs(k); x0=zeros(size(b)); [x,iter]=jac(a,b,x0,tol); iter_vec(i)=iter; end plot(k_vec,iter_vec) xlabel( k ) ylabel( Anzahl Iterationen ) ici! c) Für das Gauss-Seidel-Verfahren muss man im Wesentlichen nur eine Zeile des Codes verändern: Statt des Jacobi-Updates x=d\((-l-r)*x+b); verwendet man das Gauss-Seidel-Update: x=(d+l)\((-r)*x+b); Das Gauss-Seidel-Verfahren braucht wie im Graphen ersichtlich deutlich weniger Iterationen als das Jacobi-Verfahren. Die approximative Lösung der Poissongleichung ist im zweiten Graphen dargestellt. Bitte wenden!

4 Jacobi Gauss Seidel Anzahl Iterationen k Siehe nächstes Blatt!

5 4. Multiple Choice. a) I) Bei der Diskretisierung von hyperbolischen Differentialgleichungen verlangt die CFL-Bedingung (i) Numerisches Abhängigkeitsgebiet Analytisches Abhängigkeitsgebiet (ii) Numerisches Abhängigkeitsgebiet Analytisches Abhängigkeitsgebiet Das analytisches Abhängigkeitsgebiet muss im numerischen Abhängigkeitsgebiet enthalten sein, sonst könnte man die Anfangsdaten (und damit die Lösung) ausserhalb des numerischen Abhängigkeitsgebiet abändern, ohne dass sich die numerische Approximation ändert. Siehe auch S. 151 im Skript. II) Bei der Wellengleichung u tt c 2 u xx = 0, c > 0 ist für das Differenzenverfahren (8.12) aus dem Skript die CFL-Bedingung immer erfüllt, wenn t = x gilt. (i) Richtig. (ii) Falsch. Die CFL-Bedingung ist für das Verfahren erfüllt, wenn t x 1 c Für grosse Wellengeschwindigkeiten c > 1 ist die CFL-Bedingung damit bei t = x verletzt. b) Gegeben sei die Koeffizienten-Matrix A = des linearen Gleichungssytems Ax = b Bitte wenden!

6 I) Wir wollen mit MATLAB für die Matrix T (ω) des SOR-Verfahrens den Spektralradius gegen den Parameter ω, 0 < ω < 2 plotten. Dazu betrachten wir den folgenden Code (Die Matrix A sei schon in L, R und D zerlegt und spectralradius gebe den Spektralradius der übergebenen Matrix zurück): omega_vec=0.001:0.001:1.999; rho=zeros(size(omega_vec)); for i=1:length(omega_vec) omega=omega_vec(i); T=... rho(i)=spectralradius(t); end plot(omega_vec,rho) xlabel( \omega ) ylabel( \rho(t(\omega)) ) Wie muss die unvollständige Zeile lauten? (i) T=(D+omega *L)\(-omega*R+(1-omega)*D); (ii) (iii) (iv) (v) T=(D-omega*L)\(-omega*R+(1+omega)*D); T=(D+omega*R)\(-omega*L+(1-omega)*D); T=(D-omega*R)\(-omega*L+(1+omega)*D); Keine der genannten Antworten ist richtig. Gemäss S. 30 im Skript gilt: T = (D + ωl) 1 ( ωr + (1 ω)d) Siehe nächstes Blatt!

7 II) Dieser Graph ist hier dargestellt: ρ(t(ω)) ω Für welche Werte von ω konvergiert das Verfahren? (i) Für alle ω (0, 2). (ii) Für alle ω (0.66, 1.44) (gerundete Werte). (iii) Für kein ω (0, 2). (iv) Keine der genannten Antworten ist richtig. Der Spektralradius ist immer kleiner als 1, das Verfahren konvergiert also für 0 < ω < 2. III) Das Verfahren konvergiert am schnellsten für folgende Werte von ω (mehrere Antworten möglich): (i) ω nahe bei 0 (ii) ω nahe bei 0.66 (iii) ω nahe bei 1.44 (iv) ω nahe bei 2 (v) ω nahe bei 1.04 (vi) Keine der genannten Antworten ist richtig. Der Spektralradius ist am kleinsten für ω 1.04 und daraus folgt die obige Antwort. Bitte wenden!

8 IV) Benutzen Sie die Fehlerabschätzung aus der Vorlesung e k T (ω) k e 0 für die 2-Norm, um abzuschätzen, wieviele Iterationen nötig sind, damit das SOR- Verfahren für ω = 0.8, bzw den absoluten Anfangsfehler (in der 2-Norm) um einen Faktor verkleinert. Für ω = 0.8 ist T (ω) 2 = und damit braucht man die folgende Mindestzahl von Iterationen (nur das Beste ankreuzen): (i) 25 (ii) 29 (iii) 33 (iv) 37 (v) 41 (vi) 45 V) Für ω = 1.04 ist T (ω) 2 = und damit braucht man die folgende Mindestzahl von Iterationen (nur das Beste ankreuzen): (i) 25 (ii) 29 (iii) 33 (v) 41 (iv) 37 (vi) 45 Es gilt e k 2 T (ω) k 2 e 0 2. Um den Fehler um einen Faktor zu reduzieren, muss also gelten: für ω = 0.8: T (ω) k k also sollte man im schlechtesten Fall 33 Iterationen benötigen. für ω = 1.04: T (ω) k k also sollte man im schlechtesten Fall 37 Iterationen benötigen. log , log T (ω) 2 log , log T (ω) 2 Bemerkung. Obwohl T (0.8) 2 < T (1.04) 2, konvergiert das SOR-Verfahren in der 2-Norm am schnellsten mit ω 1.04 (siehe Abbildung für ein Beispiel). Siehe nächstes Blatt!

