Beispiellösung Serie 2

Größe: px
Ab Seite anzeigen:

Download "Beispiellösung Serie 2"

Transkript

1 D-MAVT FS 14 K. Nipp A. Hiltebrand NUMERISCHE MATHEMATIK Beispiellösung Serie 1. a) Trapezmethode gemäss Skript S. 93: h = 1, s = 1 (f() + f(1)) =.68394, T = s h = h 1 = 1/, s 1 = s + f(1/) = 1.467, T 1 = s 1 h 1 = h = 1/4, s = s 1 + f(1/4) + f(3/4) =.9719, T = s h =.7498 b) Romberg-Verfahren: Setze (gemäss Skript S. 98) R j, = T j, j =, 1, und berechne R 1,1 = R 1, 4 R, 1 4 = R,1 = R, 4 R 1, 1 4 = R, = R,1 4 R 1,1 1 4 = Bitte wenden!

2 . a=; b=1; exp(-x.^); TOL=1e-8; MaxIter=1; % attention: % all indices shifted: Skript :MaxIter, Matlab 1:MaxIter+1 S=zeros(1,MaxIter+1); T=zeros(1,MaxIter+1); R=zeros(MaxIter+1, MaxIter+1); h=b-a; S(1)=(f(a)+f(b))/; T(1)=S(1)*h; N=1; R(1,1)=T(1); for j=1:maxiter % Trapezoidal method, page 93 h=h/; S(j+1)=S(j)+sum(f(a+(*(1:N)-1)*h)); T(j+1)=h*S(j+1); N=*N; % Romberg iteration, page 98 R(j+1,1)=T(j+1); for k=1:j R(j+1,k+1)=(R(j+1,k)-R(j,k)*4^(-k))/(1-4^(-k)); end if abs(r(j+1,j+1)-r(j+1,j)) < abs(r(j+1,j+1))*tol+tol; break; end end niter=j Integral=R(j+1,j+1) % PLOT CONVERGENCE %exact result with Matlabs quadrature routine: MatlabQuad=quad(f,a,b,1e-1); relerrorromberg=... Siehe nächstes Blatt!

3 abs( (diag(r(1:niter+1,1:niter+1)) - MatlabQuad)/MatlabQuad ); relerrortrapezoidal=abs( (T(1:nIter+1) - MatlabQuad)/MatlabQuad ); semilogy(:niter, relerrorromberg, o--,... :niter, relerrortrapezoidal, kx-- ); legend( Romberg R, Trapezoidal T ); xlabel( Iteration ); ylabel( relative Error ); title( Convergence of Relative Error ); Für f(x) = e x aus Aufgabe 1 gilt niter = 4 Integral = Wir schreiben die ersten drei Zeilen wie folgt um: a=; b=3; f=@(x) sin(x).*exp(x); Dies ergibt: niter = 5 Integral = Convergence of Relative Error Romberg R Trapezoidal T relative Error Iteration Bitte wenden!

4 3. Teile a)-d): format long 1./(1+cos(x).^); I_exact=pi/sqrt(); %nodes and weights on [-1,1] x=[ ]; w=[ ]; %% QUADRATURE PART (a): 5 points xx = (x+1) * pi/; %nodes on [,pi] fx=f(xx); %values of f in the nodes I_a= fx * w *pi/; %% QUADRATURE PART (b): 3 subdomains with 5 points each I_b = f(pi/6+pi/6*x) * w * pi/ f(pi/+pi/6*x) * w * pi/ f(5*pi/6+pi/6*x) * w * pi/6; %% QUADRATURE PART (c): 15 points [xc,wc] = lgwt(15,,pi); I_c = wc * f(xc) ; %% PART (d): comparison disp( Exact 5 points 3x5 points 15 points ) values=[i_exact, I_a, I_b, I_c] errors=[, abs(i_exact-i_a),... abs(i_exact-i_b),abs(i_exact-i_c)] Betrachten Sie s_3.m für einen Plot der Knoten. a) π. f(x) dx = π 1 f( π + π x)dx π 5 f( π + π x i)w i = i=1 Siehe nächstes Blatt!

5 b) π f(x) dx = = π 6 π 6 π/3 1 5 i=1 f(x) dx + π/3 π/3 f(x) dx + π π/3 ( π f 6 + π ) ( π 6 x + f + π ) 6 x + f f(x) dx ( 5π 6 + π 6 x ) dx ( π f( 6 + π ) π 6 x i + f( + π ) 5π 6 x i + f( 6 + π i) ) 6 x w i = c) [x,w]= lgwt(15,,pi); π 15 f(x) dx f(x j ) w j = j=1 d) Die exakte Lösung lautet π/ = , also hat c) 7 exakte Stellen gegenüber 6 exakte Stellen in b) und exakte Stellen in a). e) f=@(x,y) y.*cos(x.*y/); I_exact=8; x_min=-1; x_max=1; y_min=; y_max=pi; % Non-smooth f % f=@(x,y) min(1-abs(x), 1-abs(y/pi)); % I_exact=4*pi/3; % x_min=-1; x_max=1; y_min=-pi; y_max=pi; k_max=1; % maximal order of gauss quadrature err=zeros(1,k_max); for k=1:k_max [x,wx] = lgwt(k,x_min,x_max); [y,wy] = lgwt(k,y_min,y_max); [xx,yy]=meshgrid(x,y); I=sum(sum(f(xx,yy).* (wy*wx ))); err(k)=abs(i-i_exact); end QuadratureIntegral=I Error=err(k_max) % Error convergence plot and plot of f clf; subplot(1,,1); semilogy(err, -* ); Bitte wenden!

