Übungsblatt 5 Musterlösung

Größe: px
Ab Seite anzeigen:

Download "Übungsblatt 5 Musterlösung"

Transkript

1 MSE Mathe 4 SS Übungsblatt Musterlösung Lösung (Solution) Siehe MATLAB Codes function [x_new, it, rho] = jacobi (A, x_start, b, TOL, it_max) 3 % Set up all the quantities used during iteration 4 % Diagonal matrix part of A d = diag(a); 6 D = diag(d); 7 % Iteration matrix N = diag(./d); 9 0 % Spectral radius rho = max(abs(eigs(eye(3)-n*a))); 3 % Jacobi Iteration 4 % Initialize the iteration variable x with the initial value x = x_start; 6 7 % Iterate for a maximum number of iterations for it = :it_max 9 % Jacobi update 0 x_new = x + N * (b - A * x); % Check the size of the residuum, if it is smaller than TOL --> % done 3 if norm(x_new-x)/norm(x) < TOL 4 break; elseif norm(x) <= eps && norm(x_new-x) < e6*eps 6 break; 7 end x = x_new; 9 end 30 3 end function [x_new, it, rho] = gs (A, x_start, b, TOL, it_max) 3 % Set up all the quantities used during iteration 4 % Diagonal matrix part of A d = diag(a); 6 D = diag(d); 7 % Lower triangular part of A L = tril(a,-);

2 9 % Upper triangular part of A 0 U = triu(a,); % GS-Matrix to be inverted N = inv(d + L); 3 4 % Spectral radius rho = max(abs(eigs(eye(3)-n*a))); 6 7 % GS Iteration % Initialize the iteration variable x with the initial value 9 x = x_start; 0 % Iterate for a maximum number of iterations for it = :it_max 3 % GS update 4 x_new = x + N * ( b - A * x ); % Check the size of the residuum, if it is smaller than TOL --> 6 % done 7 if norm(x_new-x)/norm(x) < TOL break; 9 elseif norm(x) <= eps && norm(x_new-x) < e6*eps 30 break; 3 end 3 x = x_new; 33 end 34 3 end % Eingabe der Matrizen 3 A = [,-,0;-,,-;0,-,]; 4 B = [,,;,,;,,]; 6 % Eingabe der Parameter 7 nmax = 000; tol = e-; 9 x0 = [,,] ; 0 b = [0,0,0] ; % Matrix A 3 [x_jacobi, iter_jacobi, rho_jacobi] = jacobi (A,x0,b,tol,nmax); 4 [x_gs, iter_gs, rho_gs] = gs (A,x0,b,tol,nmax); 6 % Matrix B 7 [x_jacobi, iter_jacobi, rho_jacobi] = jacobi (B,x0,b,tol,nmax); [x_gs, iter_gs, rho_gs] = gs (B,x0,b,tol,nmax);

3 Lösung (Jacobi- und Gauß-Seidel-Verfahren) Es sei: L = 0 0 0, U = und D = α α α Die Jacobi-Iteration konvergiert, falls der Spektralradius ρ(m Jac ) der Iterationsmatrix M Jac echt kleiner ist. Die Iterationsmatrix M Jac = I D A errechnet sich wie folgt: 0 0 M Jac = I D (D+L+U) = I D D D (L+U) = D α (L+U) = α Die Matrix M Jac besitzt das folgende Spektrum: σ(m Jac ) = { 0, α α},. Damit ist die Konvergenzbedingung ρ(m Jac ) < erfüllt, falls α > gilt. Die Gauß-Seidel-Iteration konvergiert, falls der Spektralradius ρ(m GS ) der Iterationsmatrix M GS echt kleiner ist. Die Iterationsmatrix M GS = I (D +L) A errechnet sich analog zu vorhin wie folgt: M GS = (D+L) U = 0 0 α α Die Matrix M GS besitzt das folgende Spektrum: σ(m GS ) = { 0,0, α }. Damit ist die Konvergenzbedingung ρ(m GS ) < erfüllt, falls α > gilt. Lösung 3 (Konvergenz von linearen Iterationsverfahren) a) Mit der Matrix M lässt sich bei Konvergenz (ρ(m) < ) die Fehlerreduktion schreiben als: e (k) = x (k+) x (k) ρ(m) k x () x (0) = ρ(m) k e (0) Um die Anzahl der Schritte für eine vorgegebene Toleranz T OL zu bestimmen, berechnen wir:. e (k) ρ(m) k x () x (0) = ρ(m) k e (0) TOL ( ) ρ(m) k TOL TOL log e (0) k e (0) log(ρ(m)) b) Erläutern Sie inwiefern It(M) := den Fehler der k-ten Iterierten gilt: log(ρ(m)) ein Maß für die Fehlerreduktion ist. Für u (k) u ρ(m) k u (0) u Logarithmieren liefert: log u (k) u klogρ(m)+log u (0) u Woraus sich log ρ(m) als Näherung für die Steigung des Fehlerabfalls ergibt (vgl. Abb. ). Damit ist It(M) := eine untere Abschätzung für die Anzahl der log(ρ(m)) Iterationen (siehe Abschätzung in a)). 3

4 0 0 Fehler Iterationen Abbildung : Beispielhafter Fehlerabfall fürs Jacobiverfahren c) Gesamtkosten C ges des Verfahrens lassen sich bestimmen als C ges = #Iterationen C = k C. Diese lassen sich durch C ges It(M) C schätzen. d) Für It(M i ) gilt: It(M ) = log(ρ) It(M ) = log(ρ 3 ) = 3log(ρ) = 3 It(M ) It(M 3 ) = log(ρ 3) = 3 log(ρ) = 3 It(M ) e) Für die Gesamtkosten ergibt sich zunächst C,ges = It(M ) c C,ges = It(M ) c = 3 It(M ) c = 3 C,ges C 3,ges = It(M 3 ) c = 3 It(M ) c = 3 C,ges Woraus sich C,ges < C,ges < C 3,ges ablesen lässt. Lösung 4 (Vergleich von iterativen Verfahren) a) Um die beiden Löser vergleichen zu können, berechnen wir wieviele Schritte der Löser benötigt um einen Fehler e k um den Faktor zu reduzieren mit den Konvergenzraten ρ, ρ gilt für einen e Iterationsschritt: und für l bzw. l Iterationsschritte: e k+ = ρ e k bzw. e k+ = ρ e k e k+l = ρ l e k bzw. e k+l = ρ l e k. 4

