Optische Systeme (6. Vorlesung)
|
|
|
- Rudolf Kolbe
- vor 9 Jahren
- Abrufe
Transkript
1 Optische Systeme (6. Vorlesung) Martina Gerken Universität Karlsruhe (TH). Grundlagen der Wellenoptik 2. Abbildende optische Systeme 2. Lupe / Mikroskop 2.2 Blenden / Aperturen 2.3 Aberrationen 2.4 Bekannte Mikroskope 2.5 Teleskop 2.6 Fotografie 2.7 Optik Design: Matrizenoptik Inhalte der Vorlesung 3. Optische Messtechnik 4. Biomedizinische optische Systeme 5. Optische Materialbearbeitung 6. Optische Datenspeicherung 7. Optische Informationstechnik 8. Mikro- und Nanooptische Systeme
2 Strahlaufweiter sind Teleskope! Zwei Grundkonzepte möglich: Nachbesprechung: Strahlaufweiter Quelle: Nachbesprechung: Strahlaufweiter Leistungsverlust durch Luft-Glas-Übergänge sowie durch Apertur 2. Linse sollte groß genug sein, um ganzen Strahl durchzulassen φ min =.22 λ D Minimal auflösbarer Winkel φ min 6 für D = 25 mm und λ = 633 nm Allerdings aufgeweiteter Laserpointerstrahl nicht kreisförmig, da Ursprungsstrahl nicht kreisförmig
3 Welches Weihnachtsgeschenk? BRASKO Teleskop Hochwertiges Refraktor-Teleskop mit umfangreichem Zubehör. Inklusive Ausstattung für die Erdbeobachtung (Umkehrlinse etc.), Mondfilter, Barlow-Linse, stabilem Stativ mit Okularhalter und Ablage und vielem mehr. Brennweite 700 mm Objektiv-Durchmesser 60 mm Maximalvergrößerung 525x Unverb. Preisempf.:EUR 99,95 Amazon-Preis:EUR 49,95 Quelle: Welches Weihnachtsgeschenk? Bresser Teleskop Pluto 4/500 Großes Newton Reflektor Teleskop in kompakter Bauweise. Für Beobachtungen innerhalb und außerhalb unseres Sonnensystems Brennweite 500 mm Objektiv / Spiegel ø4 mm Maximalvergrößerung 25x - 250x 34,00 Treffen Sie bis nächsten Montag eine begründete Kaufentscheidung! Quelle:
4 Gruppenarbeit: Teleskopauswahl Tragen Sie Vor- und Nachteile der beiden Teleskope zusammen! Treffen Sie als Gruppe eine Kaufentscheidung! Teleskopvergleich BRASKO Teleskop Bresser Teleskop Pluto 4/500 Refraktor Reflektor
5 Wichtige Faktoren für Teleskopkauf Teleskop hat zwei Aufgaben: Kleine Objekte vergrößern Lichtschwache Objekte heller machen Maximal sinnvolle Vergrößerung begrenzt durch Beugung Max. Vergrößerung Objektivdurchmesser in mm Bild kann stärker vergrößert werden, doch Bildinformation ist begrenzt Analog: Mit Lupe nicht mehr Details auf Zeitungsbild erkennbar Abbildungsfehler und Luft-Turbulenzen ("Seeing") begrenzen Vergrößerung weiter Max. Auflösungsvermögen erdgebundener Teleskope Hubble-Teleskop 0.05 bei sichtbaren Wellenlängen Größere Apertur für hellere Bilder! Qualität der Montierung ebenfalls kritisch Sollte nicht mehr als sec nach Antippen schwingen. Grundlagen der Wellenoptik 2. Abbildende optische Systeme 2. Lupe / Mikroskop 2.2 Blenden / Aperturen 2.3 Aberrationen 2.4 Bekannte Mikroskope 2.5 Teleskop 2.6 Fotografie 2.7 Optik Design: Matrizenoptik Inhalte der Vorlesung 3. Optische Messtechnik 4. Biomedizinische optische Systeme 5. Optische Materialbearbeitung 6. Optische Datenspeicherung 7. Optische Informationstechnik 8. Mikro- und Nanooptische Systeme
6 Lochkamera Lochkamera ist wohl das einfachste optische Gerät Keine Bildfehler Keine Probleme mit Schärfentiefe Auflösung durch Lochgröße und Beugung begrenzt Lochgröße von links oben nach rechts unten abnehmend Lochkamera Problem: Kleiner Lochdurchmesser beschränkt Helligkeit Nur Aufnahme unbewegter Bilder bei guten Lichtverhältnissen bzw. langen Belichtungszeiten möglich
7 Spiegelreflexkamera Für kürzere Belichtungszeiten ist eine größere Öffnung nötig Linsen- bzw. Spiegelsystem Spiegelreflexkamera Beim Auslösen klappt Spiegel hoch, Verschluss öffnet sich und gibt Film frei Abbildungsfehler durch zusammengesetzte Objektive minimiert Vorteil gegenüber Sucherkamera: Bildausschnitt in Sucher stimmt mit Bild auf Film überein Abbildungsgleichung (Linsengleichung) g + b = f
8 Schärfentiefe Bildweite ändert sich mit Gegenstandsweite Sammellinse Punktförmige Objekte erzeugen deshalb unterschiedlich große Kreise auf der Filmebene, nur genügend kleine Kreise sind scharf Filmebene Schärfentiefe Wird zulässige Zerstreuungskreisgröße überschritten erscheint Bild unscharf Zulässige Zerstreuungskreisgröße hängt von Kameratyp, Bildformat sowie Betrachter ab Quelle:
9 Schärfentiefe Bei Wahl verschiedener Blenden sind unterschiedlich große Bereiche des Bildes scharf Gruppenarbeit: Schärfentiefe Auf welche Entfernung g muss das Kameraobjektiv fokussiert sein, damit Gegenstände im Unendlichen noch scharf abgebildet werden? Leiten Sie eine Gleichung in Abhängigkeit der Brennweite f, der zulässigen Zerstreuungskreisgröße σ sowie der Blendenzahl κ her! κ = f D D: Blendendurchmesser Berechnen Sie die Entfernung für den folgenden Fall! σ = 0,0 mm ; f = 50 mm ; κ = 8 Leiten Sie für eine gegebene Gegenstandsweite g her, wo der Nahpunkt sowie der Fernpunkt der Schärfentiefe liegen! Wie muss der Blendendurchmesser gewählt werden, um eine große Schärfentiefe zu erreichen?
