3 Raumgitter 7 Punkte
|
|
|
- Emma Hertz
- vor 6 Jahren
- Abrufe
Transkript
1 Raumgitter 7 Punkte Gegeben ist die graphische Darstellung eines kubischen Gitters. A a) Zeichnen Sie die Geraden [ ] und [ ] durch B und die Ebene E 1, die sie aufspannen. Geben Sie die Millerschen Indies von E 1 an. b) Zeichnen Sie die Ebene E mit den Millerschen Indies ( ) durch A. c) Zeichnen Sie die Schnittgerade g von E 1 und E und geben Sie Ihre Richtung an. d) Berechnen Sie die Schnittgerade aus den millerschen Indies. e) Zeichnen Sie Atompositionen im Gitter ein, damit die markierten Ebenen Gleitebenen darstellen. Um welchen Gittertp handelt es sich? Welche Funktion hat g? Hinweis Darstellung der Ebenen durch Zeichnen ihrer Schnittgeraden mit den Aussenebenen des dargestellten Gitterbereiches, d.h. mit den Ebenen =, =, =, =4, =, =. B WF-Test-11-L - 4
2 C E 1 D g A E C B a) Zeichnung und Millersche Indies: Achsenabschnitte im Koordinatensstem mit als Nullpunkt:,, ; reiproke Werte:, 1/, 1/ ; mit erweitern: ( 11 ). Zeichnung {.5}.5 Millersche Ind. {1} 1.5 (Alternativ: Vektorprodukt der Richtungsvektoren:) b) Achsenabschnitte = reiproke Werte der Millerschen Indies 1 1 ( ), mit 4 erweitern:,, : (Ursprung in ). - = - - = -4 = ( 11 ) = {1}.5 Zeichnung {.5} c) Schnittgerade g (s. Bild): [ ] d) Rechnung: Richtung: Vektor-Kreuprodukt: ( 11) X ( ) = [ 8 ] {1} 5 { 1} 4 e) Atompositionen: Bild. {.5} Gittertp: kr. {.5}. g ist dichtest gepackte Richtung und damit Gleitrichtung. {1} 7. = 1 = = ( ) 1 = - 1 WF-Test-11-L - 5
3 4 Leerstellendichte 7 Punkte a) Nennen Sie Mechanismen für das Entstehen von Leerstellen in Metallen. b) Wie wirken sich Leerstellen auf Diffusionsvorgänge aus? Begründen Sie. c) Geben Sie die Leerstellenkonentration für ein Material im thermischen Gleichgewicht an mit den Daten: Temperatur =6 Bildungsenergie für eine Leerstelle h =.95 Boltmannkonstante = / Aktivierungskonstante =1.1 Mit welcher Leerstellenkonentration ist u rechnen, wenn man sehr schnell abkühlt? a) Bildung von Leerstellen durch Erhöhung der Temperatur (Leerstellen bleiben bei schneller Abkühlung teilweise erhalten erhalten) {1} 1 mechanische Verformung bei tiefen Temperaturen (T>. T S : Ausheilung) {1} Bestrahlung mit energiereichen Teilchen {1} b) Leerstellen erleichtern die Diffusion insbesondere von substitutionellen Fremdatomen, weil ein diffundierendes Atom den Plat der Leerstelle einnehmen kann, wo es sonst auf einen Zwischengitterplat ausweichen müsste. {1} 4 c) Leerstellenkonentration c L : = h = = Formel {1} 5 Wert {1} 6 Bei sehr schneller Abkühlung bleibt die Leerstellenkonentration der höheren Temperatur grösstenteils erhalten. {1} 7 WF-Test-11-L - 6
4 5 Burgersvektoren 4 Punkte Gegeben sind die folgenden Burgersvektoren 1) 1 ) 11 ) 11 4) 111 Welche dieser Vektoren kenneichnen vollständige Versetungen a) in einem kr-gitter? b) in einem kf-gitter? c) Welches sind die wahrscheinlichsten Burgersvektoren für die beiden Gittertpen : a) kr vollst.v., Betrag b) kf vollst.v., Betrag 1) 1 ) ja 1 ja 1 11 ) 11 4) nein - ja.71, kürester ja 1.41 ja ja,.87 kürester nein - Pro richtiges ja/nein 8* {.5} Pro richtigen küresten * {.5} c) Die wahrscheinlichsten Burgersvektoren sind die küresten. {1} 4 WF-Test-11-L - 7
5 4 Raumgitter 4 Punkte Gegeben ist die graphische Darstellung eines kubischen Gitters. A Gesucht (Darstellung der Ebenen durch Zeichnen der Schnittgeraden mit den Ausseneben des dargestellten Gitterbereiches, d.h. mit den Ebenen =, =, =, =4, =, =) durch und die Ebene E 1, die sie a) Zeichnen Sie die Geraden [ ] durch und [ ] aufspannen. Geben Sie die Millerschen Indies von E 1 an. b) Zeichnen Sie die Ebene E mit den Millerschen Indies ( 1) durch A. c) Zeichnen Sie die Schnittgerade von E 1 und E und geben Sie Ihre Richtung an. WF-Test1-111-L - 5
