Reaktionskinetik. Katalyse
|
|
|
- Ingeborg Matilde Geier
- vor 9 Jahren
- Abrufe
Transkript
1 Reaktionskinetik Katalyse Katalysatoren beshleunigen hemishe Reaktionen, ohne das Gleihgewiht zu beeinflussen. Sie beeinflussen nur die Aktiierungsenergie
2 Katalyse Katalysatoren beeinflussen den Reaktionsweg (Mehanismus), niht aber die Nettoreaktion und Größen selbiger ( usw.) Absenken der Aktiierungsenergie Reaktion läuft deutlih shneller ab KEINE Änderung der GG-Konstanten! Die Reaktion muss niht über den ganzen Berg Alter Katalysator (alter Bahntunnel) geringe Absenkung der Akt-Energie Neuer Katalysator (NEAT-Tunnel): Größere Absenkung der Akt-Energie Erstfeld und Bellinziona bleiben auf gleiher Höhe! Nur Zeit wird erändert!
3 Katalyse Auf eine Reaktion angewendet: Der geshwindigkeitsbestimmende Shritt wird im alternatien Reaktionsweg umgangen Unkatalysierte Reaktion: E E a = 76 kj/mol pot Niht beshleunigt mit I 2 als Katalysator: E a = 57 kj/mol Um Faktor 2000 beshleunigt 2 H 2 O 2 2 H 2 O + O 2 mit Katalase als Katalysator: E a = 8 kj/mol Um Faktor beshleunigt (Zersetzung on Wasserstoffperoxid) R n
4 Katalyse Arten der Katalyse: Homogene Katalyse: Heterogene Katalyse: Katalysator befindet sih in gleihem Phase wie die Reaktanden (z.b. I 2 o. Enzyme bei H 2 O 2 Zersetzung) Katalysator befindet sih in einer anderen Phase als die Reaktanden (öfters Metalle oder Oxide (Pd, Pt Y 2 O 5 ) Homogene Katalyse: HBr katalysiert auh die Zersetzung on H 2 O 2 Reaktion erläuft ermutlih über ein orgelagertes Gleihgewiht. Beobahtetes Geshwindigkeitsgesetz: (Bsp für eine Säurekatalyse)
5 Säure- und Basenkatalyse Säurekatalyse: Zentraler Shritt ist die Übertragung eines Protons auf das Substrat X + HA HX + + A - HX + Produkte z.b. Esterhydrolyse, Keto-Enol Tautomerie Basenkatalyse: Zentraler Shritt ist die Übertragung eines Protons om Substrat XH + B X - + BH + X - Produkte z.b. Claisenkondensation, Aldolkondensation
6 Enzymkatalyse Enzyme sind meist hohspezifishe homogene Biokatalysatoren mit hoher katalytisher Aktiität. Damit gibt es meist shnelle mit keinen Nebenreaktionen Akties Zentrum zur Bindung on Substraten Spezifishes Substrat sehr selektie nihtkoalente WW (H- Brüken, VdW, ) Polypeptid (Protein Enzym) oder katalytish aktie RNA ( Ribozym) oder Protein/RNA Komplex (z.b. Ribosom) Enzym (E) + Substrat (S) Enzym-Substrat-Komplex (ES)
7 Enzymkatalyse Enzyme haben regulierbare Aktiität über: a) Feedbak: Enzym wird durh Endprodukt einer katalytishen Kette herunter reguliert (reersible Produkthemmung) b) Regulation: Ein Stoff (z.b. Ca 2+ ) bindet an das Enzym und erändert die Konformation, so dass es akti wird. Oftmals aktiiert dieser Komplex das nähste Enzym (Regulatorprotein) ) Modifikation: Koalente Veränderung mit neuen funktionellen Gruppen (z.b. Phosphorylierung) d) Proteolyse: Das aktie Enzym wird durh die Abspaltung eines Peptidstükhens erzeugt (z.b. Trypsin) Katalase Trypsin Amylase
8 Enzymkatalyse Modellorstellungen: Shlüssel-Shloss-Prinzip (E.Fisher, 1890) 3D-Struktur des Substrats und des aktien Zentrums passen perfekt zueinander Besser: Induktier Fit (Enzym passt sih an Substrat an) Adsoption on Substrat an die Oberflähe: Geringe S dann ist Hohe S dann ist Reaktionsgeshwindigkeit Konzentration [S]
9 Mihaelis-Menden-Modell Enzym und Substrat stehen mit Enzym-Substrat Komplex im Gleihgewiht Kinetik mit orgelagertem Gleihgewiht k 1 E + S ES E + P k -1 k 2 Produktbildender Shritt wird als irreersibel angenommen Wie bei anderen Reaktionen, ist nun ein Ausdruk für die Reaktionsgeshwindigkeit gesuht - in Abhängigkeit on E und S = k 2 ES ES =?