10 . Grundlagen der Wellenoptik 2. Abbildende optische Systeme 2. Lupe / Mikroskop 2.2 Blenden / Aperturen 2.3 Aberrationen 2.4 Bekannte Mikroskope 2.5 Teleskop 2.6 Fotografie 2.7 Optik Design: Matrizenoptik Inhalte der Vorlesung 3. Optische Messtechnik 4. Biomedizinische optische Systeme 5. Optische Materialbearbeitung 6. Optische Datenspeicherung 7. Optische Informationstechnik 8. Mikro- und Nanooptische Systeme Optik Design Optische Systeme per Hand auslegen? Strahlengang neu auslegen und Abberationen minimieren Auflösungsvermögen begrenzt durch Beugung Gitter auf neue Wellenlänge anpassen Antireflexschichten anpassen NA des Objektivs erhöhen (Laserdiode und Detektor austauschen) Wellenlänge verringern λ/4-plättchen auf neue Wellenlänge anpassen
11 Geometrische Optik / Strahlenoptik Lichtstrahlen beschreiben die Ausbreitung in optischen Systemen (meistens) hinreichend gut, wenn die Abmessungen X der Objekte und Bauteile deutlich größer sind als: Die Wellenlänge Die Kohärenzlänge λ << X ξ << X Welleneigenschaften des Lichtes vernachlässigt keine Interferenz, Beugung, Nahfeldeffekte... Geometrische Optik aus der Wellenoptik als Grenzfall für verschwindende Wellenlänge herleitbar Strahlausbreitungsrichtung entsprechend den Wellenvektoren Paraxiale Näherung Bei Ausbreitung entlang kleiner Winkel relativ zur optischen Achse vereinfacht sich die Beschreibung von refraktiven optischen Bauteilen und es gibt analytische Lösungen. n n2 α β n sinα = n sin β 2 n α = n β 2
12 Matrizenoptik / ABCD-Matrizen x θ x x 2 θ 2 z A B s Ausbreitung in einem Punkt A auf der optischen Achse wird vollständig beschrieben durch Abstand und Winkel relativ zur optischen Achse. x i = θi ( x, θ ) ( x, θ ) Optisches System 2 2 s 2 = M 2 s Transformation Optisches System mit mehreren Komponenten x θ 3 θ θ 2 x x 2 x3 x4 θ 4 M2 M2'3 M3'4 M22' M33' M44' z s = s [ M M... M ] 5 44' 3'4 2 Gesamtsystem allgemein s = M s Eingang i Ausgang i
13 . Translationsmatrix x A θ x x 2 B L θ 2 z x = x + L θ 2 θ = 0 x + θ 2 L s = s = M s 0 2 Freiraum 2. Brechung an ebener Fläche x θ 2 θ n x x2 n2 z x = x + 0 θ 2 n θ = 0 x + θ 2 n2 0 s = n s = M s 0 n 2 2 EbeneFläche
14 3. Brechung an sphärischer Fläche Snellius an Grenzfläche Winkel abhängig vom Radius Konvention für Krümmung und Ausbreitung ρ > 0 x n n2 θ x x2 θ 2 ρ z 0 s = n n n s = M s n2ρ n SphärischeFläche Gruppenarbeit: Dünne Linse Alle einfachen wichtigen optischen Elemente lassen sich aus den drei Matrizen (Translation, ebene Fläche und sphärische Fläche) zusammensetzen Dünne Linsen (konvex, konkav) Dicke Linsen (konvex, konkav) Spiegel (eben, fokussierend) Stellen Sie die Matrix für eine dünne Linse auf! Leiten Sie den Zusammenhang zwischen Brennweite f und Krümmungsradien her (Linsenschleiferformel)! Stellen Sie die Matrix für eine Abbildung mit einer Sammellinse auf! Leiten Sie die Abbildungsgleichung daraus ab!