5 Mit folgt: ρ l = e und ρl = e l = lnρ 0.63 und l = lnρ Wegen l l ist das erste Verfahren zu bevorzugen, da der Aufwand des. Verfahrens in einem Schritt doppelt so hoch ist wie der Aufwand des ersten Verfahrens in einem Schritt. b) Eine analoge Rechnung wie in a) liefert, dass wirρ l = mitρ = 0. lösen möchten. 00 Die Lösung dieser Gleichung ist l.6, d.h. es sind ungefähr.6 Iterationsschritte nötig um den Fehler um den Faktor zu reduzieren. 00 c) Der erste Schritt des Jacobi-Verfahrens zur Lösung von Ax = b lautet: x = x 0 +D (b Ax 0 ) = x 0 +D (Ax Ax 0 ) = x 0 D Ax 0 +D Ax. Damit nun x = x unabhängig von x 0 gelten kann, muss A = D erfüllt sein. Das Jacobi-Verfahren ist also für Diagonalmatrizen im ersten Schritt exakt. Modellierung Lösung (Numerische Lösung der Wärmeleitungsleichung) Wir wollen das folgende System gewöhnlicher Differentialgleichungen { y (t) = A h y(t), y(0) = y 0, () lösen, wobei A h = h R N N, h = N + d.h. die Matrix A ist in der Zeit konstant. Aus der Aufgabe wissen wir, dass die Matrix A diagonalisierbar ist, d.h. es gibt eine Basiswechselmatrix V, so dass ( ) iπ V AV = Λ = diag(λ,...,λ N ), mit λ i = cos. N + Setze nun u(t) := V y(t). Dann erhalten wir das System V Vy (t) = V AVy(t) { u (t) = Λu(t) u(0) = V y 0.

6 a) Mit dem expliziten Euler-Verfahren lässt sich die Lösung komponentweise alsu k+,i = u k,i + tλ i u k,i schreiben. Die rekursive Anwendung des Verfahren führt zur Formel u k+,i = (+ tλ i ) k u 0,i. Damit die Lösung stabil bleibt, müssen wir + tλ i für jedes i =,...,N verlangen. Das ist äquivalent dazu + tλ i. Da alle Eigenwerte λ i < 0 sind, erhalten wir die Einschränkung (den Vorfaktor /h nicht vergessen und den betragsgrößten Eigenwert betrachten) t λ N = h cos ( ) h Nπ. N+ b) Beim impliziten Euler-Verfahren haben wir u k+,i = u k,i + tλ i u k+,i, das heißt ( ) ku0 u k+,i = tλ i. Damit wollen wir tλ i haben und das passiert genau dann, wenn tλ i ( tλ i ) tλ i tλ i, was immer erfüllt ist, weil λ i < 0 für jedes i. Also gibt es beim impliziten Euler- Verfahren keine Abhängigkeit von der Zeitschritten bzgl. der Ortdiskretisierung. c) Beim Crank-Nicolson-Verfahren haben wir die Situation u k+,i = u k,i + t ) (λ i u k,i +λ i u k+,i u k+,i = + t λ i tλ u k,i. i Da für jeden Eigentwert λ i < 0 gilt, ist dann + t λ i. Das bedeutet, das Crank- t λ i Nicolson-Verfahren ist numerisch stabil, unabhängig von der Ortdiskretisierung. d) Mögliche Implementierungen von den oben genannten Verfahren: function [tn,yn]=eulero_expl(f,tn,dt,y0) 3 % Inizialisierung der Lösung 4 yn(:,) = y0; 6 % Anzahl der Intervalle in der Zeitdiskretisierung 7 n=length(tn); 9 % Lösung der Differentialgleichung via explizites Euler-Verfahren 0 for i = :n yn(:,i) = yn(:,i-)+dt*feval(f,tn(i-),yn(:,i-)); end 3 end function [tn,yn]=eulero_imp(a,tn,dt,y0) 3 % Inizialisierung der Lösung 4 yn(:,) = y0; 6

7 6 % Anzahl der Intervalle in der Ortdiskretisierung 7 [N, ~]=size(a); 9 % Anzahl der Intervalle in der Zeitdiskretisierung 0 n=length(tn); % Lösung der Differentialgleichung via implizites Euler-Verfahren 3 for i = :n 4 yn(:,i) = (eye(n)-dt*a)\yn(:,i-); end 6 end function [tn,yn]=crank_nicolson(a,tn,dt,y0) 3 % Inizialisierung der Lösung 4 yn(:,) = y0; 6 % Anzahl der Intervalle in der Ortdiskretisierung 7 [N, ~]=size(a); 9 % Anzahl der Intervalle in der Zeitdiskretisierung 0 n=length(tn); % Lösung der Differentialgleichung via Crank-Nicolson-Verfahren 3 for i = :n 4 yn(:,i) = yn(:,i-)+(dt/)*a*yn(:,i-); yn(:,i) = (eye(n)-(dt/)*a)\yn(:,i); 6 end 7 end zusammen mit dem Main File: % Angabe der Paramenter des Problems a=0; b=; % Ortintervall, d.h. 0 <= x <= b 3 t0 = 0; T = ; % Anfangs- und Endszeitpunkt 4 N=0; % Anzahl der Unterintervalle von [a,b] dx=(b-a)/(n+); % Definition der Ortsschrittweite 6 xn=a:dx:b; 7 y0 = ; % Anfangswert 9 % Aufbau der Matrix A, die aus der Ortsdiskretisierung der 0 % Wï rmeleitungsgleichung durch symmetrische finite Differenzen herkommt. A = diag(-*ones(n,))+diag(ones(n-,),-)+diag(ones(n-,),); A=A/(dx^); 3 4 % Implementierung der rechten Seite der Differentialgleichung y =f(t,y). % In diesem Fall ist f(t,y)=ay, 6 func A*y; 7 % Anfangswert der Lï sung 7