10 Mihaelis-Menten-Modell Wihtige Annahmen zur Herleitung der Formel: Enzym-Substrat-Komplex liegt quasistationär or d ES dt 0 Also: Geshwindigkeiten Komplexbildung = Komplexzerfall Mihaelis-Menten- Konstante: Damit ergibt sih für ES k k k 1 2 K M Resultierende Einheit: mol/l ES E,0 1 K M k 2 E,0 K M Falls, dann gilt, k E 2,0 max Alle Bindungsstellen mit Substrat gesättigt Mihaelis-Menten-Gleihung: max K M
11 Mihaelis-Menten-Modell Mihaelis-Menten-Gleihung: max K M Bei S,0 = K M gilt: max 2 Wie werden max und K M bestimmt? Lineweaer-Burk-Auftragung 1 1 max K M max 1 S Alternati (seltener): Eadie-Hofstee-Auftragung max K M S
12 Mihaelis-Menten-Modell Bedeutung on K M und max Wenn K M = S Substratkonzentration, bei der die Hälfte der aktien Zentren besetzt ist Wenn k 2 k -1 Typishe Werte für K M K M ist die GG-Konstante für die Dissoziation des ES-Komplexes K M ist meist 10-1 bis 10-7 M TON = turnoer number (Katalyseorgänge pro Sekunde) Bsp: Carboanhydrase: CO 2 + H 2 0 HCO 3- + H + Katalytishe Effizienz mit, Typishe Zahlenwerte: s und 6 10 Bei perfekte Diffusionskontrolle direkter Umsatz!
Reaktionskinetik. Die Kinetik zusammengesetzter Reaktionen
Reaktionskinetik Die Kinetik zusammengesetzter Reaktionen Anwendung des bisher gelernten auf reale Fälle (u.a. Kettenreaktionen) on Pyrlolyse, HBr Bildung und die Chemie des Ozons in der Atmosphäre Pyrolyse
Katalyse. höhere Reaktionsgeschwindigkeit bei derselben Temperatur! Achtung: Gleichgewicht der chemischen Reaktion wird nicht verschoben
Katalyse Ein Katalysator setzt Aktivierungsenergie einer Reaktion herab, indem er einen anderen Reaktionsweg ermöglicht, so dass der geschwindigkeitsbestimmende Schritt der nicht-katalysierten Reaktion
Allgemeine Chemie 3.6 KINETIK
Allgemeine Chemie. CEMISCE REAKTINEN.6 KINETIK 1 Kinetik hemisher Reaktionen Die Kinetik befasst sih mit den Geshwindigkeiten und Mehanismen hemisher Reaktionen. Sie beshreibt zeitabhängige Konzentrationsänderungen
Die Theorie des aktivierten Komplexes
Die Theorie des aktiierten Komplexes Theorie kommt aus der statistishen Thermodynamik! (wird in höheren Semestern behandelt) Streke über die der aktiierten Komplex existiert A+BC AB+C A+BC A..B. C AB+C
Bioorganische Chemie Enzymatische Katalyse 2011
Ringvorlesung Chemie B - Studiengang Molekulare Biotechnologie Bioorganische Chemie Enzymatische Katalyse 2011 Prof. Dr. A. Jäschke INF 364, Zi. 308, Tel. 54 48 51 [email protected] Lehrziele I Kenntnis
Das Chemische Gleichgewicht Massenwirkungsgesetz
Das Chemishe Gleihgewiht Massenwirkungsgesetz Reversible Reaktionen: Beisiel : (Bodenstein 899 Edukt (Reaktanden Produkt H + I HIH Beobahtung: Die Reaktion verläuft unvollständig! ndig! D.h. niht alle
4.1. Eigenschaften von Enzymen
4. Enzyme 106 107 4.1. Eigenschaften von Enzymen Enzyme sind Proteine, die chemische Reaktionen beschleunigen (Biokatalysatoren) Herausragende Merkmale verglichen mit anderen Katalysatoren: drastische
Katalyse. Martin Babilon 14/07/2011. Katalyse. Martin Babilon Universität Paderborn. 14 Juli Montag, 18. Juli 2011
Katalyse Universität Paderborn 14 Juli 2011 1 Übersicht Motivation & Einleitung Katalyse-Zyklus homogene Katalyse heterogene Katalyse 2 Motivation 3 Geschichte der Katalyse 6000 v. Christus: Alkoholvergärung
Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg
Institut für Physikalische Chemie Albert-Ludwigs-Uniersität Freiburg Lösungen zum 11. Übungsblatt zur Vorlesung Physikalische Chemie I SS 214 Prof. Dr. Bartsch 11.1 L a) Die Bildungsgeschwindigkeit on
Reaktionskinetik: - Geschwindigkeit chemischer Reaktionen - Untersuchung (bzw. Bestimmung) der Reaktionsmechanismen. c(a) t. v = -
REAKTIONSKINETIK 1 Reaktionskinetik Reaktionskinetik: - Geschwindigkeit chemischer Reaktionen - Untersuchung (bzw. Bestimmung) der Reaktionsmechanismen Anwendung: - Vorgänge in den lebenden Organismen
Enzyme (Teil 2) Enzymatische Reaktion, Thermodynamik & Enzyme im Detail. Mag. Gerald Trutschl
Enzyme (Teil 2) Enzymatische Reaktion, Thermodynamik & Enzyme im Detail Mag. Gerald Trutschl 1 Inhalt 1. Enzym Reaktion im Detail 2. Thermodynamische Reaktion 3. Katalysemechanismen 4. Michaelis-Menten-Konstante
Die Freie Aktivierungsenthalpie
Die Freie Aktivierungsenthalpie E A G k Ae RT e = = RT G: Freie Aktivierungsenthalpie G = H T S e G RT = e S R e H RT e S R A H E A Katalyse: der aktivierte Übergangskomplex H E A Katalysatoren beeinflussen
ENZYME. Teil 1: Grundlagen und Substratbestimmungen
ENZYME Teil 1: Grundlagen und Substratbestimmungen Metastabiler Zustand Beispiel: Glucose-6-Phosphat + H 2 O [Glc6P] [H 2 0] K = = 1.135 x 10 [Glc] [Pi] -3 Gleichgewicht stark auf Seite von Glc + Pi Glucose
Enzyme als Biokatalysatoren
1 Enzymwirkung Enzyme als Biokatalysatoren Versuch: Wasserstoffperoxid wird bei RT mit a) Mn(IV)-oxid und b) Katalase versetzt. Beobachtung: a) Gasentwicklung Glimmspanprobe positiv b) Gasentwicklung Glimmspanprobe
Mechanismus der Enzymkatalyse
Mechanismus der Enzymkatalyse Allgemeine Prinzipien Annäherung des Substrats an das aktive Zentrum des Enzyms Enzym und Substrat treten in Wechselwirkung: Bildung des [ES]-Komplexes. Konformationsänderung
Kinetik: a) Reaktionsgeschwindigkeit (zeitlicher Verlauf) b) Reaktionsweg (Mechanismus)
Kinetik Kinetik: a) Reaktionsgeschwindigkeit (zeitlicher Verlauf) b) Reaktionsweg (Mechanismus) Klassifizierung chem. Reaktionen nach kinetischen Aspekten a) Reaktionsmolekularität: wie viele Teilchen
Wirkungsmechanismen regulatorischer Enzyme
Wirkungsmechanismen regulatorischer Enzyme Ein Multienzymsystem ist eine Aufeinanderfolge von Enzymen, bei der das Produkt eines vorstehenden Enzyms das Substrat des nächsten Enzyms wird. Ein regulatorisches
Enzyme SPF BCH am
Enzyme Inhaltsverzeichnis Ihr kennt den Aufbau von Proteinen (mit vier Strukturelementen) und kennt die Kräfte, welche den Aufbau und die Funktion von Enzymen bestimmen... 3 Ihr versteht die Einteilung
Übungsblatt 9 Lösungen
Übungsblatt 9 Lösungen. Die luminiumfolie kann bei der Erhitzung auf die Temperatur über dem Feuer (insbesondere im Vergleih zur Kartoffel) nur sehr wenig Wärmeenergie m aufnehmen, da sie nur wenig Masse
K4: Alkalische Esterhydrolyse
K4: Alkalishe Esterhydrolyse Theoretishe Grundlagen: Die Konzentrationsbestimmung eines Stoffes während einer hemishen Reaktion kann auf hemishem Wege, aber auh über physikalishe Methoden vorgenommen werden.