15 Dicke Linse Kombination von 2 sphärischen Flächen und einer Translation Brennweite gerechnet von Hauptebenen aus x n n 2 n f L f z h h 2 s = M n n M L M n n s ( ρ, ) ( ) ( ρ, ) 2 SF 2 2 FR SF 2 Eigenschaften von Matrizen in der paraxialen Optik M 2 A B = C D Aufgrund von Brechungs- und Reflexionsgesetz gilt: det M 2 n = AD BC = n 2 Es sind also nur 3 von 4 Matrixelementen frei wählbar
16 Optische Bauelemente und deren Systemmatrizen Fokussierung: A = 0 x2 = Bθ 0 B C D Optische Abbildung: A 0 B= 0 x = Ax θ = Dθ 2 2 Umlenkung eines Parallelbündels: Parallelrichter : θ 2 = Cx C A 0 A C D B D B 0 Matrizenoptik für Gaußstrahlen und Polarisation Matrizenoptik nicht auf geometrische Optik beschränkt, ebenfalls anwendbar für Gaußsche Strahlen. ABCD-Matrizen identisch Statt Strahlvektor s wird Strahlparameter q verwendet: q ( z) = Aq Cq B + D q = R i λ 2 π w Polarisation lässt sich ebenfalls über Matrixverfahren berechnen Jones-Vektor beschreibt Polarisationszustand Jones-Matrizen beschreiben optische Elemente
17 Sequentielles Raytracing Strahlen in vorgegebener Reihenfolge durch optische Elemente propagiert Benutzt für Auslegung abbildender optischer Systeme Mikroskop, Teleskop, Kamera... Quelle: Nicht-Sequentielles Raytracing Strahlen werden an Oberflächen gespalten und können mehrfach auf optische Elemente treffen Durch Propagation von Gaußschen Strahlen können Wellenphänomene berücksichtigt werden. Benutzt für Auslegung inklusive Streulichtberechnung Streulichtberechnung Hintergrundbeleuchtung, Leuchten... Quelle:
18 FDTD: Finite Difference Time Domain Exakte Lösung der Maxwell-Gleichungen Benutzt für Mikro- und Nanosysteme Integrierte Optik, Photonische Kristalle, Plasmonik... Quelle: Gängige Optik-Design Software An der Uni zusätzlich COMSOL Multiphysics Quelle:
19 Fragensammlung Was kennzeichnet ein gutes Teleskop? Wie funktioniert ein Fotoapparat? Zeichnen Sie den Strahlengang für eine Abbildung mit einer Sammellinse! Wie lautet die Abbildungsgleichung? Wodurch ist die Schärfentiefe bestimmt? Wie kann die Schärfentiefe erhöht werden? Wann gilt die geometrische Optik? Was sind ABCD-Matrizen und wofür werden sie verwendet? Was ist Nicht-sequentielles Raytracing?
Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch,Daniel Jost Dienstag
Physik-Department Ferienkurs zur Experimentalphysik 3 Matthias Golibrzuch,Daniel Jost Dienstag Inhaltsverzeichnis Technische Universität München Das Huygensche Prinzip 2 Optische Abbildungen 2 2. Virtuelle
Optische Systeme (5. Vorlesung)
5.1 Optische Systeme (5. Vorlesung) Yousef Nazirizadeh 20.11.2006 Universität Karlsruhe (TH) Inhalte der Vorlesung 5.2 1. Grundlagen der Wellenoptik 2. Abbildende optische Systeme 2.1 Lupe / Mikroskop
Othmar Marti Experimentelle Physik Universität Ulm
Grundkurs IIIa für Physiker Othmar Marti Experimentelle Physik Universität Ulm [email protected] Vorlesung nach Tipler, Gerthsen, Hecht Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3a-2002
21.Vorlesung. IV Optik. 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente
2.Vorlesung IV Optik 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente Versuche Lochkamera Brechung, Reflexion, Totalreflexion Lichtleiter Dispersion (Prisma)
Spiegelsymmetrie. Tiefeninversion führt zur Spiegelsymmetrie Koordinatensystem wird invertiert
Ebener Spiegel Spiegelsymmetrie Tiefeninversion führt zur Spiegelsymmetrie Koordinatensystem wird invertiert Konstruktion des Bildes beim ebenen Spiegel Reelles Bild: Alle Strahlen schneiden sich Virtuelles
(21. Vorlesung: III) Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen )
. Vorlesung EP (. Vorlesung: III) Elektrizität und Magnetismus. Wechselstrom. Elektromagnetische Wellen ) IV) Optik = Lehre vom Licht. Licht = sichtbare elektromagnetische Wellen 3. Geometrische Optik
Ferienkurs Experimentalphysik 3 - Übungsaufgaben Geometrische Optik