9 Anzahl Iterationen ω VI) Im folgenden ist die 2-Norm für die Matrix T (ω) dargestellt T(ω) ω Bitte wenden!

10 Für welche Werte von ω konvergiert das Verfahren in der 2-Norm? (i) Für alle ω (0, 2). (ii) (iii) (iv) Für alle ω (0.79, 0.96) (gerundete Werte). Für alle ω (0, 1.59) (gerundete Werte). Für alle ω (0.66, 1.44) (gerundete Werte). (v) Für kein ω (0, 2). (vi) Keine der genannten Antworten ist richtig. Obwohl T (ω) 2 < 1 nur für 0 < ω < 1.59 gilt, konvergiert das SOR-Verfahren trotzdem für 0 < ω < 2, denn der Spektralradius und nicht die 2-Norm von T (ω) ist entscheidend. Zum Beispiel konvergiert das SOR-Verfahren für ω = 1.8 für das Beispiel nach 118 Schritten, auch wenn T (1.8) 2 = > 1, denn ρ(t (1.8)) = < 1. c) Die LR-Zerlegung ohne Zeilenvertauschungen ist für beliebige Matrizen A ein guter Algorithmus zum Lösen von linearen Gleichungssystemen Ax = b. (i) Richtig. (ii) Falsch. Die LR-Zerlegung ohne Zeilenvertauschungen ist für beliebige Matrizen A kein guter Algorithmus, siehe z. B. Aufgabe 1. (Für gewisse Klassen von Matrizen, wie z. B. diagonal dominante Matrizen, kann es jedoch ein guter Algorithmus sein.) Im allgemeinen braucht man jedoch eine gute Pivotstrategie, vgl. die Bemerkung auf S. 21 im Skript. Siehe nächstes Blatt!

11 d) Gegeben sei die Matrix A = ( 1) Dann ist der Spektralradius ϱ(a) der Matrix A gleich (i) 0 (ii) 3 (iii) 16 (iv) 23 Der Spektralradius ist gemäss Definition (S. 27 im Skript) ϱ(a) = max i=1,...,n λ i, wobei λ 1,..., λ n die Eigenwerte von A sind. Berechnen der Eigenwerte (mit Matlab oder von Hand) ergibt: 16, 3, 0, 0. Der Spektralradius von A ist damit 16. e) I) Das iterative Verfahren x k+1 = T x k + c, k = 0, 1,... mit ϱ(t ) < 1 konvergiert für beliebige Startwerte x 0 gegen einen eindeutigen Grenzwert x. (i) Richtig. (ii) Falsch. Korrekt nach Satz auf S. 28 im Skript. II) Wenn ϱ(t ) < 1, so ist I T immer invertierbar. (i) Richtig. (ii) Falsch. Korrekt durch Kombination von 2. auf S. 27 im Skript und dem ersten Teil des Beweises auf S. 26: Nach Ersterem existiert für ε > 0 eine Norm ε, so dass T ε ϱ(t )+ε. Wenn wir ε genügend klein wählen (genauer: ε < 1 ϱ(t )), so erhalten wir wegen ϱ(t ) < 1 auch T ε < 1. Damit folgt aber mit dem zitierten Beweis auch, dass I T regulär ist.

Musterlösung Serie 3

Musterlösung Serie 3 D-MAVT FS 0 K.Nipp NUMERISCHE MATHEMATIK Musterlösung Serie 3. a) T = (D + ωl) ( ωr + ( ω)d) A=[3 ; 3 ; 3]; D=diag(diag(A)); L=tril(A)-D; R=triu(A)-D; omega_vec=0.00:0.00:.999; rho=zeros(size(omega_vec));

Mehr

D-MAVT NUMERISCHE MATHEMATIK FS 14 K. Nipp, A. Hiltebrand Lösung vom Test 2

D-MAVT NUMERISCHE MATHEMATIK FS 14 K. Nipp, A. Hiltebrand Lösung vom Test 2 D-MAVT NUMERISCHE MATHEMATIK FS 4 K Nipp, A Hiltebrand Lösung vom Test Sei A ( 3 3 ) a) Bestimmen Sie κ(a), die Kondition von A (in der -Norm): κ(a) b) Berechnen Sie den Spektralradius von A: ρ(a) 4 c)

Mehr

Musterlösung. Aufgaben zu Iterative Lösung Linearer Gleichungssysteme. Vordiplomskurs Numerische Methoden Sommer 2008

Musterlösung. Aufgaben zu Iterative Lösung Linearer Gleichungssysteme. Vordiplomskurs Numerische Methoden Sommer 2008 Musterlösung Aufgaben zu Iterative Lösung Linearer Gleichungssysteme Vordiplomskurs Numerische Methoden Sommer 8. Betrachte das Gleichungssystem Ax b mit ( ( 3 A, b. 6 8 a Konvergiert das Jacobi Verfahren