= Durchschnittliche Bildungs- Geschwindigkeit [mol/s] = Durchschnittliche Verbrauchs- Geschwindigkeit [mol/s]
Ache2 Kapitel 14: Chemische Kinetik (Geschwindigkeit) Reaktionsgeschwindigkeit Beeinflussung: 1. Aggregatszustände der Reaktanten: Je öfters Moleküle zusammenstossen, desto schneller reagieren sie. (Oberflächenvergrösserung
MWG. 1. Massenwirkungsgesetz
MWG 1. Massenwirkungsgesetz Betrahten wir den Ablauf einer hemishen Reaktion, so stellen wir fest, dass bestimmte Reaktionsgeshwindigkeiten den Vorgang beeinflussen. Wir wissen, dass formal ähnlihe Umsetzungen
Polarimetrie 1. Polarimetrie
Polarimetrie 1 Polarimetrie Bei Reaktionen mit optish aktiven Reaktanten kann die Konzentration der an der Reaktion beteiligten toffe gut polarimetrish gemessen werden, indem für das Gemish der Drehwinkel
Versuch: Enzyme (LDH)
Versuch: Enzyme (LDH) 25.11.02 Seiten im Campell, Tierphysbuch (Penzlin) und Eckert Zusammenfassung Campbell S. 105-113 Zusammenfassung Eckert S. 77 89 Zusammenfassung Penzlin S. 50 ff. Allgemein: Temperatur
Gegenstand der letzten Vorlesung
Gegenstand der letzten Vorlesung Reaktionsgeschwindigkeit Reaktionsordnung Molekularität Reaktion 0., 1.,. Ordnung Reaktion pseudo-erster Ordnung Aktivierungsenergie Temperaturabhängigkeit der Geschwindigkeitskonstanten
Enzyme: Grundlegende Konzepte und Kinetik
Enzyme: Grundlegende Konzepte und Kinetik Enzyme sind Katalysatoren biologischer Systeme Wichtigste Eigenschaften: katalytische Stärke und Spezifität Nahezu alle bekannten Enzyme sind Proteine, es gibt
Praktikum Biochemie B.Sc. Water Science WS Enzymregulation. Marinja Niggemann, Denise Schäfer
Praktikum Biochemie B.Sc. Water Science WS 2011 Enzymregulation Marinja Niggemann, Denise Schäfer Regulatorische Strategien 1. Allosterische Wechselwirkung 2. Proteolytische Aktivierung 3. Kovalente Modifikation
Richtung von spontanem Prozeßablauf und Veränderung der G in Abhängigkeit vom Vorzeichen der Enthalpie und der Entropie
Richtung von spontanem Prozeßablauf und Veränderung der G in Abhängigkeit vom Vorzeichen der Enthalpie und der Entropie H S G= H-T S Prozeß 1. (-) (+) (-) immer exergonisch, erfolgt spontan bei allen Temperaturen
Physik / Mechanik / Kinematik
1. Setzen Sie bei den folgenden Zahlenpaaren einen Vergleihsoperator (>,,
Einführung in die Biochemie Wirkungsweise von Enzymen
Wirkungsweise von en Am Aktiven Zentrum kann ein nur in einer ganz bestimmten Orientierung anlegen, wie ein Schlüssel zum Schloss. Dieses Prinzip ist die Ursache der spezifität von en. Dies resultiert
Grenzflächenüberschuss
Grenzflähenübershuss β α Grenzshiht G = G( α) + G( β) GA ( ) = G ( G( α) + G( β) ) ( A) ( α β ) n ( A) n n ( ) n ( ) = Γ = n A Definition: Grenzflähenübershuß Da sih Moleküle in der Grenzshiht anreihern
Richtung chemischer Reaktionen, Chemisches Gleichgewicht. Massenwirkungsgesetz
Richtung chemischer Reaktionen, Chemisches Gleichgewicht a A + b B K = [C] [A] c a [D] [B] c C + d D d b Massenwirkungsgesetz K = Gleichgewichtskonstante [ ] = in Lösung: Konzentration (in mol L -1 ),
19. Ladungstransport über Wasserstoffbrückenbindungen. 1. Aufgabe
19. Ladungstransport über Wasserstoffbrükenbindungen 1 19. Ladungstransport über Wasserstoffbrükenbindungen 1. Aufgabe Untersuhung der spezifishen Leitfähigkeit von Cl- bzw. KCl-haltigen Methanol/Wasser
Literatur: Enzyme Mechanismen und Kinetik. Enzymes Mechanisms and Kinetics. Biochemie II LVA (WS 2015)
Biochemie II LVA 166.163 (WS 2015) Vortragender: Ao.Univ.Prof. Dr. Ewald Srebotnik [email protected] Einheit 15: und Kinetik Enzymes Mechanisms and Kinetics Literatur: Lehrbuch der Biochemie
Prof. Dr. H.-H. Kohler, WS 2004/05 PC1 Kapitel A.8 - Enzymkinetik A.8-1
rof. Dr. H.-H. Kohler, W 2004/05 C Kapitel A.8 - nzymineti A.8- A.8 nzymineti A.8. Katalysatoren und nzyme Katalysatoren sind oleüle, die die Geshwindigeit einer Reation erhöhen, aus der Reation aber unerändert
Exkurs: Koordinatensysteme
Exkurs: Koordinatensysteme Herleitung der Raum-Zeit-Diagramme Das ist unsere Raumzeit. So mögen wir sie: Ordentlih, gerade und aufgeräumt. Der vertikale Pfeil bildet unsere Zeitlinie t. Der horizontale
Wasserstoffbrückenbindung, H 2 O, NH 3, HF, Wasserstoff im PSE, Isotope, Vorkommen, exotherme Reaktion mit Sauerstoff zu Wasser, Energieinhalt,
Wiederholung der letzten Vorlesungsstunde: Das Element Wasserstoff und seine Verbindungen Wasserstoffbrückenbindung, H 2 O, NH 3, HF, Wasserstoff im PSE, Isotope, Vorkommen, exotherme Reaktion mit Sauerstoff
Vertiefendes Seminar zur Vorlesung Biochemie I. Bearbeitung Übungsblatt 6