6 xlabel( Number of Gauss points ); ylabel( Error ); subplot(1,,); surf(xx,yy,f(xx,yy)); title( f(x,y) ); axis equal; Dies liefert für I = 1 π y cos x y dy dx: QuadratureIntegral = Error = e-15 für I = 1 π min{1 x, 1 y } dy dx: π π QuadratureIntegral = Error = Betrachten Sie die Matlab-Datei s_3e.m. f) Der Fehler in Abhängigkeit von k ist in Abbildung 1 dargestellt. Wenn der Integrand nicht glatt ist, so ist die Konvergenz viel langsamer. (Man beachte die unterschiedlichen Skalen der Fehler in den Diagrammen.) 4. Multiple Choice. Online abzugeben. a) Die Trapezmethode ist ein Verfahren der Ordnung (i) 1 (iii) 3 (ii) (iv) 4 (v) 5 (vi) 6 Die Trapezmethode ist ein Verfahren der Ordnung (siehe Skript Seite 9). b) Bei jedem Schritt der Trapezmethode, d. h. bei einer Verdoppelung der Anzahl Teilintervalle, wird der Fehler (ungefähr) mit dem folgenden Faktor multipliziert (sofern der Integrand genügend glatt ist und die Teilintervalle genügend klein sind): (i) 1/ (ii) 1/3 (iii) 1/4 (iv) 1/6 (v) 1/8 (vi) 1/16 Siehe nächstes Blatt!

7 1 5 f(x,y) 3 Error Number of Gauss points f C 1 1 f(x,y) Error Number of Gauss points f nicht differenzierbar Abbildung 1: Aufgabe 3 f): Konvergenzplot und f(x, y). Bitte wenden!

8 Der Fehler genügt der Formel I T (h) M 1 (b a)h. Bei einer Halbierung von h ergibt sich eine Vierteilung des Fehlers. c) Die Simpson-Methode ist ein Verfahren der Ordnung (i) 1 (ii) (iii) 3 (v) 5 (iv) 4 (vi) 6 Die Simpson-Methode ist ein Verfahren der Ordnung 4 (siehe Skript Seite 95). d) Bei jedem Schritt der Simpsonmethode, d. h. bei einer Verdoppelung der Anzahl Teilintervalle, wird der Fehler (ungefähr) mit dem folgenden Faktor multipliziert (sofern der Integrand genügend glatt ist und die Teilintervalle genügend klein sind): (i) 1/ (ii) 1/3 (iii) 1/4 (iv) 1/6 (v) 1/8 (vi) 1/16 Der Fehler genügt der Formel I S(h) M 18 (b a)h4. Bei einer Halbierung von h wird der Fehler mit dem Faktor 1 4 = 1 16 multipliziert. e) Wir betrachten das folgende Rombergschema: a Was muss anstelle von a stehen? (i) (ii) (iii) Nach Skipt S. 98 gilt R 3,3 = R 3, 4 3 R, = , wobei R 3, = und R, = Nebenbei: Dieses Schema entsteht bei der Näherung von 1 x dx. x +1 f) Wie viele Funktionsauswertungen wurden für das Schema aus e) benötigt? Siehe nächstes Blatt!

9 (i) 8 (iii) 1 (ii) 9 (iv) 13 (v) 16 (vi) 17 Die Anzahl Teilintervalle wird in jedem Schritt verdoppelt, wir haben also N = 3 Teilintervalle. Die Funktion muss für die Trapezmethode (und damit für die Romberg- Methode) an allen Teilintervallgrenzen ausgewertet werden, insgesamt werden somit = 9 Funktionsauswertungen benötigt. g) Das Integral π π cos(x )dx geht durch Substitution in das Integral 1 π cos(( πx + 3π ) )dx über. (i) Richtig. (ii) Falsch. Wir verwenden die folgende Substitution (siehe Skript S. 1): Damit erhalten wir: π π t = b a x + a + b, a = π und b = π. cos(t )dt = π π = 1 ( (π π cos x + π + π ) ) dx ( (π x + 3π ) ) dx. 1 π cos h) Wir möchten das Integral π/ x a e x dx berechnen, wobei a (, π/) liegt. Was ist zu bevorzugen? (i) eine Gauss-Quadraturformel auf dem Intervall [, π/] (ii) je eine Gauss-Quadraturformel auf dem Intervall [, a] und [a, π/] Das Problem ist hier, dass der Integrand bei a nicht differenzierbar ist. Quadratur über das gesamte Integral ist also nicht zu empfehlen und wird zu einer sehr langsamen Konvergenz führen. Viel besser ist, das Integral aufzuteilen und auf jedes Teilintervall eine (Gauss-)Quadraturformel anzuwenden. Hier also π/ x a e x dx = a x a e x dx + π/ a x a e x dx. Das bedingt natürlich, dass man weiss, wo die Singularitäten des Integranden sind.

Numerische Analysis - Matlab-Blatt 5

Numerische Analysis - Matlab-Blatt 5 Prof. Dr. Stefan Funken Universität Ulm M.Sc. Andreas Bantle Institut für Numerische Mathematik Dipl.-Math. oec. Klaus Stolle Sommersemester 05 Numerische Analysis - Matlab-Blatt 5 Lösung (Besprechung

Mehr

Beispiellösung Serie 7

Beispiellösung Serie 7 D-MAVT FS 2014 K. Nipp A. Hiltebrand NUMERISCHE MATHEMATIK Beispiellösung Serie 7 1. a) Exakt: 0.005 1 1 1 0.005 1 ( 1 0 200-199 L = 200 1 Rückwärts einsetzen Lz = b : z 1 = 0.5, z 2 = 1 100 = 99 Rx =