8 9 y = -4*y0*xn.*(xn-); 0 y = y(:end-); 3 % Verschiede Wahl der Zeitschrittweite 4 for i=:3 if (i==) 6 dt = (dx^)/; 7 elseif (i==) dt = (dx^)/.9; 9 else 30 dt =.0; 3 end 3 tn=t0:dt:t; % Vektor der Zeiten, wobei wir die Lï sung approximieren % Berechnung der numerischen Lï sung mit dem expliziten Euler-Verfahren 3 [tn,yn_ee] = eulero_expl(func,tn,dt,y); 36 % Berechnung der numerischen Lï sung mit dem imliziten Euler-Verfahren 37 [tn,yn_ei] = eulero_imp(a,tn,dt,y); 3 % Berechnung der numerischen Lï sung mit dem Crank-Nicolson-Verfahren 39 [tn,yn_cn] = crank_nicolson(a,tn,dt,y); 40 4 % Plot der approximierten Lï sungen 4 subplot(3,3,i); 43 set(gca, FontSize,); 44 if (i==) 4 title(sprintf( dt=dx^/ )) 46 elseif (i==) 47 title(sprintf( Explizites Euler-Verfahren\n dt=dx^/.9 )) 4 else 49 title(sprintf( dt=.0 )) 0 end hold on; plot(tn,yn_ee(0,:), b ); 3 xlabel( Zeit ); 4 ylabel( Loesung ); hold all 6 7 subplot(3,3,3+i); set(gca, FontSize,); 9 if (i==) 60 title(sprintf( Implizites Euler-Verfahren )) 6 end 6 hold on; 63 plot(tn,yn_ei(0,:), b ); 64 xlabel( Zeit ); 6 ylabel( Loesung ); 66 hold all 67 6 subplot(3,3,6+i);

9 69 set(gca, FontSize,); 70 if (i==) 7 title(sprintf( Crank-Nicolson-Verfahren )) 7 end 73 hold on; 74 plot(tn,yn_cn(0,:), b ); 7 xlabel( Zeit ); 76 ylabel( Loesung ); 77 hold all 7 end 79 clear; 9

Übungsblatt 6 Musterlösung

Übungsblatt 6 Musterlösung MSE SS6 Übungsblatt 6 Musterlösung Lösung (Fourierkoeffizienten) Eine Möglichkeit die Koeffizienten den Funktionen zuzuordnen, besteht darin, die Koeffizienten der Funktionen u i, i {,,3} zu berechnen

Mehr

Übungsblatt 5 Musterlösung

Übungsblatt 5 Musterlösung MSE SS7 Übungsblatt 5 Musterlösung Lösung 6 (Vergleich von direkten und iterativen Verfahren: Teil ) Aufwand Jacobi-Verfahren: Das Jacobi Verfahren lässt sich als x (k+) = x (k) +D (b Ax (k) ) x (k+) =

Mehr

Beispiellösung Serie 7

Beispiellösung Serie 7 D-MAVT FS 2014 K. Nipp A. Hiltebrand NUMERISCHE MATHEMATIK Beispiellösung Serie 7 1. a) Exakt: 0.005 1 1 1 0.005 1 ( 1 0 200-199 L = 200 1 Rückwärts einsetzen Lz = b : z 1 = 0.5, z 2 = 1 100 = 99 Rx =

Mehr

Musterlösung. Aufgaben zu Iterative Lösung Linearer Gleichungssysteme. Vordiplomskurs Numerische Methoden Sommer 2008

Musterlösung. Aufgaben zu Iterative Lösung Linearer Gleichungssysteme. Vordiplomskurs Numerische Methoden Sommer 2008 Musterlösung Aufgaben zu Iterative Lösung Linearer Gleichungssysteme Vordiplomskurs Numerische Methoden Sommer 8. Betrachte das Gleichungssystem Ax b mit ( ( 3 A, b. 6 8 a Konvergiert das Jacobi Verfahren

Mehr

Lineare Iterationsverfahren: Definitionen

Lineare Iterationsverfahren: Definitionen Lineare Iterationsverfahren: Definitionen 1. Ein Lösungsverfahren zur Berechnung von Ax = b heißt iterativ, falls ausgehend von einem Startwert x eine Folge x k von Iterierten bestimmt wird. 2. Ein Iterationsverfahren

Mehr

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische lineare Iterationsverfahren

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische lineare Iterationsverfahren III. Iterative Löser III.1 Direkte Löser und ihre Nachteile III.2 Klassische lineare Iterationsverfahren Typeset by FoilTEX 1 Erinnerung: Lineares Gleichungssystem bei FDM Diskretisierung einer linearen

Mehr

Musterlösung Serie 3

Musterlösung Serie 3 D-MAVT FS 0 K.Nipp NUMERISCHE MATHEMATIK Musterlösung Serie 3. a) T = (D + ωl) ( ωr + ( ω)d) A=[3 ; 3 ; 3]; D=diag(diag(A)); L=tril(A)-D; R=triu(A)-D; omega_vec=0.00:0.00:.999; rho=zeros(size(omega_vec));

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 11 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 2010 Prof. Dr. Klaus Höllig

Mehr

Iterative Löser: Einführung

Iterative Löser: Einführung Iterative Löser: Einführung Im vergangenen Semester wurden folgende Löser für LGS betrachtet: LU-Zerlegung (mit und ohne Pivotisierung) QR-Zerlegung (Householder und Givens) Lösung beliebiger, regulärer,

Mehr

Übungsblatt Matlab-Zentralübung Musterlösung

Übungsblatt Matlab-Zentralübung Musterlösung Einführung in die Numerik Sommersemester 2011 Übungsblatt Matlab-Zentralübung Musterlösung Lösung 1 (Givens-Rotationen für Wilkinson Matrix) a) function [Q,R] = qr_givens (A) % [Q,R] = qr_givens(a) berechnet

Mehr

D-MAVT NUMERISCHE MATHEMATIK FS 14 K. Nipp, A. Hiltebrand Lösung vom Test 2

D-MAVT NUMERISCHE MATHEMATIK FS 14 K. Nipp, A. Hiltebrand Lösung vom Test 2 D-MAVT NUMERISCHE MATHEMATIK FS 4 K Nipp, A Hiltebrand Lösung vom Test Sei A ( 3 3 ) a) Bestimmen Sie κ(a), die Kondition von A (in der -Norm): κ(a) b) Berechnen Sie den Spektralradius von A: ρ(a) 4 c)

Mehr

Übungsblatt 2 Musterlösung

Übungsblatt 2 Musterlösung MSE SS17 Übungsblatt Musterlösung Lösung 5 (Transformation von Variablen) Zur Transformation gehen wir analog zur Vorlesung vor. Zunächst bestimmen wir die durch die PDGL definierte Matrix A und deren

Mehr

Iterative Verfahren, Splittingmethoden

Iterative Verfahren, Splittingmethoden Iterative Verfahren, Splittingmethoden Theodor Müller 19. April 2005 Sei ein lineares Gleichungssystem der Form Ax = b b C n, A C n n ( ) gegeben. Es sind direkte Verfahren bekannt, die ein solches Gleichungssystem