Ferienkurs Experimentalphysik 3 - Übungsaufgaben Geometrische Optik Matthias Brasse, Max v. Vopelius 24.02.2009 Aufgabe 1: Zeigen Sie mit Hilfe des Fermatschen Prinzips, dass aus der Minimierung des optischen
Optische Systeme. Martina Gerken 23.10.2006. Einbettung in das Studienmodell 10
Optische Systeme Martina Gerken 23.10.2006 Universität Karlsruhe (TH) Einbettung in das Studienmodell 10 Semesterwochenstunden Feste Modellfächer 5. Sem. 6. Sem. 7. Sem. 8. Sem. V Ü V Ü V Ü V Ü EE 23708
Ferienkurs Experimentalphysik III
Ferienkurs Experimentalphysik III Musterlösung Dienstag - Spiegel, Linsen und optische Geräte Monika Beil, Michael Schreier 28. Juli 2009 Aufgabe Bestimmen Sie das Verhältnis der Brennweiten des Auges
Dr. Thomas Kirn Vorlesung 12
Physik für Maschinenbau Dr. Thomas Kirn Vorlesung 12 1 Wiederholung V11 2 Lichterzeugung: Wärmestrahlung Schwarzer Körper: Hohlraumstrahlung Wien sches Verschiebungsgesetz: λ max T = b = 2,9 10-3 m K Stefan
Teilskript zur LV "Optik 1" Paraxiale Abbildungseigenschaften sphärischer Linsen Seite 1
Teilskript zur LV "Optik " sphärischer Linsen Seite Objekt (optisch) Gesamtheit von Objektpunkten, von denen jeweils ein Bündel von Lichtstrahlen ausgeht Wahrnehmen eines Objektes Ermittlung der Ausgangspunkte
PN 2 Einführung in die Experimentalphysik für Chemiker
PN 2 Einführung in die Experimentalphysik für Chemiker. Vorlesung 27.6.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität
2. Optik. 2.1 Elektromagnetische Wellen in Materie Absorption Dispersion. (Giancoli)
2. Optik 2.1 Elektromagnetische Wellen in Materie 2.1.1 Absorption 2.1.2 Dispersion 2.1.3 Streuung 2.1.4 Polarisationsdrehung z.b. Optische Aktivität: Glucose, Fructose Faraday-Effekt: Magnetfeld Doppelbrechender
FK Ex 4 - Musterlösung Dienstag
FK Ex 4 - Musterlösung Dienstag Snellius Tarzan wird in einem ruhigen See am Punkt J von einem Krokodil angegriffen. Jane, die sich an Land mit gezücktem Buschmesser am Punkt T befindet, möchte ihm zu
Übungsblatt 4 Grundkurs IIIa für Physiker
Übungsblatt 4 Grundkurs IIIa für Physiker Othmar Marti, [email protected] 3. 6. 2002 1 Aufgaben für die Übungsstunden Reflexion 1, Brechung 2, Fermatsches Prinzip 3, Polarisation 4, Fresnelsche
Kapitel 1 Optik: Bildkonstruktion. Spiegel P` B P G. Ebener Spiegel: Konstruktion des Bildes von G.
Optik: Bildkonstruktion Spiegel P G P` B X-Achse Ebener Spiegel: g = b g b G = B Konstruktion des Bildes von G. 1. Zeichne Strahl senkrecht von der Pfeilspitze zum Spiegel (Strahl wird in sich selbst reflektiert)
Astro Stammtisch Peine
Astro Stammtisch Peine ANDREAS SÖHN OPTIK FÜR DIE ASTRONOMIE ANDREAS SÖHN: OPTIK FÜR DIE ASTRONOMIE < 1 Grundsätzliches Was ist Optik? Die Optik beschäftigt sich mit den Eigenschaften des (sichtbaren)
Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt
Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt Othmar Marti Experimentelle Physik Universität Ulm [email protected] Vorlesung nach Hecht, Perez, Tipler, Gerthsen
Multimediatechnik / Video
Multimediatechnik / Video Lichtwellen und Optik http://www.nanocosmos.de/lietz/mtv Inhalt Lichtwellen Optik Abbildung Tiefenschärfe Elektromagnetische Wellen Sichtbares Licht Wellenlänge/Frequenz nge/frequenz
Versuch P1-31,40,41 Geometrische Optik. Vorbereitung. Von Jan Oertlin. 2. Dezember 2009
Versuch P1-31,40,41 Geometrische Optik Vorbereitung Von Jan Oertlin 2. Dezember 2009 Inhaltsverzeichnis 1. Brennweitenbestimmung...2 1.1. Kontrolle der Brennweite...2 1.2. Genaue Bestimmung der Brennweite
Physik 4, Übung 4, Prof. Förster
Physik 4, Übung 4, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls
Der Fotoapparat. Entfernungseinstellung. Belichtung des Films
Der Fotoapparat Wesentliche Bestandteile: Gehäuse (innen geschwärzt Objektiv (Linsensystem) Blende Verschluss Film (Sensor) Entfernungseinstellung Bei einer bestimmten Gegenstandsweite (Gegenstand-Linse)
4 Optische Linsen. Als optische Achse bezeichnet man die Gerade die senkrecht zur Symmetrieachse der Linse steht und durch deren Mittelpunkt geht.