Mehr

D-MAVT NUMERISCHE MATHEMATIK FS 14 K. Nipp, A. Hiltebrand Lösung vom Test 2

D-MAVT NUMERISCHE MATHEMATIK FS 14 K. Nipp, A. Hiltebrand Lösung vom Test 2 D-MAVT NUMERISCHE MATHEMATIK FS 4 K Nipp, A Hiltebrand Lösung vom Test Sei A ( 3 3 ) a) Bestimmen Sie κ(a), die Kondition von A (in der -Norm): κ(a) b) Berechnen Sie den Spektralradius von A: ρ(a) 4 c)

Mehr

D-ITET, D-MATL Numerische Methoden FS 2018 Dr. R. Käppeli P. Bansal. Lösung 3. j j + 1 P j 1(x), j 1. 2(1 x 2 k ) 2. ((j + 1)P j (x k ))

D-ITET, D-MATL Numerische Methoden FS 2018 Dr. R. Käppeli P. Bansal. Lösung 3. j j + 1 P j 1(x), j 1. 2(1 x 2 k ) 2. ((j + 1)P j (x k )) D-ITET, D-MATL umerische Methoden FS 2018 Dr. R. Käppeli P. Bansal Lösung 3 1. 3-Punkte Gauss Quadraturregel a) Um das Polynom P 3 (x) zu berechnen, benutzen wir die Formel P j+1 (x) 2j + 1 j + 1 xp j(x)

Mehr

D-CHAB Grundlagen der Mathematik I (Analysis B) FS 2016 Theo Bühler

D-CHAB Grundlagen der Mathematik I (Analysis B) FS 2016 Theo Bühler D-CHAB Grundlagen der Mathematik I Analysis B) FS 6 Theo Bühler Lösung. Finde eine Stammfunktion von a) f : R R, fx) := x cosx 5 ) sinx 5 ) ) = 5 cosx 5 )x, also die Stammfunktion von fx) durch F x) :=

Mehr

D-MAVT NUMERISCHE MATHEMATIK FS 14 K. Nipp, A. Hiltebrand Lösung vom Test 1

D-MAVT NUMERISCHE MATHEMATIK FS 14 K. Nipp, A. Hiltebrand Lösung vom Test 1 D-MAVT NUMERISCHE MATHEMATIK FS 4 K. Nipp, A. Hiltebrand Lösung vom Test. Sei eps die Maschinengenauigkeit in Matlab. Dann gilt: eps/4 = Richtig / Falsch + eps/2 = Richtig / Falsch 8 + eps = 8 Richtig

Mehr

MATLAB Einführung. Numerische Methoden für ITET und MATL Dr. S. May, D. Devaud. ETH Zürich, Seminar for Applied Mathematics

MATLAB Einführung. Numerische Methoden für ITET und MATL Dr. S. May, D. Devaud. ETH Zürich, Seminar for Applied Mathematics Numerische Methoden für ITET und MATL 2016 ETH Zürich, Seminar for Applied Mathematics Dr. S. May, D. Devaud Frame 2 MATLAB Auf ETH Computer vorinstalliert Auf Heim PC: von www.ides.ethz.ch herunterladen

Mehr

KAPITEL 10. Numerische Integration

KAPITEL 10. Numerische Integration KAPITEL 10. Numerische Integration 10.1 Einleitung Sei Es gilt I Ĩ = b I = b a a f(x) f(x) dx f(x) dx, Ĩ = b b a f(x) dx. a f(x) f(x) dx (b a) f f. I Ĩ I (b a) f f b a f(x) dx = ba f dx b a f(x) dx f f

Mehr

Übungsblatt 4 Musterlösung

Übungsblatt 4 Musterlösung Numerik gewöhnlicher Differentialgleichungen MA2304 - SS6 Übungsblatt 4 Musterlösung Aufgabe 7 (Nullstellen als Eigenwerte) Die Polynome {S n } n=0,,2,, S n P n, mit führem Koeffizienten eins, heißen Orthogonalpolynome

Mehr

Numerik SS Übungsblatt 3

Numerik SS Übungsblatt 3 PROF. DR. BERND SIMEON CHRISTIAN GOBERT THOMAS MÄRZ Numerik SS 9 Übungsblatt 3 Aufgabe 1 Clenshaw-Curtis-Quadratur Wie bereits bei der Polynominterpolation bietet es sich auch zur Quadratur an Tschebysheff-

Mehr

1/26. Integration. Numerische Mathematik 1 WS 2011/12

1/26. Integration. Numerische Mathematik 1 WS 2011/12 1/26 Integration Numerische Mathematik 1 WS 2011/12 Notation 2/26 Die Abbildung I b a : C([a, b]) R gegeben durch Ia b (f ) := beschreibt die Integration. b a f (x)dx, Um das Integral I(f ) zu approximieren

Mehr

19. Januar Universität Erlangen-Nürnberg Department Mathematik PD Dr. Markus Bause. . Danach liefert die Gauss-Elinination. .

19. Januar Universität Erlangen-Nürnberg Department Mathematik PD Dr. Markus Bause. . Danach liefert die Gauss-Elinination. . Universität Erlangen-Nürnberg Department Mathematik PD Dr Markus Bause Numerik I 9 Januar A Gegeben sei die Matrix A = a Führen Sie eine Zeilenskalierung der Matrix durch Klausur b Bestimmen Sie mit Hilfe

Mehr

Einführung in die numerische Mathematik

Einführung in die numerische Mathematik Prof. Dr. M. Günther K. Gausling, M.Sc. C. Hendricks, M.Sc. Sommersemester 014 Bergische Universität Wuppertal Fachbereich C Mathematik und Naturwissenschaften Angewandte Mathematik / Numerische Analysis

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Lehrstuhl II für Mathematik Prof Dr E Triesch Höhere Mathematik II SoSe 5 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