Mehr

KAPITEL 1. Einleitung

KAPITEL 1. Einleitung KAPITEL 1 Einleitung Wir beschäftigen uns in dieser Vorlesung mit Verfahren aus der Numerischen linearen Algebra und insbesondere dem sogenannten Mehrgitterverfahren zur Lösung linearer Gleichungssysteme

Mehr

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren 2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren Problem (P2): Löse Ax = b, A R n und b R. 2.1 Satz: Die folgenden Aussagen sind äquivalent: (i) Ax = b ist für jedes b eindeutig lösbar;

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme 2 Lineare Gleichungssysteme Wir betrachten das lineare Gleichungssystem Ax = b mit der n n-koeffizientenmatrix A und der rechten Seite b R n. Wir leiten zuerst eine Variante des Gauss-Algorithmus (LR-Zerlegung)

Mehr

Iterative Verfahren, Splittingmethoden

Iterative Verfahren, Splittingmethoden Iterative Verfahren, Splittingmethoden Theodor Müller 19. April 2005 Sei ein lineares Gleichungssystem der Form Ax = b b C n, A C n n ( ) gegeben. Es sind direkte Verfahren bekannt, die ein solches Gleichungssystem

Mehr

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische lineare Iterationsverfahren

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische lineare Iterationsverfahren III. Iterative Löser III.1 Direkte Löser und ihre Nachteile III.2 Klassische lineare Iterationsverfahren Typeset by FoilTEX 1 Erinnerung: Lineares Gleichungssystem bei FDM Diskretisierung einer linearen

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 11 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 2010 Prof. Dr. Klaus Höllig

Mehr

D-ITET, D-MATL Numerische Methoden SS 2006 Prof. R. Jeltsch. Musterlösung 6. x A 1 b. A 1 b A 1. x A ( A. gestört: x A 1 =

D-ITET, D-MATL Numerische Methoden SS 2006 Prof. R. Jeltsch. Musterlösung 6. x A 1 b. A 1 b A 1. x A ( A. gestört: x A 1 = D-ITET, D-MATL Numerische Methoden SS 2006 Prof. R. Jeltsch Musterlösung 6 1. a b exakt: x = c Die Inverse von A lautet x = A 1 b x = A 1 b x A 1 b x A 1 b x A 1 b A x b x κ A b x b 3 1 A 1 = gestört:

Mehr

Iterative Löser: Einführung

Iterative Löser: Einführung Iterative Löser: Einführung Im vergangenen Semester wurden folgende Löser für LGS betrachtet: LU-Zerlegung (mit und ohne Pivotisierung) QR-Zerlegung (Householder und Givens) Lösung beliebiger, regulärer,

Mehr

Numerische Mathematik für Ingenieure (SoSe 2013)

Numerische Mathematik für Ingenieure (SoSe 2013) Numerische Mathematik für Ingenieure (SoSe 2013) PD Dr(USA) Maria Charina Auszüge aus Vorlesungsfolien von Prof Joachim Stöckler werden verwendet Für die Bereitstellung dieses Materials und der Tex-Files

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Beispiel: Feder Masse System festes Ende Feder k 1 Masse m 1 k 2 m 2 k 3 m 3 k 4 festes Ende u 0 = 0 Federkraft y 1 Verschiebung u 1 y 2 u 2 y 3 u 3 y 4 u 4 = 0 Grundlagen der

Mehr

Lineare Iterationsverfahren: Definitionen

Lineare Iterationsverfahren: Definitionen Lineare Iterationsverfahren: Definitionen 1. Ein Lösungsverfahren zur Berechnung von Ax = b heißt iterativ, falls ausgehend von einem Startwert x eine Folge x k von Iterierten bestimmt wird. 2. Ein Iterationsverfahren

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmann W Wu Herbstsemester 26 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 2 Aufgabe 2 Welche der folgenden Aussagen sind korrekt? (i) Jedes

Mehr

Beispiellösung Serie 2

Beispiellösung Serie 2 D-MAVT FS 14 K. Nipp A. Hiltebrand NUMERISCHE MATHEMATIK Beispiellösung Serie 1. a) Trapezmethode gemäss Skript S. 93: h = 1, s = 1 (f() + f(1)) =.68394, T = s h =.68394 h 1 = 1/, s 1 = s + f(1/) = 1.467,

Mehr

Einführung in die numerische Mathematik

Einführung in die numerische Mathematik Prof. Dr. M. Günther K. Gausling, M.Sc. C. Hendricks, M.Sc. Sommersemester 4 Bergische Universität Wuppertal Fachbereich C Mathematik und Naturwissenschaften Angewandte Mathematik / Numerische Analysis

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 018 Prof Dr N Hungerbühler Serie 8: Online-Test Schicken Sie Ihre Lösung bis spätestens Freitag, den 3 November um 14:00 Uhr ab Diese Serie besteht nur aus Multiple-Choice-Aufgaben

Mehr

5.3.5 Abstiegs & Gradientenverfahren

5.3.5 Abstiegs & Gradientenverfahren 5.3 Iterative Lösungsverfahren für lineare Gleichungssysteme 5.3.5 Abstiegs & Gradientenverfahren Die bisher kennengelernten Iterationsverfahren zur Approximation von linearen Gleichungssystemen haben