4 Optische Linsen 4.1 Linsenarten Eine Linse ist ein rotationssymmetrischer Körper der meist aus Glas oder transparentem Kunststoff hergestellt ist. Die Linse ist von zwei Kugelflächen begrenzt (Kugelflächen
Optische Systeme. Einbettung in das Studienmodell 10. Martina Gerken 22.10.2007. Universität Karlsruhe (TH) 1.2
Optische Systeme Martina Gerken 22.10.2007 Universität Karlsruhe (TH) Einbettung in das Studienmodell 10 1.2 Voraussetzungen und Zielgruppe 1.3 Festes Modellfach im Studienmodell 10: Optische Technologien
Lösungen zur Geometrischen Optik Martina Stadlmeier f =
Lösungen zur Geometrischen Optik Martina Stadlmeier 24.03.200. Dicke Linse a) nach Vorlesung gilt für die Brechung an einer gekrümmten Grenzfläche f = n2 n 2 n r Somit erhält man für die Brennweiten an
Ferienkurs Experimentalphysik 3
Ferienkurs Experimentalphysik 3 Optische Abbildungen Armin Regler, Pascal Wittlich, Ludwig Prade Montag, 15. März 2011 Inhaltsverzeichnis 1 Einleitung 2 2 Das Huygensche Prinzip 2 3 Optische Abbildungen
Übungsblatt 11 Geometrische und Technische Optik WS 2012/2013
Übungsblatt 11 Geometrische und Technische Optik WS 212/213 Diaprojektor und Köhler sche Beleuchtung In dieser Übung soll ein einfacher Diaprojektor designt und strahlenoptisch simuliert werden. Dabei
Klausurtermin: Anmeldung: 2. Chance: voraussichtlich Klausur am
Klausurtermin: 13.02.2003 Anmeldung: www.physik.unigiessen.de/dueren/ 2. Chance: voraussichtlich Klausur am 7.4.2003 Optik: Physik des Lichtes 1. Geometrische Optik: geradlinige Ausbreitung, Reflexion,
Dr. Thomas Kirn Vorlesung 12
Physik für Maschinenbau Dr. Thomas Kirn Vorlesung 12 1 Wiederholung V11 2 Mach-Kegel v*t Prisma - Minimalablenkung δ min + ε sin 2 n = ε sin 2 Prisma - Dispersion B n( λ) = A+ λ2 ε δ ( λ) = 2 arcsin B
Ferienkurs Experimentalphysik 3
Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung Probeklausur Aufgabe 1: Lichtleiter Ein Lichtleiter mit dem Brechungsindex n G = 1, 3 sei hufeisenförmig gebogen
Physikalische Grundlagen des Sehens.
Physikalische Grundlagen des Sehens. Medizinische Physik und Statistik I WS 2016/2017 Tamás Marek 30. November 2016 Einleitung - Lichtmodelle - Brechung, - Bildentstehung Gliederung Das Sehen - Strahlengang
Abbildung durch Linsen
Dr. Angela Fösel & Dipl. Phys. Tom Michler Revision: 15.10.2018 Die geometrische Optik oder Strahlenoptik ist eine Näherung der Optik, in der die Welleneigenschaften des Lichtes vernachlässigt werden,
Lösung zum Parabolspiegel
Lösung zum Parabolspiegel y s 1 s 2 Offensichtlich muss s = s 1 + s 2 unabhängig vom Achsenabstand y bzw. über die Parabelgleichung auch unabhängig von x sein. f F x s = s 1 + s 2 = f x + y 2 + (f x) 2
Technische Raytracer
Technische Raytracer 2 s 2 (1 (n u) 2 ) 3 u 0 = n 1 n 2 u n 4 n 1 n 2 n u 1 n1 n 2 5 Abbildung 19.23 MM Double Gauss - U.S. Patent 2,532,751 Scale: 1.30 ORA 03-Jun-13 Abbildung Ein zweidimensionales Bild
Photonik Technische Nutzung von Licht
Photonik Technische Nutzung von Licht Abbildung Wiederholung Lichtdetektion Photoelektrischer Effekt Äußerer P.E.: Elektron wird aus Metall herausgeschlagen und hat einen Impuls Anwendung: Photomultiplier,
III. Elektrizität und Magnetismus Anhang zu 21. Wechselstrom: Hochspannungsleitung 22. Elektromagnetische Wellen
21. Vorlesung EP III. Elektrizität und Magnetismus Anhang zu 21. Wechselstrom: Hochspannungsleitung 22. Elektromagnetische Wellen IV Optik 22. Fortsetzung: Licht = sichtbare elektromagnetische Wellen 23.
Vorkurs Physik des MINT-Kollegs
Vorkurs Physik des MINT-Kollegs Optik MINT-Kolleg Baden-Württemberg 1 KIT 03.09.2013 Universität desdr. Landes Gunther Baden-Württemberg Weyreter - Vorkurs und Physik nationales Forschungszentrum in der
Ferienkurs Experimentalphysik 3 - Geometrische Optik
Ferienkurs Experimentalphysik 3 - Geometrische Optik Matthias Brasse, Max v. Vopelius 24.02.2009 Inhaltsverzeichnis Einleitung Geometrische Optik 2 2 Grundlegende Konzepte 2 3 Die optische Abbildung 2
Übungen zur Optik (E3-E3p-EPIII) Blatt 8
Übungen zur Optik (E3-E3p-EPIII) Blatt 8 Wintersemester 2016/2017 Vorlesung: Thomas Udem ausgegeben am 06.12.2016 Übung: Nils Haag ([email protected]) besprochen ab 12.12.2016 Die Aufgaben ohne Stern sind
Versuche P1-31,40,41. Vorbereitung. Thomas Keck Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 8.11.