Numerische Analysis - Matlab-Blatt 1

Numerische Analysis - Matlab-Blatt 1 Prof. Dr. Stefan Funken Universität Ulm M.Sc. Andreas Bantle Institut für Numerische Mathematik Dipl.-Math. oec. Klaus Stolle Sommersemester 015 Numerische Analysis - Matlab-Blatt 1 Lösung (Besprechung

Mehr

NUMERISCHE MATHEMATIK I

NUMERISCHE MATHEMATIK I D-MATH ETH Zürich, 22. August 2011 Prof. Ch. Schwab NUMERISCHE MATHEMATIK I 1. Interpolation und Quadratur (25 P.) a) Sei [a, b] R 1 mit a < b ein beschränktes Intervall, und f C 2 ([a, b]). Zeigen Sie,

Mehr

Lösung Übungsblatt 11

Lösung Übungsblatt 11 Lösung Übungsblatt 11 Aufgabe 1: Quadraturformeln von Newton und Cotes Gegeben ist folgendes Integral: I = 1 0 e x2 dx I wird nach der zusammengesetzten Simpson-Regel berechnet und das Ergebnis als Ĩ bezeichnet.

Mehr

Numerik für Ingenieure I Wintersemester 2008

Numerik für Ingenieure I Wintersemester 2008 1 / 32 Numerik für Ingenieure I Wintersemester 2008 J. Michael Fried Lehrstuhl Angewandte Mathematik III 23.1.2009 2 / 32 Wiederholung Stückweise Polynominterpolation Stückweise lineare Interpolierende

Mehr

Übungen zur Ingenieur-Mathematik II SS 2017 Blatt Aufgabe 13: Betrachten Sie die Funktion. f(x) =

Übungen zur Ingenieur-Mathematik II SS 2017 Blatt Aufgabe 13: Betrachten Sie die Funktion. f(x) = Übungen zur Ingenieur-Mathematik II SS 2017 Blatt 6 2.5.2017 Aufgabe 1: Betrachten Sie die Funktion Lösung: f(x) = 1, x [, 1]. 1 + 25x2 a) Bestimmen Sie die Interpolationspolynome vom Grad m p m (x) =

Mehr

D-MATH Numerische Methoden FS 2017 Dr. Vasile Gradinaru Luc Grosheintz. Serie 4. 1 f i (x)dx

D-MATH Numerische Methoden FS 2017 Dr. Vasile Gradinaru Luc Grosheintz. Serie 4. 1 f i (x)dx D-MATH Numerische Methoden FS 217 Dr. Vasile Gradinaru Luc Grosheintz Serie 4 Abgabedatum: Di./Mi. 2.3/21.3 in den Übungsgruppen oder im HG J68 Koordinatoren: Luc Grosheintz, HG J 46, luc.grosheintz@sam.ethz.ch

Mehr

Aufgabe 1 Berechnen Sie folgende Integrale mit Hilfe des Residuensatzes: e z a) f(z) dz = 2πi Res(f, 1) = eπi. Res(f, 1) = (z 1)f(z) =

Aufgabe 1 Berechnen Sie folgende Integrale mit Hilfe des Residuensatzes: e z a) f(z) dz = 2πi Res(f, 1) = eπi. Res(f, 1) = (z 1)f(z) = Karlsruher Institut für Technologie (KIT) SS 3 Institut für Analysis 73 Prof Dr Tobias Lamm Dr Patrick Breuning Höhere Mathematik II für die Fachrichtung Physik Übungsblatt Aufgabe Berechnen Sie folgende

Mehr

Numerische Verfahren

Numerische Verfahren Numerische Verfahren Jens-Peter M. Zemke zemke@tu-harburg.de Institut für Numerische Simulation Technische Universität Hamburg-Harburg 15.04.2008 TUHH Jens-Peter M. Zemke Numerische Verfahren Numerische

Mehr

a) Die Householder-Transformation, welche den ersten Spaltenvektor a 1 = der Matrix A auf , a 1 αe A = QR, A k =: Q k R k, A k+1 := R k Q k.

a) Die Householder-Transformation, welche den ersten Spaltenvektor a 1 = der Matrix A auf , a 1 αe A = QR, A k =: Q k R k, A k+1 := R k Q k. Karlsruher Institut für Technologie (KIT) Institut für Analysis Prof. Dr. W. Reichel Sommersemester 00 7.07.00 MODULPRÜFUNG Numerische Methoden (Höhere Mathematik IV für die Fachrichtung Meteorologie bzw.

Mehr

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte.

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte. Stroppel Musterlösung 3908, 80min Aufgabe 4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte a) 4n 3 9 lim b) lim n n + n) n + )5n 4) c) lim x 0 sinlnx + )) sinhx) a) Es ist lim

Mehr

LABORÜBUNG MATLAB/OCTAVE

LABORÜBUNG MATLAB/OCTAVE LABORÜBUNG MATLAB/OCTAVE 1. Riemannsche Summen mit MATLAB/Octave Riemannsche Summen lassen sich sehr einfach mit MATLAB/Octave berechnen. Das Vorgehen ist das folgende: (i) die Breite x der Teilintervallen

Mehr

Dr. S. May D-ITET, D-MATL Sommer Numerische Methoden Bonuspunkte Punkte

Dr. S. May D-ITET, D-MATL Sommer Numerische Methoden Bonuspunkte Punkte Dr. S. May D-ITET, D-MATL Sommer 216 Prüfung Numerische Methoden Wichtige Hinweise Die Prüfung dauert 9 Minuten. Erlaubte Hilfsmittel: 5 A4-Blätter doppelseitig (=1 Seiten) eigenhändig und handschriftlich

Mehr

D-MATH, D-PHYS, D-CHAB Analysis II FS 2017 Prof. Manfred Einsiedler. Übungsblatt 1

D-MATH, D-PHYS, D-CHAB Analysis II FS 2017 Prof. Manfred Einsiedler. Übungsblatt 1 D-MATH, D-PHYS, D-CHAB Analysis II FS 27 Prof. Manfred Einsiedler Übungsblatt. Berechnen Sie das Volumen und der Vase { (x, y, z) R 3 x [ π, 2π], } y 2 + z 2 sin(x) + 2. 2. Berechnen Sie das Volumen und

Mehr

Kapitel 4. Numerische Differentiation und Integration

Kapitel 4. Numerische Differentiation und Integration Kapitel 4 Numerische Differentiation und Integration Prof. R. Leithner, E. Zander Einführung in numerische Methoden für Ingenieure 4/2 Integration und Differentiation Probleme bei der Integration und Differentiation

Mehr

Zuname: Vorname: KennNr: Matr.Nr: PRÜFUNG AUS MATHEMATIK 3. 1)(8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation.