Mehr

D-MAVT NUMERISCHE MATHEMATIK FS 14 K. Nipp, A. Hiltebrand Lösung vom Test 1

D-MAVT NUMERISCHE MATHEMATIK FS 14 K. Nipp, A. Hiltebrand Lösung vom Test 1 D-MAVT NUMERISCHE MATHEMATIK FS 4 K. Nipp, A. Hiltebrand Lösung vom Test. Sei eps die Maschinengenauigkeit in Matlab. Dann gilt: eps/4 = Richtig / Falsch + eps/2 = Richtig / Falsch 8 + eps = 8 Richtig

Mehr

Einführung in die numerische Mathematik

Einführung in die numerische Mathematik Prof. Dr. M. Günther K. Gausling, M.Sc. C. Hendricks, M.Sc. Sommersemester 4 Bergische Universität Wuppertal Fachbereich C Mathematik und Naturwissenschaften Angewandte Mathematik / Numerische Analysis

Mehr

Numerische Analysis - Matlab-Blatt 1

Numerische Analysis - Matlab-Blatt 1 Prof. Dr. Stefan Funken Universität Ulm M.Sc. Andreas Bantle Institut für Numerische Mathematik Dipl.-Math. oec. Klaus Stolle Sommersemester 015 Numerische Analysis - Matlab-Blatt 1 Lösung (Besprechung

Mehr

D-ITET, D-MATL. Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn

D-ITET, D-MATL. Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn Name: Wichtige Hinweise D-ITET, D-MATL Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn Prüfungsdauer: 90 Minuten. Nur begründete Resultate werden bewertet. Zugelassene Hilfsmittel: 10 A4-Seiten

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b

Mehr

Ferienkurs Numerik Lösungsskizze. 1 Iterative Verfahren für lineare Gleichungssysteme

Ferienkurs Numerik Lösungsskizze. 1 Iterative Verfahren für lineare Gleichungssysteme Technische Universität München SoSe 1 Zentrum Mathematik Ferienkurse Dipl.-Math. Konrad Waldherr Ferienkurs Numerik Lösungsskizze 1 Iterative Verfahren für lineare Gleichungssysteme 1. Wir erhalten folgende

Mehr

D-ITET, D-MATL Numerische Methoden SS 2006 Prof. R. Jeltsch. Musterlösung 6. x A 1 b. A 1 b A 1. x A ( A. gestört: x A 1 =

D-ITET, D-MATL Numerische Methoden SS 2006 Prof. R. Jeltsch. Musterlösung 6. x A 1 b. A 1 b A 1. x A ( A. gestört: x A 1 = D-ITET, D-MATL Numerische Methoden SS 2006 Prof. R. Jeltsch Musterlösung 6 1. a b exakt: x = c Die Inverse von A lautet x = A 1 b x = A 1 b x A 1 b x A 1 b x A 1 b A x b x κ A b x b 3 1 A 1 = gestört:

Mehr

Klausur zu Grundlagen der Computermathematik

Klausur zu Grundlagen der Computermathematik Prof. Dr. Klaus Höllig 14. Oktober 2010 Klausur zu Grundlagen der Computermathematik en Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. a Die Folge A

Mehr

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p Wiederholungsaufgaben Algorithmische Mathematik Sommersemester Prof. Dr. Beuchler Markus Burkow Übungsaufgaben Aufgabe. (Jacobi-Verfahren) Gegeben sei das lineare Gleichungssystem Ax b = für A =, b = 3.

Mehr

Übungsblatt 6 Musterlösung

Übungsblatt 6 Musterlösung MSE SS7 Übungsblatt 6 Musterlösung Lösung Methode der Charakteristiken) a) Hier ist c = x, d =. Also sind die Gleichungen für die Charakteristiken durch ẋt) = xt), żt) =, mit Anfangsbedingungen x) = x,

Mehr

Übungsblatt 12 Musterlösung

Übungsblatt 12 Musterlösung NumLinAlg WS56 Übungsblatt 2 Musterlösung Lösung 44 (QR-Algorithmus mit Wilkinson-Shift und Deflation) a)+b) Die QR-Iteration zur Berechnung aller Eigenwerte einer Matrix A kann wie folgt implementiert

Mehr

Musterlösungen zur Leistungsnachweisklausur vom Studiengang Informatik, Ingenieurinformatik, Lehramt

Musterlösungen zur Leistungsnachweisklausur vom Studiengang Informatik, Ingenieurinformatik, Lehramt TU ILMENAU Institut für Mathematik Numerische Mathematik PD Dr. W. Neundorf Musterlösungen zur Leistungsnachweisklausur vom.0.006 Studiengang Informatik, Ingenieurinformatik, Lehramt 1. Lineare Algebra

Mehr

Numerische Analysis - Matlab-Blatt 5

Numerische Analysis - Matlab-Blatt 5 Prof. Dr. Stefan Funken Universität Ulm M.Sc. Andreas Bantle Institut für Numerische Mathematik Dipl.-Math. oec. Klaus Stolle Sommersemester 05 Numerische Analysis - Matlab-Blatt 5 Lösung (Besprechung

Mehr

h n = (t t 0 )/n Bevor wir diesen Satz beweisen, geben wir noch einen Hilfssatz an, der eine wichtige Abschätzung liefert.

h n = (t t 0 )/n Bevor wir diesen Satz beweisen, geben wir noch einen Hilfssatz an, der eine wichtige Abschätzung liefert. Kapitel 4 Berechnung von Lösungen 41 Die Euler sche Polygonzugmethode Die Grundlage dieser Methode ist die einfache Beobachtung, dass f(u, t) in der Nähe eines Punktes als nahezu konstant angesehen werden

Mehr

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren 2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren Problem (P2): Löse Ax = b, A R n und b R. 2.1 Satz: Die folgenden Aussagen sind äquivalent: (i) Ax = b ist für jedes b eindeutig lösbar;

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Beispiel: Feder Masse System festes Ende Feder k 1 Masse m 1 k 2 m 2 k 3 m 3 k 4 festes Ende u 0 = 0 Federkraft y 1 Verschiebung u 1 y 2 u 2 y 3 u 3 y 4 u 4 = 0 Grundlagen der