Mehr

D-MAVT NUMERISCHE MATHEMATIK FS 14 K. Nipp, A. Hiltebrand Lösung vom Test 1

D-MAVT NUMERISCHE MATHEMATIK FS 14 K. Nipp, A. Hiltebrand Lösung vom Test 1 D-MAVT NUMERISCHE MATHEMATIK FS 4 K. Nipp, A. Hiltebrand Lösung vom Test. Sei eps die Maschinengenauigkeit in Matlab. Dann gilt: eps/4 = Richtig / Falsch + eps/2 = Richtig / Falsch 8 + eps = 8 Richtig

Mehr

3. Lineare Gleichungssysteme

3. Lineare Gleichungssysteme 3. Lineare Gleichungssysteme 1 3.1. Problemstellung 2 3.2. Direkte Verfahren 3 3.3. Normen und Fehleranalyse 4 3.4. Iterative Verfahren 5 3.5. Konvergenz von linearen Iterationsverfahren 6 3.6. Gradienten-Verfahren

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 6/7 837 Aufgabe Punkte): Gegeben sei das lineare Gleichungssystem Ax = b mit A = 6 3 und

Mehr

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p Wiederholungsaufgaben Algorithmische Mathematik Sommersemester Prof. Dr. Beuchler Markus Burkow Übungsaufgaben Aufgabe. (Jacobi-Verfahren) Gegeben sei das lineare Gleichungssystem Ax b = für A =, b = 3.

Mehr

Übungsblatt 5 Musterlösung

Übungsblatt 5 Musterlösung MSE Mathe 4 SS Übungsblatt Musterlösung Lösung (Solution) Siehe MATLAB Codes function [x_new, it, rho] = jacobi (A, x_start, b, TOL, it_max) 3 % Set up all the quantities used during iteration 4 % Diagonal

Mehr

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen Kapitel 2: Lineare Gleichungssysteme 21 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen B(n, m) : Ω {0,,255}, n = 1,,N, m = 1,,M dig Camera Realisierung von B η ist

Mehr

Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme

Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik 1

Mehr

Herbstsemester a b 1. c d. e 0 f B = (iii) e = 0 (iv) ) 2 + ( 1. Das Skalarprodukt des ersten und zweiten Spaltenvektors muss null ergeben:

Herbstsemester a b 1. c d. e 0 f B = (iii) e = 0 (iv) ) 2 + ( 1. Das Skalarprodukt des ersten und zweiten Spaltenvektors muss null ergeben: Dr V Gradinaru D Devaud Herbstsemester 5 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 5 Aufgabe 5 Multiple Choice: Online abzugeben Gegeben sei die orthogonale Matrix

Mehr

Klausur zu Grundlagen der Computermathematik

Klausur zu Grundlagen der Computermathematik Prof. Dr. Klaus Höllig. März 11 Klausur zu Grundlagen der Computermathematik en Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. a Die Folge A n x/ A n

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 4. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 17. März 2016 Lineare Gleichungssysteme 1 Wiederholung: Normen, Jacobi-Matrix,

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R. Käppeli L. Herrmann W. Wu Herbstsemester 2016 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 6 Aufgabe 6.1 Berechnen Sie die Determinanten der beiden

Mehr

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 06 Dr. Meike Akveld Serie : Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung. Gegeben seien die folgenden geordneten Basen B = (v, v, v, v ) und C = (w, w,

Mehr

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

Kapitel 8. Lineare Gleichungssysteme III: iterative Verfahren

Kapitel 8. Lineare Gleichungssysteme III: iterative Verfahren Kapitel 8. Lineare Gleichungssysteme III: iterative Verfahren Inhalt: 8.1 Fixpunkt-Iteration 8.2 Verfahren der konjugierten Gradienten 8.3 Anwendungsbeispiel Numerische Mathematik I 323 Kap. 8: Lineare

Mehr

Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf

Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf Praktikum im Sommersemester 2012 Programmierpraktikum numerische Algorithmen (P2E1) (Numerische Lösung der Wärmeleitungsgleichung)

Mehr

Finite Elemente. Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 2015

Finite Elemente. Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 2015 Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 5 Aufgabe 8 (Speichertechniken) Finite Elemente Übung 5 a) Stellen Sie die Matrix

Mehr

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen Kapitel 2: Lineare Gleichungssysteme 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen B(n, m) : Ω {0,...,255}, n = 1,...,N, m = 1,...,M. dig. Camera Realisierung

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 12. Aufgabe Herbstsemester Dr. V. Gradinaru D. Devaud.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 12. Aufgabe Herbstsemester Dr. V. Gradinaru D. Devaud. Dr. V. Gradinaru D. Devaud Herbstsemester 15 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 1 Aufgabe 1.1 1.1a) Sei A eine n n-matrix. Das Gleichungssystem Ax = b sei

Mehr

Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme

Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik 1

Mehr

38 Iterative Verfahren für lineare Gleichungssysteme

38 Iterative Verfahren für lineare Gleichungssysteme 38 Iterative Verfahren für lineare Gleichungssysteme 38.1 Motivation Viele praktische Probleme führen auf sehr große lineare Gleichungssysteme, bei denen die Systemmatrix dünn besetzt ist, d. h. nur wenige

