Potenzen und Wurzeln
|
|
|
- Hanna Albrecht
- vor 9 Jahren
- Abrufe
Transkript
1 Potenzen und Wurzeln Anna Heynkes , Aachen Dieser Text soll zusammenfassen und erklären, wie Potenzen und Wurzeln zusammenhängen und wie man mit ihnen rechnet. Inhaltsverzeichnis 1 Die Potenzgesetze für ganzzahlige Exponenten 1 2 Wurzeln Quadratwurzel Verallgemeinerung der Quadratwurzel Das Verhältnis von Wurzeln zu Potenzen Irrationale Wurzelwerte Lösungsmengen Gebrochen rationale Exponenten Die Potenzgesetze für rationale Exponenten 3 4 Wurzelgesetze 4 5 Wichtige Umkehrungen der Wurzelgesetze 5 i
2 1 Die Potenzgesetze für ganzzahlige Exponenten Ich wiederhole noch einmal die Potenzgesetze für ganzzahlige Exponenten, weil sie die Basis für die folgenden Erweiterungen einschließlich der Wurzelgesetze sind. Für die folgenden Rechenregeln gilt: a, b R; a, b 0; m, n Z Potenzen mit gleicher Basis werden multipliziert, indem man ihre Exponenten addiert. (P1): a m a n = a m+n Potenzen mit gleicher Basis werden dividiert, indem man ihre Exponenten subtrahiert. (P1*): a m a n = a m n Potenzen mit gleichen Exponenten werden multipliziert, indem man ihre Basen unter dem gemeinsamen Exponenten multipliziert. (P2): a m b m = (a b) m Potenzen mit gleichen Exponenten werden dividiert, indem man ihre Basen unter dem gemeinsamen Exponenten dividiert. (P2*): a m b m = ( a b )m Potenzen werden potenziert, indem man die Exponenten multipliziert. (P3): (a m ) n = a (m n) 2 Wurzeln 2.1 Quadratwurzel Meistens ist eigentlich die Quadratwurzel gemeint, wenn vereinfachend von einer Wurzel die Rede ist. In Wirklichkeit ist aber die Quadratwurzel nur ein besonders einfacher Spezialfall des allgemeineren mathematischen Begriffes Wurzel. Unter der Quadratwurzel einer Zahl a versteht man die Zahl x, die mit sich selbst multipliziert die Zahl a ergibt. Die Gleichung a = x ist also eine Umkehrung der Gleichung x 2 = a. Die Quadratwurzel aus 9 ist 3, weil 3 mit sich selbst multipliziert 9 ergibt. 1
3 2.2 Verallgemeinerung der Quadratwurzel Analog zur zweiten oder Quadratwurzel kann man auch die sogenannte Kubikwurzel oder dritte Wurzel einer Zahl a ermitteln, indem man die Zahl x sucht, die dreimal mit sich selbst multipliziert a ergibt. Die Gleichung 3 a = x ist also eine Umkehrung der Gleichung x 3 = a. Die Kubikwurzel aus 8 ist 2, denn oder 2 3 ergibt 8. Unter einer n-ten Wurzel von a ( n a = x mit n 2) versteht man eine nichtnegative Zahl x, die mit n potenziert die Zahl a ergibt (x n = a). Dabei nennt man das n Wurzelexponent, das a heißt Radikand und das x ist einfach der Wert der Wurzel. Wenn eine Lösung innerhalb der rationalen Zahlen R möglich sein soll, muß bei Wurzeln mit geraden Wurzelexponenten der Radikand positiv sein, da ein geradzahliges Vielfaches einer rationalen Zahl nicht negativ sein kann. 2.3 Das Verhältnis von Wurzeln zu Potenzen Das Ziehen von Wurzeln ist eine von zwei möglichen Umkehrungen des Potenzierens. Wenn a die n-te Potenz von x ist (x n = a), dann ist umgekehrt x die n-te Wurzel aus a ( n a = x). Man kann auch sagen, daß n a = x eine der drei möglichen Auflösungen der Gleichung x n = a ist. Das Ziehen der n-ten Wurzel wird durch ein Potenzieren mit n rückgängig gemacht (( n a) n = a = n a n ). Das Umkehrungsverhältnis von Potenzen und Wurzeln kommt auch dadurch zum Ausdruck, dass man n a auch als a 1 n schreiben kann. Die gegenseitige Aufhebung von Potenzen und Wurzeln macht dies noch deutlicher: ( n a) n = (a 1 n ) n = a n n = a 1 = a (a 0) 2.4 Irrationale Wurzelwerte Nicht alle Wurzeln haben Lösungen im Bereich der rationalen Zahlen R. Zum Beispiel ist die dritte Wurzel aus 2 ( 3 2) keine rationale, sondern eine irrationale Zahl. Es gibt nämlich keine aus ganzen Zahlen darstellbare Bruchzahl ( m, m, n N), die genau 3 2 n entspräche. Ansonsten würde gelten: m m m = m3 = 2. Demnach müsste m 3 genau n n n n 3 doppelt so groß wie n 3 sein, sodaß sich der Bruch m3 zu 2 kürzen lassen müsste. Es gibt n 3 1 aber keine natürliche Zahl m, deren dritte Potenz 2 ergibt. 