Zuname: Vorname: KennNr: Matr.Nr: PRÜFUNG AUS MATHEMATIK 3. 1)(8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation. (8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation. y 7y + 10y = sin(2x), y(0) = 1, y (0) = 3. x ( ) Bemerkung: Für festes a gilt L(e ax ) = 1 und L sin(ax) = arctan a. s a x s Die auftretenden

Mehr

Musterlösung Serie 3

Musterlösung Serie 3 D-MAVT FS 0 K.Nipp NUMERISCHE MATHEMATIK Musterlösung Serie 3. a) T = (D + ωl) ( ωr + ( ω)d) A=[3 ; 3 ; 3]; D=diag(diag(A)); L=tril(A)-D; R=triu(A)-D; omega_vec=0.00:0.00:.999; rho=zeros(size(omega_vec));

Mehr

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB)

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Prof. R. Leithner, Dipl. Phys. E. Zander Wintersemester 2010/2011 Kapitel 4 Numerische

Mehr

Nachklausur Analysis 2

Nachklausur Analysis 2 Nachklausur Analysis 2. a) Wie ist der Grenzwert einer Folge in einem metrischen Raum definiert? Antwort: Se (a n ) n N eine Folge in dem metrischen Raum (M, d). Diese Folge besitzt den Grenzwert g M,

Mehr

Übungsblatt 3 Musterlösung

Übungsblatt 3 Musterlösung Numerik gewöhnlicher Differentialgleichungen MA4 - SS6 Übungsblatt Musterlösung Sei M,N N und f C M+N+ (B) eine komplexe Funktion, B eine kompakte Menge. Die Padé Approximation PN M (f)(x) ist die rationale

Mehr

eps für alle x D. 4. Die Zahl 256 ist in M(2, 4, 6, 6) exakt darstellbar.

eps für alle x D. 4. Die Zahl 256 ist in M(2, 4, 6, 6) exakt darstellbar. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H13 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1 Aufgabe a Hier kann man die Regel von de l Hospital zweimal anwenden (jeweils und die Ableitung des Nenners ist für hinreichend große x ungleich. Dies führt auf e x e x e x + e x e x + e x e x e x e x

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

Übungsblatt Matlab-Zentralübung Musterlösung

Übungsblatt Matlab-Zentralübung Musterlösung Einführung in die Numerik Sommersemester 2011 Übungsblatt Matlab-Zentralübung Musterlösung Lösung 1 (Givens-Rotationen für Wilkinson Matrix) a) function [Q,R] = qr_givens (A) % [Q,R] = qr_givens(a) berechnet

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 21 Quadraturverfahren R. Steuding

Mehr

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie16. y(u, v) = 2u

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie16. y(u, v) = 2u -MAVT/-MATL FS 28 r. Andreas Steiger Analysis IILösung - Serie6. ie Koordinatentransformation xu, v = 2v, yu, v = 2u bildet Kreise auf Kreise ab. a Wahr. b Falsch. ie Transformation entspricht einer Stauchung

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen IGPM RWTH Aachen Institut für Geometrie und Praktische Mathematik Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen

Mehr

Technische Numerik Numerische Integration

Technische Numerik Numerische Integration W I S S E N T E C H N I K L E I D E N S C H A F T Technische Numerik Numerische Integration Peter Gangl Institut für Numerische Mathematik, Technische Universität Graz c Alle Rechte vorbehalten. Nachdruck

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SoSe 20 Institut für Informatik Prof Dr Thomas Huckle Dipl-Inf Christoph Riesinger Dipl-Math Jürgen Bräckle Numerisches Programmieren, Übungen Musterlösung 6 Übungsblatt:

Mehr

Numerische Integration

Numerische Integration Numerische Integration Fakultät Grundlagen Januar 0 Fakultät Grundlagen Numerische Integration Übersicht Grundsätzliches Grundsätzliches Trapezregel Simpsonformel 3 Fakultät Grundlagen Numerische Integration

Mehr

Übungsblatt 5 Musterlösung

Übungsblatt 5 Musterlösung MSE SS7 Übungsblatt 5 Musterlösung Lösung 6 (Vergleich von direkten und iterativen Verfahren: Teil ) Aufwand Jacobi-Verfahren: Das Jacobi Verfahren lässt sich als x (k+) = x (k) +D (b Ax (k) ) x (k+) =

Mehr

Zwischenprüfung Serie A

Zwischenprüfung Serie A D-MAVT, D-MATL Analysis I 5..05 Prof. Dr. Paul Biran Zwischenprüfung Serie A Wichtige Hinweise Prüfungsdauer: 05 Minuten Zugelassene Hilfsmittel: Keine Ihre Antworten tragen Sie auf dem separaten Antwortblatt

Mehr

D-ITET, D-MATL. Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn

D-ITET, D-MATL. Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn Name: Wichtige Hinweise D-ITET, D-MATL Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn Prüfungsdauer: 90 Minuten. Nur begründete Resultate werden bewertet. Zugelassene Hilfsmittel: 10 A4-Seiten