Mehr

MATLAB Ferienkurs WS 2010/2011

MATLAB Ferienkurs WS 2010/2011 MATLAB Ferienkurs WS 2010/2011 Teil 4 von 6 Andreas Klimke, Matthias Wohlmuth Technische Universität München Fakultät Mathematik, Lehrstuhl für Numerische Mathematik Basier auf Kursunterlagen von Boris

Mehr

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

Iterative Methoden zur Lösung von linearen Gleichungssystemen

Iterative Methoden zur Lösung von linearen Gleichungssystemen Iterative Methoden zur Lösung von linearen Gleichungssystemen (13.12.2011) Ziel Können wir wir die zeitabhängige Schrödinger-Gleichung lösen? φ(t) = e iht ψ(0) Typischerweise sind die Matrizen, die das

Mehr

PVK Probeprüfung FS 2017

PVK Probeprüfung FS 2017 PVK Probeprüfung FS 07 Lucas Böttcher Numerische Methoden ETH Zürich June 3, 07. Radioaktiver Zerfall Gegeben sind zwei radioaktive Substanzen, welche mit den Raten λ = 0.5 und λ = 0. zerfallen: A λ B

Mehr

5 Numerische Mathematik

5 Numerische Mathematik 6 5 Numerische Mathematik Die Numerische Mathematik setzt sich aus mehreren Einzelmodulen zusammen Für alle Studierenden ist das Modul Numerische Mathematik I: Grundlagen verpflichtend In diesem Modul

Mehr

(d) das zu Grunde liegende Problem gut konditioniert ist.

(d) das zu Grunde liegende Problem gut konditioniert ist. Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt

Mehr

5.3.5 Abstiegs & Gradientenverfahren

5.3.5 Abstiegs & Gradientenverfahren 5.3 Iterative Lösungsverfahren für lineare Gleichungssysteme 5.3.5 Abstiegs & Gradientenverfahren Die bisher kennengelernten Iterationsverfahren zur Approximation von linearen Gleichungssystemen haben

Mehr

Einführung in die Programmierung (MA8003)

Einführung in die Programmierung (MA8003) Theorie 2.2: Schleifen, Vektorisierung, bedingte Ausführung Dr. Lorenz John Technische Universität München Fakultät Mathematik, Lehrstuhl für Numerische Mathematik M2 05.10.2016 Numerische Mathematik M2

Mehr

Übungsblatt 10 Musterlösung

Übungsblatt 10 Musterlösung Übungsblatt 0 Musterlösung Numerik gewöhnlicher Differentialgleichungen MA2304 - SS6 Aufgabe 45 Fehlerkonstante von MSV Betrachten Sie ein allgemeines lineares q Schrittverfahren α q j y i+ j = h β q j

Mehr

KAPITEL 1. Einleitung

KAPITEL 1. Einleitung KAPITEL 1 Einleitung Wir beschäftigen uns in dieser Vorlesung mit Verfahren aus der Numerischen linearen Algebra und insbesondere dem sogenannten Mehrgitterverfahren zur Lösung linearer Gleichungssysteme

Mehr

Dr. S. May D-ITET, D-MATL Sommer Numerische Methoden Bonuspunkte Punkte

Dr. S. May D-ITET, D-MATL Sommer Numerische Methoden Bonuspunkte Punkte Dr. S. May D-ITET, D-MATL Sommer 216 Prüfung Numerische Methoden Wichtige Hinweise Die Prüfung dauert 9 Minuten. Erlaubte Hilfsmittel: 5 A4-Blätter doppelseitig (=1 Seiten) eigenhändig und handschriftlich

Mehr

Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung. x = x 2 e x 1.

Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung. x = x 2 e x 1. Name: Matrikel-Nr.: 1 Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung R 3 R 2, x 1 f : x 1 + e x2 2 sin(x3 ) x = x 2 e x 1 (1 + x 2 1 + x, 2x 3 )

Mehr

Lineare Algebra und Numerische Mathematik D-BAUG. Winter 2013 Prof. H.-R. Künsch. , a R. det(a) = 0 a = 1.

Lineare Algebra und Numerische Mathematik D-BAUG. Winter 2013 Prof. H.-R. Künsch. , a R. det(a) = 0 a = 1. b Musterlösung Lineare Algebra und Numerische Mathematik D-BAUG. Multiple Choice) Gegeben sei die folgende Matrix Winter 3 Prof. H.-R. Künsch A = a a) deta) = genau dann wenn gilt x a =. a =. ), a R. x

Mehr

3 Das Programm 3. 4 Dateien 4. 5 Aufgaben 4. 6 Ausblick 5

3 Das Programm 3. 4 Dateien 4. 5 Aufgaben 4. 6 Ausblick 5 Contents 1 Ziele dieser Uebung 1 2 Finite-Differenzen-Methode 1 3 Das Programm 3 4 Dateien 4 5 Aufgaben 4 6 Ausblick 5 1 Ziele dieser Uebung 1.1 Einleitung Wir erweitern das Problem aus der letzten Uebung

Mehr

Banach scher Fixpunktsatz. 1) D ist abgeschlossen und konvex; 2) f ist selbstabbildend, d.h. f(d) D;

Banach scher Fixpunktsatz. 1) D ist abgeschlossen und konvex; 2) f ist selbstabbildend, d.h. f(d) D; Institut für Geometrie und Praktische Mathematik Höhere Mathematik IV (für Elektrotechniker und Technische Informatiker) - Numerik - SS 2007 Dr. S. Börm, Dr. M. Larin Banach scher Fixpunktsatz Gegeben

Mehr

Prof. Dr. L. Diening Dipl. Math. S. Schwarzacher Dipl. Math. C. Warmt. Klausur. Numerik WS 2010/11

Prof. Dr. L. Diening Dipl. Math. S. Schwarzacher Dipl. Math. C. Warmt. Klausur. Numerik WS 2010/11 Prof. Dr. L. Diening 09.02.2011 Dipl. Math. S. Schwarzacher Dipl. Math. C. Warmt Klausur Numerik WS 2010/11 Es ist erlaubt, eine selbst erstellte, einseitig per Hand beschriebene A4 Seite in der Klausur

Mehr

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren III. Iterative Löser III.1 Direkte Löser und ihre Nachteile III.2 Klassische Iterationsverfahren Kapitel III (0) 1 Erinnerung: Lineares Gleichungssystem bei FDM Diskretisierung einer linearen PDGL 2. Ordnung