Mehr

Kapitel 3. Iterative Verfahren für LGS. 3.1 Der Banach sche Fixpunktsatz. Definition 3.1:

Kapitel 3. Iterative Verfahren für LGS. 3.1 Der Banach sche Fixpunktsatz. Definition 3.1: Kapitel 3 Iterative Verfahren für LGS 3 Der Banach sche Fixpunktsatz Sei A R n n invertierbar und das LGS A x b gegeben Ein iteratives Verfahren besteht aus einer Berechnungsvorschrift x (j+) F ( x (j))

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 017 Prof Dr N Hungerbühler Serie 8: Online-Test Einsendeschluss: Freitag, der 4 November um 14:00 Uhr Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b

Mehr

Serie 8: Fakultativer Online-Test

Serie 8: Fakultativer Online-Test Prof Norbert Hungerbühler Lineare Algebra I Serie 8: Fakultativer Online-Test ETH Zürich - D-MAVT HS 215 1 Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen Die Nachbesprechung

Mehr

Algorithmik kontinuierlicher Systeme

Algorithmik kontinuierlicher Systeme Algorithmik kontinuierlicher Systeme Iterative Verfahren (2/2) Ziel dieser Vorlesung Wie schnell können wir Gleichungssysteme lösen? O(n 3 ) LR- oder QR-Zerlegung: Immer anwendbar Standardverfahren Aber:

Mehr

Numerische Behandlung von linearen Gleichungssystemen

Numerische Behandlung von linearen Gleichungssystemen Numerische Behandlung von linearen Gleichungssystemen Der Gauÿ'sche Algorithmus Der Gauÿ'sche Algorithmus ist schon besprochen worden. Er eignet sich zwar prinzipiell gut zur Bestimmung der Lösung eines

Mehr

Lineare Algebra und Numerische Mathematik D-BAUG. Winter 2013 Prof. H.-R. Künsch. , a R. det(a) = 0 a = 1.

Lineare Algebra und Numerische Mathematik D-BAUG. Winter 2013 Prof. H.-R. Künsch. , a R. det(a) = 0 a = 1. b Musterlösung Lineare Algebra und Numerische Mathematik D-BAUG. Multiple Choice) Gegeben sei die folgende Matrix Winter 3 Prof. H.-R. Künsch A = a a) deta) = genau dann wenn gilt x a =. a =. ), a R. x

Mehr

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 2017 Dr. Meike Akveld Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung 1. In dieser Aufgabe beweisen wir die Existenz der LR-Zerlegung einer quadratischen

Mehr

Klausur zu Grundlagen der Computermathematik

Klausur zu Grundlagen der Computermathematik Prof. Dr. Klaus Höllig 14. Oktober 2010 Klausur zu Grundlagen der Computermathematik en Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. a Die Folge A

Mehr

Lineare Algebra und Numerische Mathematik D-BAUG. Sommer 2012 Prof. H.-R. Künsch

Lineare Algebra und Numerische Mathematik D-BAUG. Sommer 2012 Prof. H.-R. Künsch b Prüfung Lineare Algebra und Numerische Mathematik D-BAUG. Multiple Choice: Sommer Prof. H.-R. Künsch Gegeben sei die folgende Matrix A = 4. 4 (a) x AA T ist eine 4 4 Matrix mit ( AA T) = 4. AA T ist

Mehr

5 Numerische Mathematik

5 Numerische Mathematik 6 5 Numerische Mathematik Die Numerische Mathematik setzt sich aus mehreren Einzelmodulen zusammen Für alle Studierenden ist das Modul Numerische Mathematik I: Grundlagen verpflichtend In diesem Modul

Mehr

Diplom VP Numerik 28. August 2006

Diplom VP Numerik 28. August 2006 Diplom VP Numerik 8. August 6 Multiple-Choice-Test Punkte) Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine einzige Aussage angekreuzt, gilt diese Aufgabe

Mehr

Kapitel 4: Nichtlineare Nullstellenprobleme

Kapitel 4: Nichtlineare Nullstellenprobleme Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 4: Nichtlineare Nullstellenprobleme Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 2015 HM: Numerik (SS

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Verständnisfragen-Teil Institut für Geometrie und Praktische Mathematik (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben).

Mehr

Musterlösungen zur Leistungsnachweisklausur vom Studiengang Informatik, Ingenieurinformatik, Lehramt

Musterlösungen zur Leistungsnachweisklausur vom Studiengang Informatik, Ingenieurinformatik, Lehramt TU ILMENAU Institut für Mathematik Numerische Mathematik PD Dr. W. Neundorf Musterlösungen zur Leistungsnachweisklausur vom.0.006 Studiengang Informatik, Ingenieurinformatik, Lehramt 1. Lineare Algebra

Mehr

5.3 Iterative Lösungsverfahren für lineare Gleichungssysteme

5.3 Iterative Lösungsverfahren für lineare Gleichungssysteme 5.3 Iterative Lösungsverfahren für lineare Gleichungssysteme Als zweite Hauptanwendung des Banachschen Fixpunktsatzes besprechen wir in diesem Kapitel die iterative Lösung linearer Gleichungssysteme. Die

Mehr

Herbstsemester ist es.