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

Eine kurze Einführung in GNU Octave (Teil 2)

Eine kurze Einführung in GNU Octave (Teil 2) Strings Strings stehen in Anführungszeichen Beispiel >> string= abc ; # erzeugt den String abc >> s(1)= a ; s(2)= b # s=ab Octave kennt nützliche Funktionen für Strings Beispiele >> string= acb ; sort(string)

Mehr

Höhere Mathematik II. Variante C

Höhere Mathematik II. Variante C Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik II SoSe 01 Variante C Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA-Blätter Vorder- und Rückseite

Mehr

Klausur Höhere Mathematik I für die Fachrichtung Physik

Klausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 4.3.3 Klausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((4+3+3 Punkte a Welche

Mehr

ETHZ, D-MATH. Numerische Methoden D-PHYS, WS 2015/16 Dr. V. Gradinaru

ETHZ, D-MATH. Numerische Methoden D-PHYS, WS 2015/16 Dr. V. Gradinaru ETHZ, D-MATH Prüfung Numerische Methoden D-PHYS, WS 5/6 Dr. V. Gradinaru..6 Prüfungsdauer: 8 Minuten Maximal erreichbare Punktzahl: 6. Der van-der-pol Oszillator ( Punkte) Der van-der-pol Oszillator kann

Mehr

Musterlösung Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn

Musterlösung Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn D-ITET, D-MATL Musterlösung Prüfung umerische Methoden, Sommer 01 Dr. Lars Kielhorn 1. a) z = exp(iϕ) = dz = i exp(iϕ) dϕ = c n [f] = 1 π f(exp(iϕ)) exp( iϕn) dϕ π 0 b) Allgemeine zusammengesetzte Trapezregel

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik II SoSe 01 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA-Blätter Vorder- und Rückseite

Mehr

Dr. R. Käppeli D-ITET, D-MATL Winter Numerische Methoden Punkte

Dr. R. Käppeli D-ITET, D-MATL Winter Numerische Methoden Punkte Dr. R. Käppeli D-ITET, D-MATL Winter 2018 Prüfung Numerische Methoden Wichtige Hinweise Die Prüfung dauert 90 Minuten. Erlaubte Hilfsmittel: 5 A4-Blätter doppelseitig (=10 Seiten) eigenhändig und handschriftlich

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben. ( Punkte) a) Wir berechnen lim sin(x ) x 3 + 4x L Hôpital = lim x cos(x ) 3x + 8x = 4. b) Wir benutzen L Hôpital lim

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2015/16 Prof. Dr. Michael Hinze Dr. Hanna Peywand Kiani Analysis I für Studiere der Ingenieurwissenschaften Blatt 6 Aufgabe 1) Bitte lösen Sie die angegebenen

Mehr

Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 2017/18, am

Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 2017/18, am Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 07/8, am 9.3.08 Aufgabe : Zeigen Sie, dass für alle n N gilt: n n+ n ( ) (8 Punte) Beweis mittels vollständiger Indution n : ( )

Mehr

Dr. R. Käppeli D-ITET, D-MATL Sommer Numerische Methoden Punkte

Dr. R. Käppeli D-ITET, D-MATL Sommer Numerische Methoden Punkte Dr. R. Käppeli D-ITET, D-MATL Sommer 217 Prüfung Numerische Methoden Wichtige Hinweise Die Prüfung dauert 9 Minuten. Erlaubte Hilfsmittel: 5 A4-Blätter doppelseitig (=1 Seiten) eigenhändig und handschriftlich

Mehr

Numerik gewöhnlicher Differentialgleichungen. Übung 8 - Lösungsvorschlag

Numerik gewöhnlicher Differentialgleichungen. Übung 8 - Lösungsvorschlag Technische Universität Chemnitz Chemnitz, 2. Januar 21 Prof. R. Herzog, M. Bernauer Numerik gewöhnlicher Differentialgleichungen WS29/1 Übung 8 - Lösungsvorschlag 1. Ziel dieser Aufgabe ist die Umsetzung

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 4.3.25, 2min Aufgabe ( Punkte) Es sei S := {(x, y, z) R 3 z = x 2 + y 2, z 2}. (a) (6 Punkte) Berechnen Sie den Flächeninhalt von S. (b) (4 Punkte) Berechnen Sie die

Mehr

n=10! Vergleichen Sie Ihr Ergebnis mit der exakten Lösung! Lösung: Wir zerlegen das Intervall [a,b]=[1,2] in n Streifen der Breite h=.

n=10! Vergleichen Sie Ihr Ergebnis mit der exakten Lösung! Lösung: Wir zerlegen das Intervall [a,b]=[1,2] in n Streifen der Breite h=. Lösungen zu Übungsblatt (Integralrechnung) Zu Aufgabe ) Berechnen Sie das Integral e x dx n! Vergleichen Sie Ihr Ergebnis mit der exakten Lösung! näherungsweise nach der rapezformel für n, n5, Wir zerlegen

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

(x a) 3 + f (a) 4! x 4 4! Wir werden im Folgenden vor allem Maclaurin-Reihen betrachten, dies alles funktioniert aber auch. f (x) = sin x f (0) = 0

(x a) 3 + f (a) 4! x 4 4! Wir werden im Folgenden vor allem Maclaurin-Reihen betrachten, dies alles funktioniert aber auch. f (x) = sin x f (0) = 0 Taylor-Reihen Einführung Mathematik GLF / 6 Christian Neukirchen Oft können wir bestimmte mathematische Funktionen nicht genau ausrechnen, besonders die trigonometrischen Funktionen wie, cos x, oder die