Mehr

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: b a 2 3a 1

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: b a 2 3a 1 Name: Matr.-Nr.: 2 Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: 1 1 0 2 b 1 1 2 4 1 1 4 6 x = 1 1. 2 2 2a 2 3a 1 (a) Bringen Sie das lineare Gleichungssystem auf Treppenform. (b) Für welche

Mehr

Übungsblatt 4 Musterlösung

Übungsblatt 4 Musterlösung Numerik gewöhnlicher Differentialgleichungen MA2304 - SS6 Übungsblatt 4 Musterlösung Aufgabe 7 (Nullstellen als Eigenwerte) Die Polynome {S n } n=0,,2,, S n P n, mit führem Koeffizienten eins, heißen Orthogonalpolynome

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme 2 Lineare Gleichungssysteme Wir betrachten das lineare Gleichungssystem Ax = b mit der n n-koeffizientenmatrix A und der rechten Seite b R n. Wir leiten zuerst eine Variante des Gauss-Algorithmus (LR-Zerlegung)

Mehr

3. Lineare Gleichungssysteme

3. Lineare Gleichungssysteme 3. Lineare Gleichungssysteme 1 3.1. Problemstellung 2 3.2. Direkte Verfahren 3 3.3. Normen und Fehleranalyse 4 3.4. Iterative Verfahren 5 3.5. Konvergenz von linearen Iterationsverfahren 6 3.6. Gradienten-Verfahren

Mehr

Numerische Methoden 4. Übungsblatt

Numerische Methoden 4. Übungsblatt Karlsruher Institut für Technologie (KIT) SS 0 Institut für Analysis Prof. Dr. Michael Plum Dipl.-Math.techn. Rainer Mandel Numerische Methoden 4. Übungsblatt Aufgabe 9: QR-Verfahren (Bearbeitung bis Do,.05.)

Mehr

Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf

Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf Praktikum im Sommersemester 2012 Programmierpraktikum numerische Algorithmen (P2E1) (Numerische Lösung der Wärmeleitungsgleichung)

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 6/7 837 Aufgabe Punkte): Gegeben sei das lineare Gleichungssystem Ax = b mit A = 6 3 und

Mehr

Serie 12: Eigenwerte und Eigenvektoren

Serie 12: Eigenwerte und Eigenvektoren D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie : Eigenwerte und Eigenvektoren Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom 7 und 9 Dezember Finden Sie für folgende

Mehr

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei die Matrix

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei die Matrix Name: Matr.-Nr.: 2 Aufgabe 1. Gegeben sei die Matrix 1 1 1 A = 3 3 3 2 2 2 (a) Bestimmen Sie Rang(A), Kern(A) und Bild(A). Ist A invertierbar? Geben Sie zwei verschiedene rechte Seiten b 1, b 2 an, so

Mehr

c i u i. (10.2) x = i

c i u i. (10.2) x = i Kapitel 0 Von Mises Wielandt Verfahren Im Folgenden wollen wir uns ausschließlich auf reelle, symmetrischen Matrizen der Ordnung n beschränken. Wie im letzten Kapitel diskutiert, sind für solche Matrizen

Mehr

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b.

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b. NumaMB F14 Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Bewertung: Vier Fragen richtig beantwortet

Mehr

Klausur zu Grundlagen der Computermathematik

Klausur zu Grundlagen der Computermathematik Prof. Dr. Klaus Höllig. März 11 Klausur zu Grundlagen der Computermathematik en Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. a Die Folge A n x/ A n

Mehr

D-MATH Numerische Methoden FS 2018 Dr. Vasile Gradinaru Kjetil Olsen Lye. Serie 6

D-MATH Numerische Methoden FS 2018 Dr. Vasile Gradinaru Kjetil Olsen Lye. Serie 6 D-MATH Numerische Methoden FS 08 Dr. Vasile Gradinaru Kjetil Olsen Lye Serie 6 Abgabedatum: Di. 08.0 / Mi. 09.0, in den Übungsgruppen, oder im HG J 68. Koordinatoren: Kjetil Olsen Lye, HG G 6. kjetil.lye@sam.math.ethz.ch

Mehr

Übung zur Vorlesung Numerische Simulationsmethoden in der Geophysik

Übung zur Vorlesung Numerische Simulationsmethoden in der Geophysik Wenke Wilhelms, Julia Weißflog Institut für Geophysik und Geoinformatik Übung zur Vorlesung Numerische Simulationsmethoden in der Geophysik 04. Dezember 2013 Die Diffusionsgleichung 1D-Wärmeleitungsgleichung...

Mehr

Numerisches Rechnen. (für Informatiker) M. Grepl J. Berger & J.T. Frings. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl J. Berger & J.T. Frings. Institut für Geometrie und Praktische Mathematik RWTH Aachen (für Informatiker) M. Grepl J. Berger & J.T. Frings Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2010/11 Problemstellung Lineare Gleichungssysteme, iterative Verfahren geg.:

Mehr

D-ITET, D-MATL Numerische Methoden FS 2013 Prof. Dr. A. Jentzen M. Sprecher. Musterlösung 4

D-ITET, D-MATL Numerische Methoden FS 2013 Prof. Dr. A. Jentzen M. Sprecher. Musterlösung 4 D-ITET, D-MATL Numerische Methoden FS 2013 Prof. Dr. A. Jentzen M. Sprecher Musterlösung 4 1. a) function [ x] = bisect(g,a,b,tol) %bisect finds root of G(x) in the interval [a,b] with tolerance tol Ga=G(a);

Mehr

Mathematische Grundlagen

Mathematische Grundlagen G-CSC Goethe-Center for Scientific Computing der Universität Frankfurt 2 Übung zur Vorlesung Modellierung und Simulation 3 (WS 2013/14) Prof Dr G Queisser Markus Breit, Martin Stepniewski Abgabe: Dienstag,

Mehr

Musterlösung Klausur zu Analysis II. Verständnisteil

Musterlösung Klausur zu Analysis II. Verständnisteil Technische Universität Berlin SS 2009 Institut für Mathematik 20.07.2009 Prof. Dr. R. Schneider Fritz Krüger Sebastian Holtz Musterlösung Klausur zu Analysis II Verständnisteil 1. (a) Sei D R n konvex

Mehr

Hörsaalübung 1 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Hörsaalübung 1 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2018/2019 Dr. Hanna Peywand Kiani Hörsaalübung 1 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Einführung in das Gebiet der Differentialgleichungen