6 B A C a) Zeichnung und Millersche Indies: Achsenabschnitte u B als Nullpunkt:,, - reiproke Werte: ½ ½ -1/ mit 6 erweitern: ( ). Zeichnung {.5}.5 Millersche Ind. {1} 1.5 Alternativ: Vektorprodukt der Richtungsvektoren: = -6 = 4 = -6 = ( ) b) Achsenabschnitte = reiproke Werte der Millerschen Indies 1 1 ( 1) 1 erweitern: 1,, 1: (C als Ursprung oder Achsabschnitte von (), 4, ). {1}.5 Zeichnung {.5} c) Schnittgerade (s. Bild). {.5}.5 Rechnung: Richtung: Vektor-Kreuprodukt: ( ) X ( 1 ) = ( 1 ) 8 {.5} 4 = 6+ 1 = -1 = ( 8 1 ) - = - 1 WF-Test1-111-L - 6
7 5 Packungsdichte 4 Punkte Bei einem tetragonal innenentrierten (raumentrierten) Gitter mit den Gitterkonstanten a, a, c sind gesucht: a) Die Packungsdichte P b) Die Koordinationsahl KZ Gegeben Gitterkonstante a = 8 pm Atomradius r= 14 pm a) Packungsdichte: Berührung auf der Raumdiagonalen: ( 4r) c = ( 4r) a = ( 4 14 pm) ( 8pm) = 187 pm a + a + c = 5 = Anahl Atome pro Elementarelle: 1+8/8= 4π 4π r 14 Packungsdichte P = = =. 688 Formel {} Wert {1} a c 8 5 Variante: a 8pm = =. r 14 pm a ( 4r) c = ( 4r) a = ( 4 r). r = 6. r =. r + a + c = 51 4π 4π r r Packungsdichte P = = =. 688 a c..51 r b) Koordinationsahl KZ = 8 (da a >r) {1} 4 WF-Test1-111-L - 7
8 6 Tetur 4 Punkte In einem Blech liegen die Metallkörner bevorugt so, dass ihre Gitter ausgerichtet sind wie hier durch eine kubische Elementarelle in idealer Lage dargestellt. Von diesem Material sind die Elastiitätsmoduln in verschiedenen Kristallrichtungen bekannt: E <1> = 1' MPa E <11> = 1' MPa E <111> = 9' MPa a) Beeichen Sie diese Tetur durch Angabe von Walrichtung und Walebene im Koordinatensstem der Elementarelle. b) Wie gross ist der Elastiitätsmodul bei Zugbelastung in Walrichtung des Bleches? Walebene WE Walrichtung WR Walebene WE Walrichtung WR Walebene (1)oder (1) usw. {1} 1 Walrichtung [11] oder [11] usw. {1} Teturbeeichnung (1)[11] {1} E-Modul = 1MPa=N/mm {1} 4 WF-Test1-111-L - 8
9 7 Versetungen 4 Punkte Betrachtet wird ein kubisch raumentriertes Gitter. a) Skiieren Sie die Elementarelle. b) Zeichnen sie einen kürestmöglichen Burgersvektor b 1 und einen nächstlängeren Burgersvektor b ein. a c) Geben sie die Koordinaten von b 1 an in der Form b 1 = [ ] k d) Geben Sie das Verhältnis der Versetungsenergien der Versetungen um Burgersvektor b und um Burgersvektor b 1 an. e) Geben Sie wei Definitionen für die Versetungsdichte ρ V an. a) Skiieren Sie die kr Elementarelle. {.5}.5 b) Burgersvektoren eichnen {.5} 1 (a ) b 1 b a c) Koordinaten von b 1 : b 1 = [111] {1} d) Die Versetungsenergie einer Versetung ist proportional ur Länge des Burgersvektors im Quadrat. b a 4 Verhältnis der Versetungsenergien: = = ( = 1.) {1} b1 a 4 e) Definition 1: Die Versetungsdichte ist die Summe der Längen aller Versetungslinien pro Volumen. {.5}.5 Definition : Die Versetungsdichte ist die Anahl Durchstosspunkte von Versetungslinien durch eine Kontrollfläche. {.5} 4 WF-Test1-111-L - 9
10 8 Gitterfehler 4 Punkte Betrachtet wird ein kubisch flächenentrieres Metallgitter, welches in gewissen Bereichen eine Stapelfolge ABA der dichtest gepackten Ebenen aufweist. a) Wie nennt man diese Bereiche? b) Wodurch werden diese Bereiche vom ungestörten Gitter abgegrent? c) Von welcher Werkstoffkenngrösse hängt es ab, ob solche Störungen in grösserem Umfang vorkommen, und wie ist die Abhängigkeit? d) Wie beeinflussen diese Bereiche das Tiefiehverhalten? Begründen Sie Ihre Aussage. a) Stapelfehler {.5}.5 b) Teilversetungen {.5} 1 c) Stapelfehlerenergie. Je niedriger, umso mehr Stapelfehler. {.5} d) Stapelfehler bewirken eine Verfestigung bei Kaltumformung, dadurch gleichmässiges Fliessen. (Grösserer Bereich der Gleichmassdehnung, Einschnürung und Rissbildung werden vermieden) {} 4 WF-Test1-111-L - 1
Freiwilliger Übungstest 1 Idealstruktur, Realstruktur, Zweistoffsysteme Musterlösung mit Bewertung
Werkstoffe und Fertigung I Prof.Dr. K. Wegener Wintersemester 2006/07 Name Vorname Legi-Nummer Freiwilliger Übungstest Idealstruktur, Realstruktur, Zweistoffsysteme Musterlösung mit Bewertung Mittwoch,
Übung 2 Idealstruktur, Realstruktur. Musterlösung. Ausgabe: Abgabe: Werkstoffe und Fertigung I Prof.Dr. K.