Herbstsemester ist es. Dr V Gradinaru K Imeri Herbstsemester 8 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 4 Aufgabe 4 Multiple Choice: Online abzugeben 4a) Gegeben seien: Dann gilt: (i)

Mehr

Begleitmaterial zur Vorlesung Numerik I

Begleitmaterial zur Vorlesung Numerik I Begleitmaterial zur Vorlesung Numerik I Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik I 1 / 49 Inhalte der Numerik

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 9. Aufgabe 9.1. Herbstsemester Dr. V. Gradinaru D. Devaud A.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 9. Aufgabe 9.1. Herbstsemester Dr. V. Gradinaru D. Devaud A. Dr V Gradinaru D Devaud A Hiltebrand Herbstsemester 2014 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 9 Aufgabe 91 91a) Sei A eine n n-matrix Das Gleichungssystem Ax

Mehr

4 Iterative Lösung Linearer Gleichungssysteme 4.1 Fixpunktiteration und Konvergenzsätze.

4 Iterative Lösung Linearer Gleichungssysteme 4.1 Fixpunktiteration und Konvergenzsätze. 4 Iterative Lösung Linearer Gleichungssysteme 4.1 Fixpunktiteration und Konvergenzsätze. Wir betrachten das lineare Gleichungssystem der Form Ax = b; (4.1.1) mit A R n n reguläre Matrix und b R n gegeben,

Mehr

Kapitel 9: Lineare Gleichungssysteme

Kapitel 9: Lineare Gleichungssysteme Kapitel 9: Lineare Gleichungssysteme Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) Kapitel 9: Lineare Gleichungssysteme 1 / 15 Gliederung 1 Grundbegriffe

Mehr

PS Numerische Mathematik für LAK WS 08/09, LV-Nr.: , HS Übungsblatt (bis )

PS Numerische Mathematik für LAK WS 08/09, LV-Nr.: , HS Übungsblatt (bis ) . Übungsblatt (bis 5.0.2008). Aufgabe. Skizzieren Sie die Einheitskugeln K (0,) im R 2 für die Normen, 2 und. 2. Aufgabe. Beweisen Sie x x 2 n x für alle x R n. 3. Aufgabe. Bestimmen Sie die relative Konditionszahl

Mehr

Lineare Algebra I 3. Tutorium Inverse Matrizen und Gruppen

Lineare Algebra I 3. Tutorium Inverse Matrizen und Gruppen Lineare Algebra I Tutorium Inverse Matrizen und Gruppen Fachbereich Mathematik WS / Prof Dr Kollross November Dr Le Roux Dipl-Math Susanne Kürsten Aufgaben Aufgabe G (Die zweite Variante des Gauß-Algorithmus)

Mehr

Iterative Lösung Linearer Gleichungssysteme

Iterative Lösung Linearer Gleichungssysteme Iterative Lösung Linearer Gleichungssysteme E. Olszewski, H. Röck, M. Watzl 1. Jänner 00 E. Olszewski, H. Röck, M. Watzl: WAP (WS 01/0) 1 Vorwort C.F.Gauß in einem Brief vom 6.1.18 an Gerling:

Mehr

Lösen der Matrizengleichung

Lösen der Matrizengleichung Lösen der Matrizengleichung Oliver Deussen Lösungsverfahren K 1 letztes Kapitel: Berechnung der Formfaktoren F außerdem: B: zu berechnende Strahlung, E: gegebenes Eigenleuchten nun: Wie löst man K B =

Mehr

Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1

Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1 D-MAVT Lineare Algebra II FS 8 Prof. Dr. N. Hungerbühler Lösungen Serie. Welche der folgenden Vektoren sind Eigenvektoren der Matrix? (a) (,, ). Ein Vektor v ist Eigenvektor von A :=, falls Av ein skalares

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Nichtlineare Gleichungssysteme Jetzt: Numerische Behandlung nichtlinearer GS f 1 (x 1,..., x n ) =0. f n (x 1,..., x n ) =0 oder kurz f(x) = 0 mit f : R n R n Bemerkung: Neben dem direkten Entstehen bei

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Institut für Geometrie und Praktische Mathematik Multiple-Choice-Test NumaMB F08 (30 Punkte) Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine

Mehr

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR LR-Zerlegung bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR Definition 2.17 Unter einer LR-Zerlegung einer Matrix A R n n verstehen wir eine

Mehr

19. Januar Universität Erlangen-Nürnberg Department Mathematik PD Dr. Markus Bause. . Danach liefert die Gauss-Elinination. .