Mehr

FK03 Mathematik I: Übungsblatt 9 Lösungen

FK03 Mathematik I: Übungsblatt 9 Lösungen FK03 Mathematik I: Übungsblatt 9 Lösungen Verständnisfragen. Welche zwei Beispiele sind in der Vorlesung für die Anwendung von transzendenten Funktionen behandelt worden? Schnittpunktsbestimmung zwischen

Mehr

KLAUSUR. Mathematik IV Wolfram Koepf. Name: Vorname: Matr. Nr.:

KLAUSUR. Mathematik IV Wolfram Koepf. Name: Vorname: Matr. Nr.: KLAUSUR Mathematik IV 5. 3. 2007 Wolfram Koepf Name: Vorname: Matr. Nr.: Bitte lassen Sie genügend Platz zwischen den Aufgaben und beschreiben Sie nur die Vorderseite der Blätter! Zum Bestehen der Klausur

Mehr

Substitution bei bestimmten Integralen. 1-E1 Ma 1 Lubov Vassilevskaya

Substitution bei bestimmten Integralen. 1-E1 Ma 1 Lubov Vassilevskaya Substitution bei bestimmten Integralen -E Ma Lubov Vassilevskaya -E Ma Lubov Vassilevskaya Substitution bei bestimmten Integralen: Lernziele Was wir wissen: Wann berechnet man Integrale mit Hilfe einer

Mehr

Aufgabenkomplex 3: Integralrechnung, Kurven im Raum

Aufgabenkomplex 3: Integralrechnung, Kurven im Raum Technische Universität Chemnitz. Mai 9 Fakultät für Mathematik Höhere Mathematik I. Aufgabenkomplex : Integralrechnung, Kurven im Raum Letzter Abgabetermin: 6. Mai 9 (in Übung oder Briefkasten bei Zimmer

Mehr

Mathematik I HM I A. SoSe Variante A

Mathematik I HM I A. SoSe Variante A Prof. Dr. E. Triesch Mathematik I SoSe 08 Variante A Hinweise zur Bearbeitung: Benutzen Sie zur Beantwortung aller Aufgaben ausschließlich das in der Klausur ausgeteilte Papier! Es werden nur die Antworten

Mehr

Präsenzübungen zur Analysis I Lehramt

Präsenzübungen zur Analysis I Lehramt Technische Universität Dortmund 12. Oktober 217 Matthias Schulte Blatt, WiSe 17/18 Aufgabe.1 (Elementare Beweistechniken). a) Zeige, dass 2 Q gilt! b) Es seien A,B Mengen. Zeige: A B = B \A = B. Aufgabe.2

Mehr

Serie 12 - Integrationstechniken

Serie 12 - Integrationstechniken Analysis D-BAUG Dr. Meike Akveld HS 5 Serie - Integrationstechniken. Berechnen Sie folgende Integrale: a e x cos(x dx Wir integrieren zwei Mal partiell, bis wir auf der rechten Seite wieder das Integral

Mehr

D-BAUG Analysis I HS 2014 Dr. Meike Akveld. Serie

D-BAUG Analysis I HS 2014 Dr. Meike Akveld. Serie D-BAUG Analysis I HS 2014 Dr. Meike Akveld Serie 12 1. Für die Hyperbel mit der Gleichung x 2 y 2 = 1 (siehe Abbildung 1) betrachten wir die Parametrisierung ( ) ( ) x(t) cosh t r : R R 2, r(t) = =. y(t)

Mehr

5. Numerische Differentiation. und Integration

5. Numerische Differentiation. und Integration 5. Numerische Differentiation und Integration 1 Numerische Differentiation Problemstellung: Gegeben ist eine differenzierbare Funktion f : [a,b] R und x (a,b). Gesucht sind Näherungen für die Ableitungen

Mehr

Übungsblatt 2 Musterlösung

Übungsblatt 2 Musterlösung MSE SS17 Übungsblatt Musterlösung Lösung 5 (Transformation von Variablen) Zur Transformation gehen wir analog zur Vorlesung vor. Zunächst bestimmen wir die durch die PDGL definierte Matrix A und deren

Mehr

Lösungshinweise zur Klausur

Lösungshinweise zur Klausur Höhere Mathematik 3 26. 2. 214 Lösungshinweise zur Klausur für Studierende der Fachrichtungen kyb,mecha,phys Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind. (i)

Mehr

5. Numerische Differentiation. und Integration

5. Numerische Differentiation. und Integration 5. Numerische Differentiation und Integration 1 Numerische Differentiation Problemstellung: Gegeben ist eine differenzierbare Funktion f : [a,b] R und x (a,b). Gesucht sind Näherungen für die Ableitungen

Mehr

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 81 Blatt 12

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 81 Blatt 12 Höhere Mathematik III WS 5/6 Lösungshinweis Aufgabe G 8 Blatt Rechenweg : Für das komplexe Wegintegral über : t z(t, t [a, b] gilt f(z dz = b a f ( z(t z (t dt. Rechenweg : Ist f stetig differenzierbar

Mehr

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx Seite Aufgabe : a Berechnen Sie das Integral b Berechnen Sie das Integral +x x+x dx. π sin x dx. c Differenzieren Sie die Funktion ft = t e t s ds. Nur Leibniz-Formel a + x x + x dx = d dx lnx + x dx =

Mehr

Übung (13) dx 3, 2x 1 dx arctan(x3 1).