Versuche P1-31,40,41 Vorbereitung Thomas Keck Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 8.11.2010 1 1 Vorwort Für den Versuch der geometrischen Optik gibt es eine Fülle
22. Vorlesung EP. IV Optik. 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente
. Vorlesung EP IV Optik 3. Geometrische Optik Brechung und Totalrelexion Dispersion 4. Farbe 5. Optische Instrumente Versuche: Brechung, Relexion, Totalrelexion Lichtleiter Dispersion (Prisma) additive
Kapitel Optische Abbildung durch Brechung
Kapitel 3.8.3 Optische Abbildung durch Brechung Dicke Linsen, Linsensysteme, Optische Abbildungssysteme Dicke Linse Lichtwege sind nicht vernachlässigbar; Hauptebenen werden eingeführt Dicke Linse Lichtwege
22. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik)
22. Vorlesung EP IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik Versuche
8 Reflexion und Brechung
Universität Leipzig, Fakultät für Physik und Geowissenschaften Vorlesung zur Experimentalphysik III Wintersemester 28/29 Prof. Dr. Josef A. Käs Vorlesungsmitschrift zur Vorlesung vom 2.11.28 8 Reflexion
Versuch GO1 Abbildungen durch Linsen und Abbildungsfehler
BERGISCHE UNIVERSITÄT WUPPERTAL Versuch GO Abbildungen durch Linsen und Abbildungsfehler I. Vorkenntnisse 0.06 Das Snellius sche Brechungsgesetz, die Dispersion des Brechungsindex von Glas, Linsen- und
SMART. Sammlung mathematischer Aufgaben als Hypertext mit TEX. Optik (Physik)
SMART Sammlung mathematischer Aufgaben als Hypertext mit TEX Optik (Physik) herausgegeben vom Zentrum zur Förderung des mathematisch-naturwissenschaftlichen Unterrichts der Universität Bayreuth 1. Mai
18.Elektromagnetische Wellen 19.Geometrische Optik. Spektrum elektromagnetischer Wellen Licht. EPI WS 2006/7 Dünnweber/Faessler
Spektrum elektromagnetischer Wellen Licht Ausbreitung von Licht Verschiedene Beschreibungen je nach Größe des leuchtenden (oder beleuchteten) Objekts relativ zur Wellenlänge a) Geometrische Optik: Querdimension
Grundlagen der Physik 2 Lösung zu Übungsblatt 12
Grundlagen der Physik Lösung zu Übungsblatt Daniel Weiss 3. Juni 00 Inhaltsverzeichnis Aufgabe - Fresnel-Formeln a Reexionsvermögen bei senkrechtem Einfall.................. b Transmissionsvermögen..............................
OPTIK. Geometrische Optik Wellen Beugung, Interferenz optische Instrumente
Physik für Pharmazeuten OPTIK Geometrische Optik Wellen Beugung, Interferenz optische Instrumente geometrische Optik Wellengleichungen (Maxwellgleichungen) beschreiben "alles" Evolution exakt berechenbar
NTB Druckdatum: MAS. E-/B-Feld sind transversal, stehen senkrecht aufeinander und liegen in Phase. Reflexion Einfallswinkel = Ausfallswinkel
OPTIK Elektromagnetische Wellen Grundprinzip: Beschleunigte elektrische Ladungen strahlen. Licht ist eine elektromagnetische Welle. Hertzscher Dipol Ausbreitung der Welle = der Schwingung Welle = senkrecht
Übungsblatt 1 Geometrische und Technische Optik WS 2012/2013
Übungsblatt 1 Geometrische und Technische Optik WS 2012/2013 Gegeben ist eine GRIN-Linse oder Glasaser) mit olgender Brechzahlverteilung: 2 2 n x, y, z n0 n1 x y Die Einheiten der Konstanten bzw. n 1 sind
Versuch O02: Fernrohr, Mikroskop und Teleobjektiv
Versuch O02: Fernrohr, Mikroskop und Teleobjektiv 5. März 2014 I Lernziele Strahlengang beim Refraktor ( Linsenfernrohr ) Strahlengang beim Mikroskop Strahlengang beim Teleobjektiv sowie Einblick in dessen
Physik für Mediziner im 1. Fachsemester
Physik für Mediziner im 1. Fachsemester #22 27/11/2008 Vladimir Dyakonov [email protected] Optische Instrumente Allgemeine Wirkungsweise der optischen Instrumente Erfahrung 1. Von weiter
Optik. Was ist ein Modell? Strahlenoptik. Modelle in der Physik. Modell Lichtstrahl. Modell Lichtstrahl
Modelle in der Physik Optik Strahlenoptik vereinfachte Darstellungen der Wirklichkeit dienen der besseren Veranschaulichung Wesentliches wird hervorgehoben Unwesentliches wird vernachlässigt Was ist ein
7.7 Auflösungsvermögen optischer Geräte und des Auges
7.7 Auflösungsvermögen optischer Geräte und des Auges Beim morgendlichen Zeitung lesen kann ein gesundes menschliche Auge die Buchstaben des Textes einer Zeitung in 50cm Entfernung klar und deutlich wahrnehmen
NG Brechzahl von Glas
NG Brechzahl von Glas Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik und Wellenoptik.......... 2 2.2 Linear polarisiertes
Die Ergebnisse der Kapiteltests werden nicht in die Berechnung der Semesternoten mit einbezogen!