Vertiefendes Seminar zur Vorlesung Biochemie I 04.12.2015 Bearbeitung Übungsblatt 6 Gerhild van Echten-Deckert Fon. +49-228-732703 Homepage: http://www.limes-institut-bonn.de/forschung/arbeitsgruppen/unit-3/
Richtung chemischer Reaktionen, chemisches Gleichgewicht. Massenwirkungsgesetz
Richtung chemischer Reaktionen, chemisches Gleichgewicht a A + b B K [C] [A] c a [D] [B] c C + d D d b K = Gleichgewichtskonstante Massenwirkungsgesetz [ ] = in Lösung: Konzentration (in mol L -1 ), für
Hemmung der Enzym-Aktivität
Enzym - Inhibitoren Wie wirkt Penicillin? Wie wirkt Aspirin? Welche Rolle spielt Methotrexat in der Chemotherapie? Welche Wirkstoffe werden gegen HIV entwickelt? Hemmung der Enzym-Aktivität Substrat Kompetitiver
Reaktionskinetik. Geschwindigkeitsgesetze
Reaktionskinetik Geschwindigkeitsgesetze Lernziele: Thermodynamische Beschreibung chemischer Reaktionen Berechnen und Beschreiben von Reaktionsordnungen Kinetische Beschreibung von Reaktionsmechanismen
Explosionsgrenzen der Knallgasreaktion. gleichzeitig
Kettenreaktionen Explosionsgrenzen der Knallgasreaktion Start H 2 H + H H 2 + O 2 + W OH + OH + W Fortpflanzung H 2 + OH H 2 O + H Verzweigung gleichzeitig O 2 + H O + OH H 2 + O OH + H Abbruch (p ) H
Versuch LF: Leitfähigkeit
Versuhsdatum: 8.9.9 Versuh LF: Versuhsdatum: 8.9.9 Seite -- Versuhsdatum: 8.9.9 Einleitung bedeutet, dass ein hemisher Stoff oder ein Stoffgemish in der Lage ist, Energie oder Ionen zu transportieren und
Gefahrenstoffe. 7 Bechergläser (100 ml), 1 Becherglas (1 L), Spatel, Wasser, Messzylinder, Glaswanne, Kartoffel
1.1 Zersetzung von H 2O 2 mithilfe verschiedener Katalysatoren [4] Der Zerfall von Wasserstoffperoxid kann mithilfe vieler verschiedener Katalysatoren beschleunigt werden. In diesem Versuch sollen einige
Versuch 4. Enzymkinetik
Versuch 4 Enzymkinetik Protokollant: E-mail: Studiengang: Gruppen-Nr: Semester: Betreuer: Max Mustermann [email protected] X X X Dr. Postina Wird benotet?: Aufgabenstellung Ermittlung der maximalen Reaktionsgeschwindigkeit
Basiskenntnistest - Chemie
Basiskenntnistest - Chemie 1.) Welche Aussage trifft auf Alkohole zu? a. ) Die funktionelle Gruppe der Alkohole ist die Hydroxygruppe. b. ) Alle Alkohole sind ungiftig. c. ) Mehrwertige Alkohole werden
Kinetik homogener Reaktionen - Formalkinetik
Prof. Dr. xel rehm Universität Oldenburg - Praktikum der Tehnishen Chemie 1 Einleitung Kinetik homogener Reaktionen - Formalkinetik Unter hemisher Kinetik versteht man die Lehre von der Geshwindigkeit
Facharbeit. aus dem Fach. Untersuchungen zur Kinetik der enzymatischen Harnstoffspaltung. Stephanie Bajus Chemie StR Dr. Hetz
Gymnasium Ekental Neunkirhener traße 90542 Ekental Kollegstufenjahrgang 2002/04 Faharbeit aus dem Fah Chemie Thema: Untersuhungen zur Kinetik der enzymatishen Harnstoffspaltung Verfasserin: eistungskurs:
13 Chemisches Gleichgewicht (Kinetische Ableitung)
13 Chemishes Gleihgewiht (Kinetishe Ableitung) 13.1 Massenwirkungsgesetz (MWG) Chemishe Reaktionen in geshlossenen Systemen verlaufen selten einsinnig, d.h. in eine Rihtung, sondern sind meist umkehrbar:
Thermodynamik & Kinetik
Thermodynamik & Kinetik Inhaltsverzeichnis Ihr versteht die Begriffe offenes System, geschlossenes System, isoliertes System, Enthalpie, exotherm und endotherm... 3 Ihr kennt die Funktionsweise eines Kalorimeters
Stoffwechsel. Metabolismus (1)
Vorlesung Zell- und Molekularbiologie Stoffwechsel Metabolismus (1) Zum Nachlesen Bücher Campbell: Kap. 6 59.95 Kap. 3 Kap. 13-14 29.95 www.icbm.de/pmbio - - - > Teaching diese Folien, VL Physiologie der
Ist Zeit relativ? Posten Einleitung
Posten 3 Ist Zeit relati? Sozialform: Bearbeitungszeit: Voraussetzung: Partnerarbeit 30 Minuten Posten 1 Einsteins Postulate 3.1 Einleitung Die Postulate on Einstein so kurz und erständlih sie auh zu sein
Schriftliche Abiturprüfung 2005 Sachsen-Anhalt Physik 13 n (Leistungskursniveau)
Shriftlihe Abiturprüfung 5 Sahsen-Anhalt Physik 3 n (Leistungskursnieau) Thea G: Untersuhungen on Bewegungen Betrahtungen zur Relatiität Die Huygens'she Theorie on der Ausbreitung einer Welle erlangt nah
Studienbegleitende Prüfung Modul 12 Anorganisch-Chemisches Grundpraktikum SS Niederschlag von CuS Niederschlag von PbS
Studienbegleitende Prüfung Modul 1 Anorganish-Chemishes Grundpraktikum SS 003.09.003 Name: Vorname: Matrikelnummer: Fahsemester: Punkte: Note: Frage 1 Was geshieht, wenn Sie Lösungen folgender Kationen
Vortrag Enzyme. Sebastian Kurfürst. sebastian(at)garbage-group.de.