Mehr

3 Eigenwertberechnung

3 Eigenwertberechnung 3 Eigenwertberechnung (3.) Definition Eine Matrix A R, heißt (obere) Block-Dreiecksmatrix, wenn ein n existiert, sodass A[n + :, : n] = 0 gilt, d.h.: A = ( ) A[ : n, : n] A[ : n,n + : ] 0 A[n + :,n + :

Mehr

D-ITET, D-MATL Numerische Methoden FS 2014 Dr. R. Käppeli M. Sprecher. Musterlösung 5

D-ITET, D-MATL Numerische Methoden FS 2014 Dr. R. Käppeli M. Sprecher. Musterlösung 5 D-ITET, D-MATL Numerische Methoden FS 2014 Dr. R. Käppeli M. Sprecher Musterlösung 5 1. a) function [m1,m2,r]=circle_linear_fit(x,y) n=100; A=[2*x 2*y ones(n,1)]; b=x.^2+y.^2; l=a\b; m1=l(1); m2=l(2);

Mehr

Lösungsvorschlag zur Nachklausur zur Analysis

Lösungsvorschlag zur Nachklausur zur Analysis Prof Dr H Garcke, D Depner SS 09 NWF I - Mathematik 080009 Universität Regensburg Lösungsvorschlag zur Nachklausur zur Analysis Aufgabe Untersuchen Sie folgende Reihen auf Konvergenz und berechnen Sie

Mehr

PS Numerische Mathematik für LAK WS 08/09, LV-Nr.: , HS Übungsblatt (bis )

PS Numerische Mathematik für LAK WS 08/09, LV-Nr.: , HS Übungsblatt (bis ) . Übungsblatt (bis 5.0.2008). Aufgabe. Skizzieren Sie die Einheitskugeln K (0,) im R 2 für die Normen, 2 und. 2. Aufgabe. Beweisen Sie x x 2 n x für alle x R n. 3. Aufgabe. Bestimmen Sie die relative Konditionszahl

Mehr

D-INFK Lineare Algebra HS 2014 Roman Glebov Marc Pollefeys. Serie 13

D-INFK Lineare Algebra HS 2014 Roman Glebov Marc Pollefeys. Serie 13 D-INFK Lineare Algebra HS 2014 Roman Glebov Marc Pollefeys Serie 13 1. Um einen Tisch sitzen 7 Zwerge. Vor jedem steht ein Becher mit Milch. Einer der Zwerge verteilt seine Milch gleichmässig auf alle

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

Lanczos Methoden. Stefan Grell Im Rahmen eines Proseminar zur Numerischen Mathematik unter der Leitung von Prof. Wolf Hofmann. 15.

Lanczos Methoden. Stefan Grell Im Rahmen eines Proseminar zur Numerischen Mathematik unter der Leitung von Prof. Wolf Hofmann. 15. Lanczos Methoden Stefan Grell Im Rahmen eines Proseminar zur Numerischen Mathematik unter der Leitung von Prof. Wolf Hofmann 15. Juni 2005 Lanczos-Methoden Lanczos-Methoden sind iterative Verfahren zur

Mehr

MATLAB Einführung. Numerische Methoden für ITET und MATL Dr. S. May, D. Devaud. ETH Zürich, Seminar for Applied Mathematics

MATLAB Einführung. Numerische Methoden für ITET und MATL Dr. S. May, D. Devaud. ETH Zürich, Seminar for Applied Mathematics Numerische Methoden für ITET und MATL 2016 ETH Zürich, Seminar for Applied Mathematics Dr. S. May, D. Devaud Frame 2 MATLAB Auf ETH Computer vorinstalliert Auf Heim PC: von www.ides.ethz.ch herunterladen

Mehr

Lineare Algebra und Numerische Mathematik D-BAUG. Sommer 2012 Prof. H.-R. Künsch

Lineare Algebra und Numerische Mathematik D-BAUG. Sommer 2012 Prof. H.-R. Künsch b Prüfung Lineare Algebra und Numerische Mathematik D-BAUG. Multiple Choice: Sommer Prof. H.-R. Künsch Gegeben sei die folgende Matrix A = 4. 4 (a) x AA T ist eine 4 4 Matrix mit ( AA T) = 4. AA T ist

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

Woche 08/12 15/12 4. Gershgorin-Kreise, Stabilität und Kondition 1 / 8

Woche 08/12 15/12 4. Gershgorin-Kreise, Stabilität und Kondition 1 / 8 Woche 08/12 15/12 4. Gershgorin-Kreise, Stabilität und Kondition 1 / 8 Lernziele In diesem Praktikum sollen Sie üben und lernen: Umgang mit der Matlab-Umgebung Darstellung einfacher Graphen Analyse der

Mehr

u(x, 0) = g(x) : 0 x 1 u(0, t) = u(1, t) = 0 : 0 t T

u(x, 0) = g(x) : 0 x 1 u(0, t) = u(1, t) = 0 : 0 t T 8.1 Die Methode der Finiten Differenzen Wir beschränken uns auf eindimensionale Probleme und die folgenden Anfangs und Anfangsrandwertprobleme 1) Cauchy Probleme für skalare Erhaltungsgleichungen, also

Mehr

Zusatzmaterial zu Kapitel 4

Zusatzmaterial zu Kapitel 4 1 ERMITTLUNG DER TRANSITIONSMATRIX MIT DER SYLVESTER-FORMEL 1 Zusatzmaterial zu Kapitel 4 1 Ermittlung der Transitionsmatrix mit der Sylvester- Formel Wir nehmen an, dass das Zustandsmodell eines linearen

Mehr

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren. III.3 GMRES und CG-Verfahren

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren. III.3 GMRES und CG-Verfahren III. Iterative Löser III.1 Direkte Löser und ihre Nachteile III.2 Klassische Iterationsverfahren III.3 GMRES und CG-Verfahren Kapitel III (0) 1 Erinnerung: Lineares Gleichungssystem bei FDM Diskretisierung

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 2 2. (Frühjahr 29, Thema 3, Aufgabe 3) Gegeben sei die reelle 3 3 Matrix 4 2 A = 2 7 2 R 3 3. 2 2 a)

Mehr

Sommersemester 2017 Blatt 1 von 6 Studiengänge: RMM Masterstudiengang Sem. 1 und Wiederholer

Sommersemester 2017 Blatt 1 von 6 Studiengänge: RMM Masterstudiengang Sem. 1 und Wiederholer HOCHSCHULE ESSLINGEN Sommersemester 07 Blatt von 6 Studiengänge: RMM Masterstudiengang Sem. und Wiederholer Prüfungsfach: Hilfsmittel: Modellbildung und Simulation Literatur, Manuskript; keine Taschenrechner