Werkstoffe ud Fertigug I Prof.Dr. K. Wegeer Witersemester 6/7 Name Vorame Übug Idealstruktur, Realstruktur Musterlösug Ausgabe:..6 Abgabe: 5..6 Istitut für Werkeugmaschie ud Fertigug, ETH Zetrum Übugsassiste:
1 Theorie: Realstruktur
1 Theorie: Realstruktur In einem idealen Kristall ist die Fernordnung der Atome perfekt. Das Raumgitter ist an allen erforderlichen Gitterpunkten mit einem Atom besetzt. Alle Atome sind gleich und ausserhalb
1 Theorie: Spannung und Dehnung
1 Theorie: Spannung und Dehnung Bei der Auswahl von Werkstoffen sind deren Eigenschaften von entscheidender Bedeutung. Sie folgen aus deren mikroskopischem Aufbau. Das heisst aus den Atomen, aus denen
Übung Gitterstrukturen und Kristallbaufehler
Übung Gitterstrukturen und Kristallbaufehler Skript Skript: www.tu-cottbus.de/mwt Lehre Skripte Musterfragen 1. Nennen und skizzieren Sie die Elementarzellen für die drei häufigsten Gitterstrukturen von
2. METALLISCHE WERKSTOFFE
2. METALLISCHE WERKSTOFFE Metalle sind kristallin aufgebaut Bindung wischen den Atomen = Metallbindung Jedes Atom gibt ~ 1 Elektron aus äußerster Schale ab positiv geladene Metallionen negativ geladene
Gefüge und Eigenschaften metallischer Werkstoffe WS 17/18
Gefüge und Eigenschaften metallischer Werkstoffe WS 7/8 Übung 5 Musterlösung 0..07 Aufgabe Welche Bravais-Gittertypen gibt es? Welche Modifikationen besitzen Sie? Nennen Sie Materialbeispiele zu jedem
3. Struktur des Festkörpers
3. Struktur des Festkörpers 3.1 Kristalline und amorphe Strukturen Amorphe Struktur - Atombindung ist gerichtet - unregelmäßige Anordnung der Atome - keinen exakten Schmelzpunkt, sondern langsames Erweichen,
1 Die elastischen Konstanten 10 Punkte
1 Die elastischen Konstanten 10 Punkte 1.1 Ein Würfel wird einachsig unter Zug belastet. a) Definieren Sie durch Verwendung einer Skizze den Begriff der Spannung und der Dehnung. b) Der Würfel werde im
Kristallstruktur der Metalle
Bedeutung Metallische Werkstoffe sind in der Regel kristallin aufgebaut. Die vorliegende Kristallstruktur hat einen erheblichen Einfluss auf die Eigenschaften des Werkstoffs, wie z.b. die Festigkeit, Verformbarkeit,
1 Kristallgitter und Kristallbaufehler 10 Punkte
1 Kristallgitter und Kristallbaufehler 10 Punkte 1.1 Es gibt 7 Kristallsysteme, aus denen sich 14 Bravais-Typen ableiten lassen. Charakterisieren Sie die kubische, tetragonale, hexagonale und orthorhombische
1. Systematik der Werkstoffe 10 Punkte
1. Systematik der Werkstoffe 10 Punkte 1.1 Werkstoffe werden in verschiedene Klassen und die dazugehörigen Untergruppen eingeteilt. Ordnen Sie folgende Werkstoffe in ihre spezifischen Gruppen: Stahl Holz
Übungen 3. Vektoren. 1) Gesucht sind alle möglichen Vektoren c mit der Länge 6, die senkrecht auf den Vektoren a und b stehen.
Vektoren Übungen ) Gesucht sind alle möglichen Vektoren c mit der Länge, die senkrecht auf den Vektoren a und b stehen. a = ( ); b = ( ) a) Ein Dreieck in R ist durch die Punkte O( ), A( ), B( ) definiert.