Kapiteltest Optik 2 Lösungen Der Kapiteltest Optik 2 überprüft Ihr Wissen über die Kapitel... 2.3a Brechungsgesetz und Totalreflexion 2.3b Brechung des Lichtes durch verschiedene Körper 2.3c Bildentstehung
Versuch 12 : Brennweitenbestimmung von Linsen - Aufbau eines Mikroskops
Testat Brennweitenbestimmung von Linsen - Aufbau eines Mikroskops Mo Di Mi Do Fr Datum: Versuch: 12 Abgabe: Fachrichtung Sem. : Brennweitenbestimmung von Linsen - Aufbau eines Mikroskops In diesem Versuch
Othmar Marti Experimentelle Physik Universität Ulm
Grundkurs IIIa für Physiker Othmar Marti Experimentelle Physik Universität Ulm [email protected] Vorlesung nach Tipler, Gerthsen, Hecht Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3a-2002
Optik. Prof. Dr. Reinhard Strehlow. Hochschulübergreifender Studiengang Wirtschaftsingenieur. Optik p. 1/39
Optik Prof Dr Reinhard Strehlow Hochschulübergreifender Studiengang Wirtschaftsingenieur Optik p 1/39 Inhalt Geschichtliches Geometrischen Optik Abbildung an Spiegeln Brechung des Lichtes Abbildung durch
Optische Systeme. Inhalte der Vorlesung. Aufgabe: Schärfentiefe. f D
Inhalte der Vorlesung 4.2 Optische Systeme Martina Gerken 12.11.2007 1. Grundlagen der Wellenoptik 2. Abbildende optische Systeme 2.1 Fotografie 2.2 Planplatten und Reflexionsprismen 2.3 Schärfentiefe
Geometrische Optik _ optische Linsen und Spiegel
Geometrische Optik _ optische Linsen und Spiegel 1) Berechne den Brennpunkt des nebenstehenden Linsensystems unter der Annahme, daß beide Linsen zusammen sehr dünn sind. Sammellinse : R 2 = 20 cm ; R 1
6.1.7 Abbildung im Auge
6.1.7 Abbildung im Auge Das menschliche Auge ist ein aussergewöhnlich hoch entwickeltes Sinnesorgan. Zur Abbildung wird ein optisches System bestehend aus Hornhaut, Kammerwasser, Linse sowie Glaskörper
Ergänzungs-Set geometrische Optik
Ergänzungs-Set geometrische Optik Geometrische Optik mit Diodenlaser und Metalltafel 1007520 Ergänzungs-Set geometrische Optik plus 1075205 Die Spalte Benötigte Geräte listet den für den jeweiligen Versuch
1. Licht, Lichtausbreitung, Schatten, Projektion
1. Licht, Lichtausbreitung, Schatten, Projektion Was ist Licht? Definition: Die Optik ist das Gebiet der Physik, das sich mit dem Licht befasst. Der Begriff aus dem Griechischen bedeutet Lehre vom Sichtbaren.
SMART. Sammlung mathematischer Aufgaben als Hypertext mit TEX. Optik (Physik)
SMART Sammlung mathematischer Aufgaben als Hypertext mit TEX Optik (Physik) herausgegeben vom Zentrum zur Förderung des mathematisch-naturwissenschaftlichen Unterrichts der Universität Bayreuth 1. Mai
An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?
An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? 4 Hautstrahlen für Siegel + = i f f = r 2 4 Hautstrahlen Doelbrechung, λ/4-platte und λ/2-platte Shärische brechende Flächen
Versuch P1-31,40,41 Geometrische Optik. Auswertung. Von Ingo Medebach und Jan Oertlin. 9. Dezember 2009
Versuch P1-31,40,41 Geometrische Optik Auswertung Von Ingo Medebach und Jan Oertlin 9. Dezember 2009 Inhaltsverzeichnis 1. Brennweitenbestimmung...2 1.1. Kontrolle der Brennweite...2 1.2. Genaue Bestimmung
Physik 2 (GPh2) am
Name: Matrikelnummer: Studienfach: Physik 2 (GPh2) am 17.09.2013 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter
Übungen zur Experimentalphysik 3
Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 200/20 8. Übungsblatt - 3.Dezember 200 Musterlösung Franziska Konitzer ([email protected]) Aufgabe ( ) (7 Punkte) Gegeben sei
12.1 Licht als elektromagnetische Welle
Inhalt 1 1 Optik 1.1 Licht als elektromagnetische Welle 1. Reflexions- und Brechungsgesetz 1.3 Linsen und optische Abbildungen 1.4 Optische Instrumente 1.4.1 Mikroskop 1.4. Fernrohr 1.5 Beugungsphänomene
Übungen zur Experimentalphysik 3
Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 5. Übungsblatt - 22.November 2010 Musterlösung Franziska Konitzer ([email protected]) Aufgabe 1 ( ) (8 Punkte) Ein
Mehrfachabbildungen entstehen, wenn mehrere Spiegel gegeneinander geneigt sind.
Optische Abbildungen Nachdem wir die Eigenschaften des Lichts jetzt im wesentlichen kennen gelernt haben, werden wir im folgenden uns mit der sog geometrischen Optik beschäftigen, die mit geradlinigen
Entstehung des Regenbogens durch Brechung-Reflexion-Brechung
Vorlesung Physik III WS 0/03 Entstehung des Regenbogens durch Brechung-Relexion-Brechung Vorlesung Physik III WS 0/03 Entstehung des Regenbogens durch Brechung-Relexion-Brechung Vorlesung Physik III WS
Vorlesung : Roter Faden:
Vorlesung 5+6+7: Roter Faden: Heute: Wellenoptik, geometrische Optik (Strahlenoptik) http://www-linux.gsi.de/~wolle/telekolleg/schwingung/index.html Versuche: Applets: http://www.walter-fendt.de/ph4d huygens,
Übungsklausur. Optik und Wellenmechanik (Physik311) WS 2015/2016
Übungsklausur Optik und Wellenmechanik (Physik311) WS 2015/2016 Diese Übungsklausur gibt Ihnen einen Vorgeschmack auf die Klausur am 12.02.2015. Folgende Hilfsmittel werden erlaubt sein: nicht programmierbarer
Auflösungsvermögen bei dunkelen Objekten
Version: 27. Juli 2004 Auflösungsvermögen bei dunkelen Objekten Stichworte Geometrische Optik, Wellennatur des Lichts, Interferenz, Kohärenz, Huygenssches Prinzip, Beugung, Auflösungsvermögen, Abbé-Theorie
23. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik)
23. Vorlesung EP IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik Versuche
Annahme: Wellen- und Quanteneigenschaften des Lichts können vernachlässigt werden.