Mehr

Modulprüfung Numerische Mathematik 1

Modulprüfung Numerische Mathematik 1 Prof. Dr. Klaus Höllig 18. März 2011 Modulprüfung Numerische Mathematik 1 Lösungen Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. 1. Die Trapezregel

Mehr

38 Iterative Verfahren für lineare Gleichungssysteme

38 Iterative Verfahren für lineare Gleichungssysteme 38 Iterative Verfahren für lineare Gleichungssysteme 38.1 Motivation Viele praktische Probleme führen auf sehr große lineare Gleichungssysteme, bei denen die Systemmatrix dünn besetzt ist, d. h. nur wenige

Mehr

Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme

Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik 1

Mehr

Übungen zur Mathematik Blatt 1

Übungen zur Mathematik Blatt 1 Blatt 1 Aufgabe 1: Bestimmen Sie die Fourier-Reihe der im Bild skizzierten periodischen Funktion, die im Periodenintervall [ π, π] durch die Gleichung f(x) = x beschrieben wird. Zeichnen Sie die ersten

Mehr

4 Iterative Lösung Linearer Gleichungssysteme 4.1 Fixpunktiteration und Konvergenzsätze.

4 Iterative Lösung Linearer Gleichungssysteme 4.1 Fixpunktiteration und Konvergenzsätze. 4 Iterative Lösung Linearer Gleichungssysteme 4.1 Fixpunktiteration und Konvergenzsätze. Wir betrachten das lineare Gleichungssystem der Form Ax = b; (4.1.1) mit A R n n reguläre Matrix und b R n gegeben,

Mehr

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2. MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw

Mehr

Woche 20/12 13/01 4. Iterative Lösung linearer Gleichungssysteme 1 / 5

Woche 20/12 13/01 4. Iterative Lösung linearer Gleichungssysteme 1 / 5 Woche 20/12 13/01 4. Iterative Lösung linearer Gleichungssysteme 1 / 5 Lernziele In diesem Praktikum sollen Sie üben und lernen: Umgang mit der Matlab-Umgebung Schreiben einfacher Skrite und Funktionen

Mehr

Universität Tübingen Tübingen, den Mathematisches Institut D. Mansour, J. Seyrich

Universität Tübingen Tübingen, den Mathematisches Institut D. Mansour, J. Seyrich Universität Tübingen Tübingen, den 03.07.2013 Mathematisches Institut D. Mansour, J. Seyrich Probeklausur zu Algorithmen der Numerischen Mathematik SS 2013 ID Nummer: 1 Name:.........................................

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Institut für Geometrie und Praktische Mathematik Multiple-Choice-Test NumaMB F08 (30 Punkte) Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine

Mehr

Beispiellösung Serie 2

Beispiellösung Serie 2 D-MAVT FS 14 K. Nipp A. Hiltebrand NUMERISCHE MATHEMATIK Beispiellösung Serie 1. a) Trapezmethode gemäss Skript S. 93: h = 1, s = 1 (f() + f(1)) =.68394, T = s h =.68394 h 1 = 1/, s 1 = s + f(1/) = 1.467,

Mehr

Numerische Methoden 6. Übungsblatt

Numerische Methoden 6. Übungsblatt Karlsruher Institut für Technologie (KIT) SS 202 Institut für Analysis Prof. Dr. Michael Plu Dipl.-Math.techn. Rainer Mandel Nuerische Methoden 6. Übungsblatt Aufgabe 3: Newton-Verfahren I Ziel dieser

Mehr

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass

Mehr

1. Anfangswertprobleme 1. Ordnung

1. Anfangswertprobleme 1. Ordnung 1. Anfangswertprobleme 1. Ordnung 1.1 Grundlagen 1.2 Euler-Vorwärts-Verfahren 1.3 Runge-Kutta-Verfahren 1.4 Stabilität 1.5 Euler-Rückwärts-Verfahren 1.6 Differentialgleichungssysteme Prof. Dr. Wandinger

Mehr

D-MATH, D-PHYS, D-CHAB Analysis II FS 2017 Prof. Manfred Einsiedler. Übungsblatt 5 A := u = Au, u(0) = 1. 1

D-MATH, D-PHYS, D-CHAB Analysis II FS 2017 Prof. Manfred Einsiedler. Übungsblatt 5 A := u = Au, u(0) = 1. 1 D-MATH, D-PHYS, D-CHAB Analysis II FS 2017 Prof. Manfred Einsiedler Übungsblatt 5 1. Gegeben sei die Matrix 1 1 0 A := 0 1 0 0 0 2 a) Bestimmen Sie ein Fundamentalsystem (das heisst eine Basis des Lösungsraums)

Mehr

Übung zur Numerik linearer und nichtlinearer Parameterschätzprobleme A. Franke-Börner, M. Helm

Übung zur Numerik linearer und nichtlinearer Parameterschätzprobleme A. Franke-Börner, M. Helm Übung zur Numerik linearer und nichtlinearer Parameterschätzprobleme A. Franke-Börner, M. Helm Numerik Parameterschätzprobleme INHALT 1. 1D Wärmeleitungsgleichung 1.1 Finite-Differenzen-Diskretisierung

Mehr

Zehnte Vorlesung, 4. Juni 2009, Inhalt. Eigenwerte und Eigenvektoren (2) Gewöhnliche Differentialgleichungen

Zehnte Vorlesung, 4. Juni 2009, Inhalt. Eigenwerte und Eigenvektoren (2) Gewöhnliche Differentialgleichungen Zehnte Vorlesung, 4. Juni 2009, Inhalt Eigenwerte und Eigenvektoren (2) Gewöhnliche Differentialgleichungen 1 Eigenwerte und Eigenvektoren Wichtige Feststellungen zur Eigenwertaufgabe Ax = λx: Eigenwerte

Mehr

Mathematik III für Physiker. Übungsblatt 15 - Musterlösung

Mathematik III für Physiker. Übungsblatt 15 - Musterlösung Aufgabe 5.. a) Mathematik III für Physiker Wintersemester /3 Übungsblatt 5 - Musterlösung sin n n n j j+ j +)! )j 3 3! + 5 5!... ) n 3! +... n 3 5! n 5 Die Funktion hat einen Pol der Ordnung n. Der Hauptteil

Mehr