Enzyme Vortrag Enzyme Sebastian Kurfürst /bio.html sebastian(at)garbage-group.de 1 Gliederung 1.Einführung 2.Reaktionsgeschwindigkeit chemischer Reaktionen 3.Enzyme ein Biokatalysator 4.Aufbau 5.Substrat-,
4.3 Reaktionsgeschwindigkeit und Katalysator
4.3 Reaktionsgeschwindigkeit und Katalysator - Neben der thermodynamischen Lage des chemischen Gleichgewichts ist der zeitliche Ablauf der Reaktion, also die Geschwindigkeit der Ein- Einstellung des Gleichgewichts,
Versuchsprotokoll. Esterverseifung
Versuhsprotokoll Versuhsdatum:09.11.2004 Protokolldatum: Sttempell Durhgeführt von: Esterverseifung 1. Inhaltsangabe 1..Inhaltsangabe---------------------------------------------------------------------------------
2. Stragegische Asymmetrien - Stackelberg-Modelle und Markteintritt. Vorlesung 8. Stackelberg-Modell = Sequentielles Duopol
Vorlesung 8. Stragegishe Asymmetrien - Stakelberg-Modelle und Markteintritt Stakelberg-Modell = Sequentielles Duopol Übungsaufgabe aus Vorlesung 7: Räumliher und politisher Wettbewerb Angenommen jeder
Enzym-Kinetik (Abb. 1) Das Thema der heutigen Vorlesung ist die Kinetik isolierter und gereinigter Enzyme zum Verständnis ihrer Reaktionsmechanismen.
1 Enzym-Kinetik (Abb. 1) Das Thema der heutigen Vorlesung ist die Kinetik isolierter und gereinigter Enzyme zum Verständnis ihrer Reaktionsmechanismen. Wie ich schon erwähnte, ist die Geschwindigkeit (V)
Allgemeine Chemie für Studierende mit Nebenfach Chemie Andreas Rammo
Allgemeine Chemie für Studierende mit Nebenfach Chemie Andreas Rammo Allgemeine und Anorganische Chemie Universität des Saarlandes E-Mail: [email protected] innere Energie U Energieumsatz bei
LEITFÄHIGKEIT SCHWACHER ELEKTROLYTE
TU Clausthal Stand //7 LEITFÄHIGKEIT SCHWACHER ELEKTROLYTE. Versuhsplatz Komponenten: - Thermostat - Leitfähigkeitsmessgerät - Elektrode - Thermometer. Allgemeines zum Versuh Der Widerstand R eines Leiters
Grundlagen der Physiologie
Grundlagen der Physiologie Regulation www.icbm.de/pmbio Mensch und Affe Was unterscheidet uns vom Affen? 5 %? 1 Nachbar Was unterscheidet Sie von Ihrem Nachbarn? Was unterscheidet uns vom Affen? Was unterscheidet
Berufliches Gymnasium (WG, EG, AG, SG) Hauptprüfung 2009 Teil 4, Wirtschaftliche Anwendungen, Aufgabe 1 Baden-Württemberg
Beruflihes Gymnasium (WG, EG, AG, SG) Hauptprüfung 9 eil, Wirtshaftlihe Anwendungen, Aufgabe Baden-Württemberg In einem Betrieb werden aus den Rohstoffen R, R, R und R die Bauteile B, B und B und aus diesen
4.3 Reaktionsgeschwindigkeit und Katalysator
4.3 Reaktionsgeschwindigkeit und Katalysator Neben der thermodynamischen Lage des chemischen Gleichgewichts ist der zeitliche Ablauf der Reaktion, also die Geschwindigkeit der Einstellung des Gleichgewichts,
Senkrechter freier Fall
Senkrehter freier Fall Die Raumzeitkrümmung in der Shwarzshildmetrik [] zeigt sih unter anderem darin, dass die Zeit in der Nähe des Zentralkörpers langsamer läuft Um diesen Effekt zu veranshaulihen, soll
Die Kinetik zusammengesetzter Reaktionen
Die inetik zusammengesetzter Reaktionen o Beispiele von zusammengesetzter Reaktionen o Homogene Catalyse: erkmale homogen-catalysierter Reaktionen o Enzymcatalysierte Reaktionen P. Atkins, J. de Paula,
spaltet. Der Sauerstoff entflammt den Glimmspan. Bei der katalytischen Substanz handelt es sich um das Enzym Katalase.