19. Januar Universität Erlangen-Nürnberg Department Mathematik PD Dr. Markus Bause. . Danach liefert die Gauss-Elinination. . Universität Erlangen-Nürnberg Department Mathematik PD Dr Markus Bause Numerik I 9 Januar A Gegeben sei die Matrix A = a Führen Sie eine Zeilenskalierung der Matrix durch Klausur b Bestimmen Sie mit Hilfe

Mehr

VF-3: Gegeben seien die Daten f(x 0 ), f(x 1 ),..., f(x n ) mit x 0,..., x n paarweise verschiedenen und

VF-3: Gegeben seien die Daten f(x 0 ), f(x 1 ),..., f(x n ) mit x 0,..., x n paarweise verschiedenen und IGPM RWTH Aachen Verständnisfragen-Teil NumaMB F10 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Aussagen Diese sind mit wahr bzw falsch zu kennzeichnen (hinschreiben) Es müssen alle Fragen mit wahr

Mehr

Einführung in die Numerik

Einführung in die Numerik Institut für Angewandte Mathematik Universität Heidelberg http://www.numerik.uni-hd.de/ lehre/ss10/numerik0/ Zahldarstellung Normalisierte Gleitkommazahl: x = ±[m 1 b 1 + + m r b r ] b ±[es 1bs 1 + +e

Mehr

D-INFK Lineare Algebra HS 2014 Roman Glebov Marc Pollefeys. Serie 13

D-INFK Lineare Algebra HS 2014 Roman Glebov Marc Pollefeys. Serie 13 D-INFK Lineare Algebra HS 2014 Roman Glebov Marc Pollefeys Serie 13 1. Um einen Tisch sitzen 7 Zwerge. Vor jedem steht ein Becher mit Milch. Einer der Zwerge verteilt seine Milch gleichmässig auf alle

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 5 Aufgabe 5.1 Kommutierende Matrizen In der Vorlesung und vergangenen

Mehr

Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen

Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Wintersemester 2012/201 Zwischentest Teil 1: 1. Was bedeuten die Bezeichnungen O(h) und o(h)? (Definition) (siehe Skript!)

Mehr

Serie a) Welche der folgenden Vektoren sind Eigenvektoren der Matrix 1 0 1? 0 1 1

Serie a) Welche der folgenden Vektoren sind Eigenvektoren der Matrix 1 0 1? 0 1 1 Prof. Norbert Hungerbühler Serie Lineare Algebra II ETH Zürich - D-MAVT. a Welche der folgenden Vektoren sind Eigenvektoren der Matrix? i (,,. ii (,,. iii (,,. iv (, 3,. v (,,. Ein Vektor v ist Eigenvektor

Mehr

Einführung in die Programmierung (MA8003)

Einführung in die Programmierung (MA8003) Theorie 2.2: Schleifen, Vektorisierung, bedingte Ausführung Dr. Lorenz John Technische Universität München Fakultät Mathematik, Lehrstuhl für Numerische Mathematik M2 05.10.2016 Numerische Mathematik M2

Mehr

7. Nichtlineare Gleichngssysteme. Problem 7: Sei f : R n R n stetig. Löse f(x) = 0.

7. Nichtlineare Gleichngssysteme. Problem 7: Sei f : R n R n stetig. Löse f(x) = 0. 7. Nichtlineare Gleichngssysteme Problem 7: Sei f : R n R n stetig. Löse f(x) = 0. Das Gleichungssystem f(x) = 0 lässt sich in die Fixpunktgleichung x = φ(x) umschreiben, wobei φ : D R n R n. Beispielsweise

Mehr

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren III. Iterative Löser III.1 Direkte Löser und ihre Nachteile III.2 Klassische Iterationsverfahren Kapitel III (0) 1 Erinnerung: Lineares Gleichungssystem bei FDM Diskretisierung einer linearen PDGL 2. Ordnung

Mehr

MATLAB Ferienkurs WS 2010/2011

MATLAB Ferienkurs WS 2010/2011 MATLAB Ferienkurs WS 2010/2011 Teil 4 von 6 Andreas Klimke, Matthias Wohlmuth Technische Universität München Fakultät Mathematik, Lehrstuhl für Numerische Mathematik Basier auf Kursunterlagen von Boris

Mehr

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

D-ITET, D-MATL Numerische Methoden FS 2014 Dr. R. Käppeli M. Sprecher. Musterlösung 5

D-ITET, D-MATL Numerische Methoden FS 2014 Dr. R. Käppeli M. Sprecher. Musterlösung 5 D-ITET, D-MATL Numerische Methoden FS 2014 Dr. R. Käppeli M. Sprecher Musterlösung 5 1. a) function [m1,m2,r]=circle_linear_fit(x,y) n=100; A=[2*x 2*y ones(n,1)]; b=x.^2+y.^2; l=a\b; m1=l(1); m2=l(2);

Mehr

LR Zerlegung. Michael Sagraloff

LR Zerlegung. Michael Sagraloff LR Zerlegung Michael Sagraloff Beispiel eines linearen Gleichungssystems in der Ökonomie (Input-Output Analyse Wir nehmen an, dass es 3 Güter G, G, und G 3 gibt Dann entspricht der Eintrag a i,j der sogenannten

Mehr

Begleitmaterial zur Vorlesung Numerik I

Begleitmaterial zur Vorlesung Numerik I Begleitmaterial zur Vorlesung Numerik I Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik I 1 / 55 Studienplanung Bachelor

Mehr

Diplom VP Numerik 27. August 2007

Diplom VP Numerik 27. August 2007 Diplom VP Numerik 27. August 2007 Multiple-Choice-Test 30 Punkte Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine einzige Aussage angekreuzt, gilt diese

Mehr

4.6 Berechnung von Eigenwerten

4.6 Berechnung von Eigenwerten 4.6 Berechnung von Eigenwerten Neben der Festlegung auf den betragsgrößten Eigenwert hat die Potenzmethode den Nachteil sehr langsamer Konvergenz, falls die Eigenwerte nicht hinreichend separiert sind.