Übung (13) dx 3, 2x 1 dx arctan(x3 1). Übung (3) () Bilden Sie folgende Ableitungen: d xe x dx x ln x, d dx +cos (x), d d dx 3, x dx arctan(x3 ). () Geben Sie die Näherung. Ordnung für den Ausdruck / p v /c für v

Mehr

Höhere Mathematik III. Variante A

Höhere Mathematik III. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik III SoSe 215 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

Modulprüfung Numerische Mathematik 1

Modulprüfung Numerische Mathematik 1 Prof. Dr. Klaus Höllig 18. März 2011 Modulprüfung Numerische Mathematik 1 Lösungen Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. 1. Die Trapezregel

Mehr

12.2 Gauß-Quadratur. Erinnerung: Mit der Newton-Cotes Quadratur. I n [f] = g i f(x i ) I[f] = f(x) dx

12.2 Gauß-Quadratur. Erinnerung: Mit der Newton-Cotes Quadratur. I n [f] = g i f(x i ) I[f] = f(x) dx 12.2 Gauß-Quadratur Erinnerung: Mit der Newton-Cotes Quadratur I n [f] = n g i f(x i ) I[f] = i=0 b a f(x) dx werden Polynome vom Grad n exakt integriert. Dabei sind die Knoten x i, 0 i n, äquidistant

Mehr

Diplom VP Informatik / Numerik 2. September 2002

Diplom VP Informatik / Numerik 2. September 2002 Diplom VP Informatik / Numerik. September 00 Aufgabe Gegeben sei das lineare Gleichungssystem A x = b mit 0 4 0 0 0 0 A = 4 0 0 0 0 0 0 0 0 und b = 4 4 8 5. Punkte a Berechnen Sie die Cholesky Zerlegung

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12 Mathematik für Wirtschaftswissenschaftler im WS /3 Lösungen zu den Übungsaufgaben Blatt Aufgabe 5 Welche der folgenden Matrizen sind positiv bzw negativ definit? A 8, B 3 7 7 8 9 3, C 7 4 3 3 8 3 3 π 3

Mehr

Lokaler Fehler y = y 2, y(0.2) = 5/9, Lösung: y = 1 Fehler nach dem 1. Schritt

Lokaler Fehler y = y 2, y(0.2) = 5/9, Lösung: y = 1 Fehler nach dem 1. Schritt Lokaler Fehler y = y, y(.) = /9, Lösung: y = Fehler nach dem. Schritt ( t) 4 Fehler 6 8 4 (I) Euler explizit (II) Euler implizit (IIIa) Crank Nicolson (IIIb) Heun (IVa) Euler modifiziert (IVb) Euler mod.

Mehr

Diplom VP Numerik 27. August 2007

Diplom VP Numerik 27. August 2007 Diplom VP Numerik 27. August 2007 Multiple-Choice-Test 30 Punkte Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine einzige Aussage angekreuzt, gilt diese

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 014 BIOL-B HST PHARM Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, Januar 0 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 3 6 Total Vollständigkeit Bitte

Mehr

Numerik gewöhnlicher Differentialgleichungen (MA2304) Modulprüfung F. Bornemann, C. Ludwig 14. August 2017

Numerik gewöhnlicher Differentialgleichungen (MA2304) Modulprüfung F. Bornemann, C. Ludwig 14. August 2017 Numerik gewöhnlicher Differentialgleichungen (MA234) Modulprüfung F. Bornemann, C. Ludwig 4. August 27 Aufgabe ( min) (a) Implementiere in Julia mit den Eingaben a, b, f und n die summatorische Trapez-Regel

Mehr

Numerische Integration

Numerische Integration Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute for Numerical Simulation TUHH Heinrich Voss Kapitel 3 2010 1 / 87 In vielen Fällen ist es nicht möglich, ein gegebenes Integral

Mehr

Ableitungen von Funktionen

Ableitungen von Funktionen Kapitel 8 Ableitungen von Funktionen 8. Der Begriff der Ableitung Aufgabe 8. : Prüfen Sie mit Hilfe des Differenzenquotienten, ob folgende Funktionen an den gegebenen Stellen x 0 differenzierbar sind.

Mehr

Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen

Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Wintersemester 2012/201 Zwischentest Teil 1: 1. Was bedeuten die Bezeichnungen O(h) und o(h)? (Definition) (siehe Skript!)

Mehr

VF-3: Gegeben seien die Daten f(x 0 ), f(x 1 ),..., f(x n ) mit x 0,..., x n paarweise verschiedenen und

VF-3: Gegeben seien die Daten f(x 0 ), f(x 1 ),..., f(x n ) mit x 0,..., x n paarweise verschiedenen und IGPM RWTH Aachen Verständnisfragen-Teil NumaMB F10 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Aussagen Diese sind mit wahr bzw falsch zu kennzeichnen (hinschreiben) Es müssen alle Fragen mit wahr

Mehr

Block I: Integration und Taylorentwicklung in 1D

Block I: Integration und Taylorentwicklung in 1D Wiederholungsübungen zur Ingenieur-Mathematik III WS 5/6 Blatt 3..6 Block I: Integration und Taylorentwicklung in D Aufgabe : Berechnen Sie die Integrale: a) π sin x cos x dx b) ( x) +x dx c) x e x dx

Mehr

Serie 12. D-MAVT, D-MATL Analysis I HS 14. Abgabetermin der schriftlichen Aufgaben: Freitag, in der Übungsstunde.

Serie 12. D-MAVT, D-MATL Analysis I HS 14. Abgabetermin der schriftlichen Aufgaben: Freitag, in der Übungsstunde. D-MAVT, D-MATL Analysis I HS 4 Prof. Dr. Paul Biran Nicolas Herzog Serie Abgabetermin der schriftlichen Aufgaben: Freitag, 9..4 in der Übungsstunde.. Das schattierte Gebiet wird um diez-achse rotiert.

Mehr

Höhere Mathematik 3 Herbst 2014

Höhere Mathematik 3 Herbst 2014 IMNG, Fachbereich Mathematik Universität Stuttgart Prof. Dr. K. Höllig Höhere Mathematik 3 Herbst 214 Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind. (i) rot(2

Mehr