2.5 Lösungsmengen Eine Lösungsmenge ist die Menge aller möglichen Lösungen einer Gleichung. Die Lösungsmenge der Gleichung x n = a kann 2, 1 oder kein Element enthalten, wenn a zu den rationalen Zahlen R gehört und n gerade ist: Für a > 0 gibt es die Lösungen x = n a und x = n a. L = { n a, n a} Für a = 0 ist x = n 0 = 0 die Lösung. L = {0} Für a < 0 gibt es keine Lösung. L = {}. 2
4 Jede Gleichung der Form x n = a hat genau eine Lösung, die Lösungsmenge also nur jeweils ein Element, wenn a zu den rationalen Zahlen R gehört und n ungerade ist: Für a > 0 ist x = n a die Lösung. L = { n a} Für a = 0 ist x = n 0 die Lösung. L = {0} Für a < 0 ist x = n { a die Lösung. L = n } a. Die letzte Zeile macht deutlich, dass der Radikand nicht negativ werden darf. Man zieht deshalb das Minus vor die Wurzel und rechnet mit dem Betrag von a. Das funktioniert aber nur bei ungeraden Exonenten (x n = a) bzw. Wurzelexponenten (x = n a), weil bei geradem n das negative Vorzeichen aufgehoben würde. Aus diesem Grund gibt es auch keine Lösung, wenn der Wurzelexponent gerade ist. 2.6 Gebrochen rationale Exponenten Wie in Abschnitt 2.3 auf Seite 2 bereits kommentarlos benutzt, läßt sich der Potenzbegriff auf gebrochen rationale Exponenten ausweiten. a m n = n a m (1) Dies gilt zumindest für m Z, n N, a > 0 Daraus folgt auch, daß man den Wurzelexponenten gegen den Exponenten des Radikanden kürzen kann. Wenn m = p, dann gilt für a > 0, m, p Z, n, q N: n q n am = q a p (2) Wäre a nicht positiv, dann könnte die Erweiterbarkeit von Exponenten zu Widersprüchen führen: 2 = 3 8 = ( 8) 1 3 = ( 8) 2 6 = 6 ( 8) 2 = 6 64 = 2 3 Die Potenzgesetze für rationale Exponenten Bereits in Kapitel 2.3 auf der vorherigen Seite wurde zur Erklärung des Verhältnisses von Potenzen und Wurzeln einfach eine Potenz mit rationalem Exponenten (a m n ) eingeführt und in 2.6 wurde schon damit gearbeitet. Offenbar gelten also die Potenzgesetze auch für rationale Exponenten. Für die folgenden Rechenregeln gilt jetzt nur noch, daß die Exponenten r und s rationale Zahlen und die Basen a und b positive rationale Zahlen sein müssen: a, b, r, s R; a, b > 0 Potenzen mit gleicher Basis werden multipliziert, indem man ihre Exponenten addiert. (P1): a r a s = a r+s 3
5 Potenzen mit gleicher Basis werden dividiert, indem man ihre Exponenten subtrahiert. (P1*): a r a s = a r s Potenzen mit gleichen Exponenten werden multipliziert, indem man ihre Basen unter dem gemeinsamen Exponenten multipliziert. (P2): a r b r = (a b) r Potenzen mit gleichen Exponenten werden dividiert, indem man ihre Basen unter dem gemeinsamen Exponenten dividiert. (P2*): a r b r = ( a b )r Potenzen werden potenziert, indem man die Exponenten multipliziert. (P3): (a r ) s = a (r s) 4 Wurzelgesetze Zwei Wurzeln mit gleichem Wurzelexponenten werden multipliziert, indem man die beiden Radikanden unter einer gemeinsamen Wurzel (mit dem gemeinsamen Wurzelexponenten) multipliziert. (W2): n a n b = n a b für a 0, b 0 Zwei Wurzeln mit gleichem Wurzelexponenten werden dividiert, indem man die beiden Radikanden unter einer gemeinsamen Wurzel (mit dem gemeinsamen Wurzelexponenten) dividiert. (W2 ): n a n b = n a b für a 0, b 0 Besteht der Radikand einer Wurzel aus einer Wurzel, dann kann man die beiden Wurzeln durch Multiplikation der beiden Wurzelexponenten zu nur noch einer Wurzel vereinigen. (W3): m n a = m n a für a 0 4