Annahme: Wellen- und Quanteneigenschaften des Lichts können vernachlässigt werden. Experiment: Laserlichtquelle. 1.1 Axiome der geometrischen Optik Licht breitet sich in Form von Strahlen aus. Lichtstrahlen
Vorlesung : Roter Faden:
Vorlesung 5+6+7: Roter Faden: Heute: Wellenoptik, geometrische Optik (Strahlenoptik) http://www-linux.gsi.de/~wolle/telekolleg/schwingung/index.html Versuche: Michelson IF, Seifenblase, Newton- Ringe Applets:
Othmar Marti Experimentelle Physik Universität Ulm
Grundkurs IIIa für Physiker Othmar Marti Experimentelle Physik Universität Ulm [email protected] Vorlesung nach Tipler, Gerthsen, Hecht Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3a-2002
Physik für Mediziner im 1. Fachsemester
Physik für Mediziner im 1. Fachsemester #21 30/11/2010 Vladimir Dyakonov [email protected] Brechungsgesetz Das Fermat sches Prinzip: Das Licht nimmt den Weg auf dem es die geringste Zeit
Interferenz und Beugung - Optische Instrumente
Interferenz und Beugung - Optische Instrumente Martina Stadlmeier 25.03.2010 1 Inhaltsverzeichnis 1 Kohärenz 3 2 Interferenz 3 2.1 Interferenz an einer planparallelen Platte...............................
Fotografische Methoden für CG
Fotografische Methoden für CG Zweite Einheit: Optik 2 http://www.vrvis.at/vis/ Illustration Mitziehen Alexander Magedler, http://members.chello.at/alex.magedler/ 2 Abbildung mit Linse Die heute übliche
Optik. Lichtstrahlen -Wellen - Photonen. Wolfgang Zinth Ursula Zinth. von. 4., aktualisierte Auflage. OldenbourgVerlag München
Optik Lichtstrahlen -Wellen - Photonen von Wolfgang Zinth Ursula Zinth 4., aktualisierte Auflage OldenbourgVerlag München Inhaltsverzeichnis Vorwort 1 Einführung und historischer Überblick v 1 Licht als
Physik Anfängerpraktikum - Versuch 408 Geometrische Optik
Physik Anfängerpraktikum - Versuch 408 Geometrische Optik Sebastian Rollke (103095) [email protected] und Daniel Brenner (105292) [email protected] durchgeführt am 14. Juni 2005 Inhaltsverzeichnis
Praktikum Angewandte Optik Versuch: Aufbau eines Fernrohres
Praktikum Angewandte Optik Versuch: Aufbau eines Fernrohres Historisches und Grundlagen: Generell wird zwischen zwei unterschiedlichen Typen von Fernrohren unterschieden. Auf der einen Seite gibt es das
Aufg. 2: Skizziere die Abbildung einer Person im Auge. (Wähle einen beliebigen Punkt und zeichne die wichtigsten Strahlen.)
Aufgaben zu Linsen : Aufg. 1: Zeichne den Verlauf des gesamten Lichtbündels, vor und nach der Linse, das von der Spitze des Pfeils ausgehend, den gesamten Querschnitt der Linse füllt: Aufg. 1a: Zeichne
GEOMETRISCHE OPTIK. Kapitel 16
Kapitel 16 GEMETRISHE PTIK 3 K = J A F J E - A J H = A J E I? D A 9 A A F J E A F J E A J H E I? D A Die geometrische ptik ist die erste Näherung zur Wahrheit Lichtrahlen werden definiert als dünne ündel
13.1 Bestimmung der Lichtgeschwindigkeit
13 Ausbreitung des Lichts Hofer 1 13.1 Bestimmung der Lichtgeschwindigkeit 13.1.1 Bestimmung durch astronomische Beobachtung Olaf Römer führte 1676 die erste Berechung zur Bestimmung der Lichtgeschwindigkeit
Hochschule Heilbronn Technik Wirtschaft Informatik Heilbronn University Institut für math.-naturw. Grundlagen
Versuch : Optische Abbildung mit dünnen Linsen, Brennweitenbestimmung 1. Aufgabenstellung Beobachtung des virtuellen und reellen Bildes Bestimmung der Brennweite einer dünnen Sammellinse aus der Abbildungsgleichung
Vorbereitung zur geometrischen Optik
Vorbereitung zur geometrischen Optik Armin Burgmeier (347488) Gruppe 5 9. November 2007 Brennweitenbestimmungen. Kontrollieren der Brennweite Die angegebene Brennweite einer Sammellinse lässt sich überprüfen,