1.2 Realstruktur: Kristallbaufehler
1.2 Realstruktur: Kristallbaufehler 1.2.1 Nulldimensionale Gitterfehler Leerstellen (auch Gitterlücken oder Schottky-Defekte genannt) Die Entstehung einer Leerstelle kann man so beschreiben, dass ein Atom
Kristalle und deren Fehler Was sollen Sie mitnehmen? ...Weihnachten...!
Kristalle und deren Fehler Was sollen Sie mitnehmen? Definition und Aufbau eines Kristalls Elementarzellen Typische Gitter nach Verbindungsklassen Navigation im Kristall: Richtung, Ebenen Allotropie Fehlertypen
Moderne Physik: Elemente der Festkörperphysik Wintersemester 2010/11 Übungsblatt 5 für den
Moderne Physik: Elemente der Festkörperphysik Wintersemester 21/11 Übungsblatt 5 für den 14.1.211 14. Fermi-Energie von Elektronen in Metallen Bei T = K besitzt ein freies Elektronengas der Ladungsträgerdichte
sind Stoffe, die je nach Verwendungszweck aus Rohstoffen durch Bearbeitung und Veredelung gewonnen werden. Einteilung der Werkstoffe
Werkstoffe sind Arbeitsmittel rein stofflicher Natur, die in Produktionsprozessen weiter verarbeitet werden und entweder in die jeweiligen Endprodukte eingehen oder während deren Herstellung verbraucht
Kristalle und deren Fehler Was sollen Sie mitnehmen? ...Weihnachten...!
Kristalle und deren Fehler Was sollen Sie mitnehmen? Definition und Aufbau eines Kristalls Elementarzellen Typische Gitter nach Verbindungsklassen Navigation im Kristall: Richtung, Ebenen Allotropie Fehlertypen
13 Lösen von Gleichungssystemen
Vorkurs Mathematik 2 3 LÖSEN VON GLEICHUNGSSYSTEMEN 3 Lösen von Gleichungssystemen Zu Beginn des Kurses haben wir folgendes Gleichungssystem gelöst: 2 + 3y = 5 () + 2y = 4 (2) In diesem Beispiel haben
Abitur 2016 Mathematik Geometrie V
Seite http://www.abiturloesung.de/ Seite Abitur Mathematik Geometrie V Betrachtet wird der abgebildete Würfel A B C D E F G H. Die Eckpunkte D, E, F und H dieses Würfels besitzen in einem kartesischen
Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden
Analytische Geometrie - Schnittwinkel. Möglichkeiten und Formeln Gerade / Gerade: cos( ) = u u 2 u u 2 Gerade / Ebene: sin( ) = n u n u Ebene / Ebene: cos( ) = n n 2 n n 2 u, u 2 Richtungsvektoren der
2. Strukturaufbau metallischer Werkstoffe
2. Strukturaufbau metallischer Werkstoffe 2.1 Chemischer Aufbau von Werkstoffen 2.2 Festkörper / Kristallzustand 2.3 Gitterstörungen 09.05.2012 2-44 Leerstelle Einlagerungs(Interstitions-)atom b a a,b,c,
Kapitel I: Vektorrechnung 2: Vektoren im Raum
WS 1/14 - Prof Dr Manfred Leitz 2 Vektoren im Raum A Grundbegriffe B Rechnen mit Vektoren C Der euklidische Betrag D Das euklidische Skalarprodukt E Vektorprodukt und Spatprodukt F Geraden und Ebenen im
6. Analytische Geometrie : Geraden in der Ebene
M 6. Analtische Geometrie : Geraden in der Ebene 6.. Vektorielle Geradengleichung Eine Gerade ist durch einen Punkt A und einen Richtungsvektor r eindeutig bestimmt. Durch die Einführung eines Parameters
03. Vektoren im R 2, R 3 und R n
03 Vektoren im R 2, R 3 und R n Unter Verwendung eines Koordinatensystems kann jedem Punkt der Ebene umkehrbar eindeutig ein Zahlenpaar (x, y) zugeordnet werden P (x, y) Man nennt x und y die kartesischen
2.Der Aufbau kristalliner Werkstoffe. 2.Der Aufbau kristalliner Werkstoffe
Ein Idealkristall zeigt vollkommene geometrische und konstitutionelle Fernordnung. Realkristall = Idealstruktur + Gitterbaufehler. Gitterbaufehler können nach ihrer räumlichen Ausdehnung klassifiziert
03. Vektoren im R 2, R 3 und R n
03 Vektoren im R 2, R 3 und R n Unter Verwendung eines Koordinatensystems kann jedem Punkt der Ebene umkehrbar eindeutig ein Zahlenpaar (x, y) zugeordnet werden P (x, y) Man nennt x und y die kartesischen
1 Gegeben sind die Ebene E: x= 1 0
8..003 Klausur Kurs 3 Ma 3 Mathematik Lk Lösung Gegeben sind die Ebene E: x= 0 und die Geradenschar g a : x= t a Bei allen Aufgabenteilen müssen die Rechnungen oder die Überlegungen klar erkennbar dokumentiert
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 5 Semester ARBEITSBLATT 8 NORMALVEKTORGLEICHUNG EINER EBENE
ARBEITSBLATT 8 NORMALVEKTORGLEICHUNG EINER EBENE Neben der Parameterdarstellung und der allgemeinen Ebenengleichung gibt es noch eine dritte Form, wie man eine Ebene darstellen kann, die Normalvektordarstellung:
Aufgabe 1 (a) Bestimmen Sie die Schnittgerade der beiden Ebenen gegeben durch 3x y 2z 5 = 0 und x y 4z 3 = 0.