ENZYMATIK 1. Vorversuch Versuch Spaltung von Wasserstoffperoxid (H 2 O 2 ) Material: Bäckerhefe, Braunstein (MnO 2 ), Wasserstoffperoxid, Rundkolben, Stativ, Brenner, Glimmspan Durchführung 1: 5ml Wasserstoffperoxid
Begriffe und Definitionen in der heterogenen Katalyse
Begriffe und Definitionen in der heterogenen Katalyse 2 2.1 Zum Selbstverständnis der Katalyse Der Begriff Katalyse und die Geschichte seiner Entstehung sind im vorangegangenen Kapitel beleuchtet worden.
12. Lagrange-Formalismus III
Übungen zur T: Theoretishe Mehanik, SoSe3 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45. Lagrange-Formalismus III Dr. James Gray [email protected] Übung.: Eine Gitarrensaite Wir betrahten
Seminar zum anorganisch-chemischen Praktikum I. Quantitative Analyse. Prof. Dr. M. Scheer Patrick Schwarz
Seminr zum norgnish-hemishen Prktikum I Quntittive Anlyse Prof. Dr. M. Sheer Ptrik Shwrz itertur A. F. Hollemn, E. Wierg, ehruh der Anorgnishen Chemie, de Gruyter Verlg, Berlin, New York (Ahtung, neue
9. Abbau der Glukose zum Pyruvat
9. Abbau der Glukose zum Pyruvat 236 9.1. Übersicht: Abbau von Glucose Pentosephosphate Pathway (PPP) NADP + NADPH Glucose Glycolysis Oxidative Phosphorylation PDH Complex Citric Acid Citric Acid Cycle
0.1 Geschwindigkeit bei Reaktionen
1 0.1 Geschwindigkeit bei Reaktionen Salzsäure reagiert mit Magnesium Erklärung 2HCl + Mg MgCl 2 + H 2 Das M g-pulver reagiert schneller mit der Salzsäure als die Mg-Späne. Definition: Reaktionsgeschwindigkeit
IX.3 Potentiale und Felder einer bewegten Punktladung
N.BORGHINI Elektrodynamik einer Punktladung Theoretishe Physik IV IX.3 Potentiale und Felder einer bewegten Punktladung Dieser Abshnitt beginnt mit der Berehnung der Potentiale und Felder, die durh eine
32. Lebensdauer von Myonen 5+5 = 10 Punkte
PD. Dr. R. Klesse, Prof. Dr. A. Shadshneider S. Bittihn, C. von Krühten Wintersemester 2016/2017 Theoretishe Physik in 2 Semestern I Musterlösung zu den Übungen 9 und 10 www.thp.uni-koeln.de/ rk/tpi 16.html
Biologische Katalysatoren
Biologische Katalysatoren Die Entdeckung der biologischen Katalysatoren (Enzyme) ist eng mit der Entstehungsgeschichte der Biochemie verknüpft: Ende 19. Jhdt: Speichel - Fleischverdauung durch Magensäfte
Michaelis-Menten-Kinetik
Michaelis-Menten-Kinetik Peter Bützer Inhalt 1 Einführung... 1 2 Modell... 2 2.1 Modellannahmen... 2 2.2 Drei Fälle... 2. Simulationsdiagramm (Typ ), Systemdynamik... 2.4 Dokumentation (Gleichungen, Parameter)...
6. Carbonyl-Verbindungen
6. Carbonyl-Verbindungen Hierher gehören vor allem die Aldehyde und Ketone. (später: Die Carbonyl-Gruppe weisen auch die Carbonsäuren und ihre Derivate auf). Carbonylgruppe. Innerhalb der Sauerstoff-Kohlenstoff-Doppelbindung
Etwas Relativitätstheorie. 2.3 Relativitätsprinzip, Konstanz der Lichtgeschwindigkeit
Etwas Relatiitätstheorie.3 Relatiitätsprinzip, Konstanz der Lihtgeshwindigkeit 864, Mawell: ereinheitlihte Theorie der elektr. u. magn. Felder (4 Mawell-Gleihungen) Elektromagn. Wellen, Geshw. = = 9979
6. Fragentyp A Wie berechnet man die ph-werte wässriger Lösungen starker Basen? A) ph = pks - log [HA] / 2 B) ph = 14 + log [OH-] C) ph = 7+ 1/2 pkb +
1. Fragentyp D Welche der folgenden Einheiten für den molaren Extinktionskoeffizienten ist/sind korrekt? 1) liter I mol x cm 2) liter I mol 3) cm2 / mmol 4) cm2 / mmol x m1 2. Wie lautet die Henderson-Hasselbalch-Gleichung?