Mehr

Modulprüfung Numerische Mathematik 1

Modulprüfung Numerische Mathematik 1 Prof. Dr. Klaus Höllig 18. März 2011 Modulprüfung Numerische Mathematik 1 Lösungen Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. 1. Die Trapezregel

Mehr

Lineare Algebra und Numerische Mathematik D-BAUG Sommer 2014 Prof. R. Hiptmair. Name a a Note Vorname Studiengang Leginummer Datum

Lineare Algebra und Numerische Mathematik D-BAUG Sommer 2014 Prof. R. Hiptmair. Name a a Note Vorname Studiengang Leginummer Datum Prüfung Lineare Algebra und Numerische Mathematik D-BAUG Sommer 2014 Prof. R. Hiptmair Name a a Note Vorname Studiengang Leginummer Datum 13.08.2014 1 2 3 4 Total 12P 24P 26P 22P 84P Bitte füllen Sie zuerst

Mehr

eps für alle x D. 4. Die Zahl 256 ist in M(2, 4, 6, 6) exakt darstellbar.

eps für alle x D. 4. Die Zahl 256 ist in M(2, 4, 6, 6) exakt darstellbar. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H13 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

Computergestützte Mathematik zur Linearen Algebra

Computergestützte Mathematik zur Linearen Algebra Computergestützte Mathematik zur Linearen Algebra Pivotwahl und Gleitkommaarithmetik Achim Schädle 3. und 20. Dezember 208 Achim Schaedle (HHU) CompLinA 3. und 20. Dezember 208 Instabilitäten bei Gauß-Elimination

Mehr

MAV-NUM Applied Numerics Frühlingssemester Serie 4. (a) Berechnen Sie per Hand die LR-Zerlegung der Matrix

MAV-NUM Applied Numerics Frühlingssemester Serie 4. (a) Berechnen Sie per Hand die LR-Zerlegung der Matrix MAV-NUM Applied Numerics Frühlingssemester 08 Dr. Evelyne Knapp ZHAW Winterthur Serie 4 Aufgabe (LR Zerlegung Theorie): (a) Berechnen Sie per Hand die LR-Zerlegung der Matrix 3 0 0 0 (b) Lösen Sie mit

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen IGPM RWTH Aachen Institut für Geometrie und Praktische Mathematik Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen

Mehr

NUMERISCHE MATHEMATIK I

NUMERISCHE MATHEMATIK I D-MATH ETH Zürich, 22. August 2011 Prof. Ch. Schwab NUMERISCHE MATHEMATIK I 1. Interpolation und Quadratur (25 P.) a) Sei [a, b] R 1 mit a < b ein beschränktes Intervall, und f C 2 ([a, b]). Zeigen Sie,

Mehr

Numerik II. Roland Pulch

Numerik II. Roland Pulch Numerik II Roland Pulch Institut für Mathematik und Informatik Mathematisch-Naturwissenschaftliche Fakultät Ernst-Moritz-Arndt-Universität Greifswald Skript zu Iterativer Lösung linearer Gleichungssysteme

Mehr

Serie 1: Eigenwerte & Eigenvektoren

Serie 1: Eigenwerte & Eigenvektoren D-MATH Lineare Algebra II FS 2017 Dr. Meike Akveld Serie 1: Eigenwerte & Eigenvektoren 1. Beweisen oder widerlegen Sie, dass die folgenden Paare von Matrizen über dem angegebenen Körper zueinander ähnlich

Mehr

Erweiterungen der LR-Zerlegung

Erweiterungen der LR-Zerlegung Prof. Thomas Richter 6. Juli 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomas.richter@ovgu.de Material zur Vorlesung Algorithmische Mathematik II am 06.07.2017 Erweiterungen

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 2. Aufgabe 2.1. Dr. V. Gradinaru D. Devaud A. Hiltebrand.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 2. Aufgabe 2.1. Dr. V. Gradinaru D. Devaud A. Hiltebrand. Dr. V. Gradinaru D. Devaud A. Hiltebrand Herbstsemester 04 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie Aufgabe. Multiple Choice: Online abzugeben. Ev. sind mehrere

Mehr

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11 D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung Serie 11 1. Wir betrachten das überbestimmte Gleichungssystem Ax = y mit 1 1 1 1 A := 1 1 0 1 0 1, y := 2 3 0 0 1 4 Berechnen Sie die

Mehr

Klausur Numerische Mathematik (für Elektrotechniker), Samstag, 19. August 2017

Klausur Numerische Mathematik (für Elektrotechniker), Samstag, 19. August 2017 Verständnisfragen-Teil (5 Punkte) Jeder der 5 Verständnisfragenblöcke besteht aus 5 Verständnisfragen. Werden alle 5 Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block

Mehr

Numerische Analysis - Matlab-Blatt 1

Numerische Analysis - Matlab-Blatt 1 Prof. Dr. Stefan Funken Universität Ulm M.Sc. Andreas Bantle Institut für Numerische Mathematik Dipl.-Math. oec. Klaus Stolle Sommersemester 015 Numerische Analysis - Matlab-Blatt 1 Lösung (Besprechung

Mehr