Mathematik I für Naturwissenschaften Dr. Christine Zehrt 22.11.18 Übung 10 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 26. November 2018 in den Übungsstunden Aufgabe 1 (a) Bestimmen Sie die
3. Struktur des Festkörpers
3. Struktur des Festkörpers 3.1 Kristalline und amorphe Strukturen Amorphe Struktur - Atombindung ist gerichtet - unregelmäßige Anordnung der Atome - keinen exakten Schmelzpunkt, sondern langsames Erweichen,
Übungsblatt 1: Lösungswege und Lösungen
Übungsblatt : Lösungswege und Lösungen 5..6 ) Hier geht es weniger um mathematisch-strenge Beweise als darum, mit abstrakten Vektoren ohne Komponenten) zu hantieren und damit die Behauptungen plausibel
Das Verformungsverhalten metallischer Werkstoffe
σ w in N/mm² Das Verformungsverhalten metallischer Werkstoffe Das Spannungs-Dehnungs-Diagramm Das Spannungs-Dehnungs-Diagramm (Abb.1) beschreibt das makroskopische Veformungsverhalten metallischer Werkstoffe
Bachelorprüfung. Werkstofftechnik der Metalle. am
Institut für Eisenhüttenkunde Departmend of Ferrous Metallurgy Bachelorprüfung Werkstofftechnik der Metalle am 01.09.2014 Name: Matrikelnummer: Unterschrift: Aufgabe Maximal erreichbare Punkte: 1 5 2 4
2.3.1 Rechtshändiges und linkshändiges Koordinatensystem
2.3. Rechtshändiges und linkshändiges Koordinatensstem Die Koordinatenachsen im dreidimensionalen Raum lassen sich auf wei verschieden Arten anordnen: Linkshändig und Rechtshändig (s. Abbildung 2.9). Um
Übungen Festkörper (WS 2017/2018) (wird im Laufe des Semesters vervollständigt)
Übungen Festkörper (WS 2017/2018) (wird im Laufe des Semesters vervollständigt) Aufgabe 0) (a0a) Es sollen aus folgenden kubischen Einheitszellen in allen Raumrichtungen unendlich periodisch fortgesetzte
Klausur Werkstofftechnik II am
Prof. Dr.-Ing. K. Stiebler Fachbereich ME TH Mittelhessen Name: Matr.-Nr.: Studiengang: Punktzahl: Note: Klausur Werkstofftechnik II am 05.07.2011 Zeit: Hilfsmittel: Achtung: 90 min für alle Teilnehmer/-innen
Abitur 2011 G8 Musterabitur Mathematik Geometrie VI
Seite http://www.abiturloesung.de/ Seite Abitur G8 Musterabitur Mathematik Geometrie VI In einem kartesischen Koordinatensystem ist ein Würfel W der Kantenlänge gegeben. Die Eckpunkte G ( ) und D ( ) legen
5.4.2 Was man wissen muss
5.4.2 Was man wissen muss Begriffe wie System, Ensemble mindestens die drei Beispiele (Gas, Kritall-Atome; Kristall-Elektronen) sollte man nachvollziehen können. Den Begriff des thermodynamischen Gleichgewichts.
Zusammenfassung der Analytischen Geometrie
Zusammenfassung der Analytischen Geometrie 1. Rechnen mit Vektoren (Addition, Subtraktion, S-Multiplikation, Linearkombinationen) 1. Gegeben sind die Punkte A(2-6 ) und B(-1 14-4), 4 4 sowie die Vektoren
Vektoren. Kapitel 13 Vektoren. Mathematischer Vorkurs TU Dortmund Seite 114 / 1
Vektoren Kapitel 13 Vektoren Mathematischer Vorkurs TU Dortmund Seite 114 / 1 Vektoren 131 Denition: Vektoren im Zahlenraum Ein Vektor (im Zahlenraum) mit n Komponenten ist ein n-tupel reeller Zahlen,
Mathematik - 1. Semester. folgenden Zahlenpaare die gegebene Gleichung erfüllen:
Mathematik -. Semester Wi. Ein Beispiel Lineare Funktionen Gegeben sei die Gleichung y x + 3. Anhand einer Wertetabelle sehen wir; daß die folgenden Zahlenpaare die gegebene Gleichung erfüllen: x 0 6 8
VEKTOREN. Allgemeines. Vektoren in der Ebene (2D)
VEKTOREN Allgemeines Man unterscheidet im Schulgebrauch zwischen zweidimensionalen und dreidimensionalen Vektoren (es kann aber auch Vektoren geben, die mehr als 3 Komponenten haben). Während zweidimensionale
Beispiel mit Hinweisen 1 1/3 Dreieck
Beispiel mit Hinweisen 1 1/3 Dreieck Zeige für das Dreieck ABC [ A(5/5), B(29/15), C(5/15) ] die Richtigkeit von folgender Behauptung: Die drei Verbindungsstrecken der Eckpunkte mit den Berührungspunkten
Mathematik 1 für Naturwissenschaften
Hans Walser Mathematik für Naturwissenschaften Modul 0 Einführung Hans Walser: Modul 0, Einführung ii Inhalt Zahlen.... Natürliche Zahlen.... Ganze Zahlen.... Rationale Zahlen.... Reelle Zahlen... Smbole....
Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth
Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter
Grundwissen 9. Klasse. Mathematik
Grundwissen 9. Klasse Mathematik Philipp Kövener I. Reelle Zahlen 1.1 Quadratwurzel Definition Für a 0 ist die Quadratwurzel diejenige nicht-negative Zahl, deren Quadrat a ergibt. a heißt Radikand und
entspricht der Länge des Vektorpfeils. Im R 2 : x =
Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.
Lage zweier Ebenen. Suche alle Punkte von E 1 die in E 2 enthalten sind. Setze also die Parameterform von E 1 in die Koordinatenform von E 2.
LAGE Lage zweier Ebenen Suche alle Punkte von E die in E 2 enthalten sind. Setze also die Parameterform von E in die Koordinatenform von E 2. B = E : X E 2 : x + x 2 + x 3 = Parameterform (PF) in Koordinatenform
Theorie 1 1 / 2 Grundbegriffe
Theorie 1 1 / 2 Grundbegriffe Was ist ein Vektor? Wie lassen sich Vektoren darstellen? Theorie 1 2 / 2 Grundbegriffe Antwort : Ein Vektor ist die Menge aller gleichlangen, gleichgerichteten und gleichorientierten
Wie lautet die Gleichung der Geraden, durch die beiden Punkte A(4/1) und B(-5/8)?
Übungsbeispiel / 2 Gerade durch 2 Punkte Wie lautet die Gleichung der Geraden, durch die beiden Punkte A(4/) und B(-5/8)? Maturavorbereitung 8. Klasse ACDCA 999 Vektorrechnung Übungsbeispiel 2 / 2 Gerade
Vektoren, Vektorräume
Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010
1 Grundlagen der analytischen Geometrie
M. Pester 3 Grundlagen der analtischen Geometrie. Punkte, Vektoren, Geraden, Ebenen Einsat rechnerischer Methoden für die Behandlung geometrischer Beiehungen. Punkten werden Zahlentupel (Koordinaten) ugeordnet.
FOS 1995, Ausbildungsrichtungen Technik und Agrarwirtschaft Analytische Geometrie, Aufgabengruppe B II
Aufgabenstellung In einem kartesischen Koordinatensystem sind die Punkte A( ), B( 3) und C( 3) gegeben.. Die Punkte A und B bestimmen die Gerade g. Die Ebene E enthält den Punkt C und steht senkrecht auf
Kapitel 17 Skalar- und Vektorprodukt
Kapitel 17 Skalar- und Vektorprodukt Mathematischer Vorkurs TU Dortmund Seite 1 / 22 Bisher hatten wir die Möglichkeit Vektoren des R n zu addieren und Vektoren mit rellen Zahlen zu multiplizieren. Man
Aufgabenkomplex 3: Integralrechnung, Kurven im Raum
Technische Universität Chemnit. Mai Fakultät für Mathematik Höhere Mathematik I. Aufgabenkomple : Integralrechnung, Kurven im Raum Letter Abgabetermin: 6. Mai in Übung oder Briefkasten bei Zimmer Rh. Str.