Physik: Stundenprotokoll vom Max Pätzold
Physik: Stundenprotokoll vo 25.11.2011 Max Pätzold Inhalt: Lösen von Übungsaufgaben S.361 Lösen von Übungsaufgaben S.363 Rot- und Blauvershiebung Der optishe Dopplereffekt, Aufgabe 1 S.359 Gedankenexperient:
Das ist der Ort, wo die Proteine Synthetisiert werden. Zusammen mit mrna und trna bilden sie eine Einheit, an der die Proteine synthetisiert werden.
DAS RIBOSOM Das ist der Ort, wo die Proteine Synthetisiert werden. Zusammen mit mrna und trna bilden sie eine Einheit, an der die Proteine synthetisiert werden. Das Ribosom besteht aus 2 zusammengelagerten
LEITFÄHIGKEIT SCHWACHER ELEKTROLYTE
TU Clausthal Stand 8//3 LEITFÄHIGKEIT SCHWCHER ELEKTROLYTE. Versuhsplatz Komponenten: - Thermostat - Leitfähigkeitsmessgerät - Elektrode - Thermometer. llgemeines zum Versuh Der Widerstand eines Leiters
Praktikum. Enzymkinetik am Beispiel der Protease Trypsin
Praktikum Methoden der molekularen Biowissenschaften Teil 1: Biochemie Enzymkinetik am Beispiel der Protease Trypsin Prof. Walter Nickel Biochemie-Zentrum der Universität Heidelberg Thermodynamische Eigenschaften
Gliederung. Puffersysteme. Wofür Puffersysteme? Wofür Puffersysteme? Wofür Puffersysteme? ph-verhältnisse im Körper. Puffersysteme
Gliederung Puffersysteme Referat von Christian Rubbert Wofür Puffersysteme? ph-verhältnisse im Körper Puffersysteme Wofür Puffersysteme? Verschiedene Vorgänge im Körper, z.b.: Wofür Puffersysteme? Enzym
Bachelorprüfung im Fach Biologie, Teilfach Chemie am a) Zeichnen Sie bitte unten die Strukturformel einer Verbindung der Summenformel
Bachelorprüfung im Fach Biologie, Teilfach Chemie am 26.08.2014 2 Aufgabe 1 a) Zeichnen Sie bitte unten die Strukturformel einer Verbindung der Summenformel C 3 H 6 O 3 ein, die die folgenden Eigenschaften
Enzym-Dynamik an einzelnen Molekülen. Paul Käufl
Enzym-Dynamik an einzelnen Molekülen Paul Käufl Enzym-Dynamik einzelner Moleküle Quelle: (5) 2 Enzym-Dynamik einzelner Moleküle Bis vor ca. 20 Jahren: Chemische Reaktionen (in Lösung) im Wesentlichen nur
Energetik und Kinetik chemischer Reaktionen
Energetik und Kinetik chemischer Reaktionen Reaktionsenergetik als Teil der Thermodynamik - wann läuft eine chemische Reaktion freiwillig ab? - in welchem Umfang läuft eine Reaktion ab? - wie viel Energie
Institut für Thermische Verfahrenstechnik. Wärmeübertragung I. Lösung zur 4. Übung (ΔT LM (Rührkessel, Gleich-, Gegenstrom))
Prof. Dr.-Ing. Matthia Kind Intitut für hermihe Verfahrentehnik Dr.-Ing. homa Wetzel Wärmeübertragung I öung zur 4. Übung ( M (Rührkeel, Gleih-, Gegentrom Einführung Ein in der Wärmeübertragung häufig
endotherme Reaktionen
Exotherme/endotherme endotherme Reaktionen Edukte - H Produkte Exotherme Reaktion Edukte Produkte + H Endotherme Reaktion 101 Das Massenwirkungsgesetz Das Massenwirkungsgesetz Gleichgewicht chemischer
Klausur Chemie für Verfahrenstechniker III
Name: Matr.-Nr.: Klausur Chemie für Verfahrenstehniker III 6. 1. 26 Aufgabe 1 (2.5 Punkte) 1.1 Die Reaktion: C (s) + CO 2 (g) 2 CO (g) ist endotherm. Wie wird das Gleihgewiht beeinflusst, wenn a) CO 2
[ A] [ B] [ ] [ ] Chemische Reaktionen in homogenen Systemen [ ] ( C D a a = = Aktivitäten a x für ideale Systeme: Aktivitätskoeffizient γ
Chemische Reaktionen in homogenen Systemen aa + bb cc + dd K T c d c d C D a b a b aa ab C D a a = = [ A] [ B] Aktivitäten a x für ideale Systeme: ideale Gase: ax px p verdünnte Lösungen: Fugazitätskoeffizient