Fermats Zwei-Quadrate-Satz ein Abriss der Mathematik in Stewarts Artikel Ein Weihnachtslied in Prosa 1 )
Fermats Zwei-Quadrate-Satz ein Abriss der Mathematik in Stewarts Artikel Ein Weihnachtslied in Prosa 1 ) 1. Primzahlen als Summe von zwei Quadraten Am Weihnachtstag des Jahres 1640 schrieb Pierre de Fermat
Analytische Geometrie II
Analytische Geometrie II Rainer Hauser März 212 1 Einleitung 1.1 Geradengleichungen in Parameterform Jede Gerade g in der Ebene oder im Raum lässt sich durch einen festen Punkt auf g, dessen Ortsvektor
Übungen Mathematik I, M
Übungen Mathematik I, M Übungsblatt, Lösungen (Stoff aus Mathematik 0).0.0. Berechnen Sie unter Verwendung des binomischen Lehrsatzes ( x + y) 7 Lösung: Nach dem binomischen Lehrsatz ist ( x + y) 7 = 7
Übungen zu Kurvenscharen
Übungen zu Kurvenscharen. Gegeben ist die Geradenschar g t : = (t ) ( t) + 9 (t 9) mit D(g t ) = R, t R. a) Zeichnen Sie die Graphen der Funktionen g und g in ein Koordinatensstem. b) Geben Sie die Schnittpunkte
ARBEITSBLATT 14 ANALYTISCHE BERECHNUNGEN AM KREIS
ARBEITSBLATT 14 ANALYTISCHE BERECHNUNGEN AM KREIS Bisher konnten wir lediglich die Fläche, den Umfang oder den Radius eines Kreises berechnen. Es ist uns bisher aber noch nicht möglich, zum Beispiel den
5. Aufgabe Seien s, t beliebige Parameter. Unter welcher Bedingung sind die Vektoren s t
Studiengang: PT/LOT/PVHT Algebra Serie Semester: WS 0/ Thema: Vektoralgebra. Aufgabe Seien a, b und c Vektoren der Ebene. Veranschaulichen Sie durch eine Skizze das: ( Assoziativgesetz: a + ) ( ) b + c
5. Geraden und Ebenen im Raum 5.1. Lineare Abhängigkeit und Unabhängigkeit von Vektoren
5 Geraden und Ebenen im Raum 5 Lineare Abhängigkeit und Unabhängigkeit von Vektoren Definition: Die Vektoren a,a,,a n heißen linear abhängig, wenn mindestens einer dieser Vektoren als Linearkombination
Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C /07
Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C - 6/7. Gegenseitige Lage von Geraden Gesucht ist die gegenseitige Lage der Geraden g durch die beiden Punkte A( ) und B( 5 9 ) und der Geraden
Demo: Mathe-CD KOMPLEXE ZAHLEN
KMPLEXE ZAHLEN Diese Datei gibt einige Seiten Einblick in die Serie Komplexe Zahlen, und, die gegen Zusatbestellung auf der CD u haben ist. Abonnenten erhalten sie automatisch. Datei Nr. 50000 Januar 00
Verfestigungsmechanismen
13 Verfestigungsmechanismen ie Festigkeit eines metallischen Werkstoffes ist immer eng mit den darin enthaltenen Versetzungen verbunden. Es gilt die Bewegung der Versetzungen zu verhindern, um ein Material
Selbsteinschätzungstest Auswertung und Lösung
Selbsteinschätzungstest Auswertung und Lösung Abgaben: 46 / 587 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: Durchschnitt: 7 Frage (Diese Frage haben ca. 0% nicht beantwortet.) Welcher Vektor
H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen
H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Themen des Pflichtteils... Analysis Von der Gleichung
Merkhilfe Vektorrechnung
Merkhilfe Vektorrechnung 1. Was ist ein Vektor? 2. Verbindungsvektor AB =? 3. Punkte A und B, Gerade g Punkte A, B und C, Ebene E 4. Mitte M der Strecke AB OM =? a 1 a = a 2, b 1 b = b 2 a 3 b 3 5. Betrag
Lagebeziehung von Ebenen
M8 ANALYSIS Lagebeziehung von Ebenen Es gibt Möglichkeiten für die Lagebeziehung zwischen zwei Ebenen. Die Ebenen sind identisch. Die Ebenen sind parallel. Die Ebenen schneiden sich in einer Geraden Um
Vorkurs Mathematik. Vektoren, lineare Gleichungssysteme und Matrizen
Dorfmeister, Boiger, Langwallner, Pfister, Schmid, Wurtz Vorkurs Mathematik TU München WS / Blatt Vektoren, lineare Gleichungssysteme und Matrizen. In einem kartesischen Koordinatensystem des R sei eine
5 Geraden im R Die Geradengleichung. Übungsmaterial 1
Übungsmaterial 5 Geraden im R 5. Die Geradengleichung Eine Gerade ist eindeutig festgelegt durch zwei Punkte oder durch einen Punkt und eine Richtung. Beispiel: Die Gerade g durch die Punkte A(-//) und
Vektorgeometrie. 1. Vektoren eingeben, Norm, Skalarprodukt. 2 In einem kartesischen Koordinatensystem sind die Vektoren. , v. und. gegeben.
Vektorgeometrie 1. Vektoren eingeben, Norm, Skalarprodukt 2 In einem kartesischen Koordinatensystem sind die Vektoren u 14, 5 11 10 v 2 und w 5 gegeben. 10 10 a) Zeigen Sie, dass die Vektoren einen Würfel
Institut für Allgemeine Mechanik der RWTH Aachen
Prof Dr-Ing D Weichert 1Übung Mechanik II SS 28 21428 1 Aufgabe An einem ebenen Element wirken die Spannungen σ 1, σ 2 und τ (Die Voreichen der Spannungen sind den Skien u entnehmen Geg: Ges: 1 σ 1 = 5
1. Runde Einzelarbeit 1 2. Entscheiden Sie durch Nachdenken oder Rechnung. Der Vektor 4 ist ebenfalls ein Richtungsvektor der Gerade.
Geraden im Raum Ludwig Otto Hesse (8 87) leistete u.a. wichtige Beiträge zur Weiterentwicklung der analytischen Geometrie unter Nutzung algebraischer Hilfsmittel. Wir werden uns noch mit der Hesse schen
Grundlagen der Physik 3 Lösung zu Übungsblatt 1
Grundlagen der Physik 3 Lösung zu Übungsblatt Daniel Weiss 0. Oktober 200 Inhaltsverzeichnis Aufgabe - Anzahl von Atomen und Molekülen a) ohlensto..................................... 2 b) Helium.......................................
Mathematik 1 für Naturwissenschaften
Hans Walser Mathematik für Naturwissenschaften Modul 3 Funktionen mehrerer Variablen Hans Walser: Modul 3, Funktionen mehrerer Variablen ii Modul 3 für die Lehrveranstaltung Mathematik für Naturwissenschaften
Übungen zur Theoretischen Physik 1. Übungsblatt
1. Übungsblatt 1. In kartesischen Koordinaten gilt: grad Φ( r) = ( Φ x, Φ y, Φ ), div A x A = z x + A y y + A z z rot A = ( A z y A y z, A x z A z x, A y x A x ) y Berechnen Sie: (a) grad Φ( r) für Φ(
Ermitteln Sie die Koordinaten des Schnittpunktes dieser beiden Geraden und erklären Sie Ihre Vorgehensweise!
Aufgabe 2 Lagebeziehungen von Geraden im Raum Gegeben sind zwei Geraden g und h in 3. =( 3 Die Gerade g ist durch eine Parameterdarstellung X 4 2 Die Gerade h verläuft durch die Punkte A = (0 8 0 und B
Grundlagenfach Mathematik. Prüfende Lehrpersonen Adrian Häfliger 6Lb, 6Na, 6Nb, 6Rc
Schriftliche Maturitätsprüfung 015 Fach Prüfende Lehrpersonen Adrian Häfliger [email protected] Claudia Sänger [email protected] Markus T. Schmid [email protected] Klassen Prüfungsdatum
Grundlagen der Vektorrechnung
Grundlagen der Vektorrechnung Ein Vektor a ist eine geordnete Liste von n Zahlen Die Anzahl n dieser Zahlen wird als Dimension des Vektors bezeichnet Schreibweise: a a a R n Normale Reelle Zahlen nennt
V2 Gitterstörungen. 2.1 Grundlagen
V2 Gitterstörungen 2 2.1 Grundlagen Die Metalle und Metall-Legierungen, die in der Technik als Konstruktionswerkstoffe benutzt werden, sind aus relativ kleinen, gegeneinander unterschiedlich orientierten
10.2 Linearkombinationen
147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition
Übungsaufgaben zur Kristallographie Serie 10 LÖSUNG
1) Packungsdichte Berechnen Sie die Packungsdichte der kubisch dichtesten Kugelpackung, der hexagonal dichtesten Kugelpackung, einer kubisch primitiven Kugelpackung und einer kubisch innenzentrierten Kugelpackung.
Mögliche Lösung. Ebenen im Haus
Lineare Algebra und Analytische Geometrie XX Ebenen im Raum Ebenen im Haus Ermitteln Sie die Koordinaten aller bezeichneten Punkte. Erstellen Sie für die Dachflächen E und E jeweils eine Ebenengleichung
00. Einiges zum Vektorraum R n
00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen
Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1...
Pflichtteil... Wahlteil Analysis... Wahlteil Analysis... Wahlteil Analysis 3... 5 Wahlteil Analytische Geometrie... Wahlteil Analytische Geometrie... Lösungen: 00 Pflichtteil Lösungen zur Prüfung 00: Pflichtteil
A Vektorrechnung. B Geraden und Ebenen
A Vektorrechnung Seite 1 Lineare Gleichungssysteme... 4 2 Gauß-Algorithmus... 6 3 Vektoren... 10 4 Vektorberechnungen und Vektorlängen... 12 5 Linearkombination und Einheitsvektor... 16 6 Lineare Abhängigkeit
Algebra und Zahlentheorie WS 13/14
Algebra und Zahlentheorie WS 13/14 FU Berlin David Müßig http://page.mi.fu-berlin.de/def/auz14/ [email protected] 21.01.2014 1 Hintergrund: Basen & Vektorräume 1.1 Grundlegende Begriffe Da einige
Gliederung der Vorlesung im SS
Gliederung der Vorlesung im SS A. Struktureller Aufbau von Werkstoffen. Atomare Struktur.. Atomaufbau und Periodensystem der Elemente.2. Interatomare Bindungen.3. Aggregatzustände 2. Struktur des Festkörpers
Geometrie. 1 Vektoren, Vektorielle analytische Geometrie der Ebene
Geometrie Geometrie W. Kuhlisch Brückenkurs 207. Vektoren, Vektorrechnung und analytische Geometrie der Ebene 2. Vektorrechnung und analytische Geometrie des Raumes 3. Anwendungen in der Geometrie, Lagebeziehungen