6 5 Wichtige Umkehrungen der Wurzelgesetze Oft ist es notwendig, die Wurzelgesetze umgekehrt anzuwenden. Zum Beispiel kann man das Wurzelgesetz W2 umkehren und den Radikanden so in zwei Faktoren zerlegen, daß man aus einem der beiden Faktoren leicht die Wurzel ziehen kann ( n a n b = a n b). Zweckmäßig kann auch eine Zerlegung des Wurzelexponenten sein, wenn sich einer der beiden Faktoren gegen einen Exponenten unter der Wurzel kürzen lässt ( m n a n = m a). Manchmal ist es auch sinnvoll, den Bruch unter einer Wurzel so zu erweitern, daß man insbesondere aus dem Nenner die Wurzel ziehen kann ( 2 a = 2 a b = 2 a b). b b b b 5
Potenzen - Wurzeln - Logarithmen
Potenzen - Wurzeln - Logarithmen Anna Geyer 4. Oktober 2006 1 Potenzrechnung Potenz Produkt mehrerer gleicher Faktoren 1.1 Definition (Potenz): (i) a n : a... a, n N, a R a... Basis n... Exponent od. Hochzahl
Einführung in die Potenzrechnung
.2.0.. Mathematische Grundlagen II Einführung in die Potenzrechnung Bei der Multiplikation haben wir festgestellt, dass aa 2 eine andere Schreibweise von aa aa und aa eine andere Schreibweise aa aa aa
Definition: Unter der n-ten Potenz einer beliebigen reellen Zahl a versteht man das n-fache Produkt von a mit sich selbst
Potenzen mit ganzzahligen Exponenten Definition: Unter der n-ten Potenz einer beliebigen reellen Zahl a versteht man das n-fache Produkt von a mit sich selbst Man schreibt a n = b Dabei heißt a die Basis,
Reelle Zahlen (R)
Reelle Zahlen (R) Bisher sind bekannt: Natürliche Zahlen (N): N {,,,,,6... } Ganze Zahlen (Z): Z {...,,,0,,,... } Man erkennt: Rationale Zahlen (Q):.) Zwischen den natürlichen Zahlen befinden sich große
1 Mengen und Mengenoperationen
1 Mengen und Mengenoperationen Man kann verschiedene Objekte mit gemeinsamen Eigenschaften zu Mengen zusammenfassen. In der Mathematik kann man z.b. Zahlen zu Mengen zusammenfassen. Die Zahlen 0; 1; 2;
Potenzen mit ganzzahligen Exponenten: Rechenregeln
Lüneburg, Fragment Potenzen mit ganzzahligen Exponenten: Rechenregeln 5-E1 5-E2 Potenzen: Rechenregeln Regel 1: Potenzen mit gleicher Basis können dadurch miteinander multipliziert werden, dass man die
Wurzeln als Potenzen mit gebrochenen Exponenten. Vorkurs, Mathematik
Wurzeln als Potenzen mit gebrochenen Exponenten Zur Einstimmung Wir haben die Formel benutzt x m n = x m n nach der eine Exponentialzahl potenziert wird, indem man die Exponenten multipliziert. Dann sollte
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 2. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN Bisher kennen wir bereits folgende Zahlenbereiche: N Natürliche Zahlen Z Ganze Zahlen Q Rationale Zahlen Bei
= T 2. Lösungsmenge ist die Menge aller Elemente des Definitionsbereiches D G, die die Gleichung zu einer Wahre Aussage machen.
Gleichungen Eine Gleichung ist eine Aussage, in der die Gleichheit zweier Terme durch Mathematische Symbol ausgedrückt wird. Dies wird durch das Gleichheitssymbol = symbolisiert G : = T 2 Definitionsmenge
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 4 4. Semester ARBEITSBLATT 4 POTENZEN MIT RATIONALEM EXPONENTEN
ARBEITSBLATT POTENZEN MIT RATIONALEM EXPONENTEN Um mit Wurzeln rechnen zu können müssen wir diese in Potenzschreibweise umformen. Dazu benötigen wir folgende Definition: s r r s + Definition: a a a R,
1.Rationale und irrationale Zahlen. Quadratwurzel.
1.Rationale und irrationale Zahlen 1.1Quadratwurzeln Die Quadratwurzel aus einer rationalen Zahl 5 = 5; denn 5 = 5 und 5 > 0 r > 0 (geschrieben r ) ist diejenige nichtnegative Zahl, deren Quadrat r ergibt.
Vorkurs Mathematik Dozent: Dipl.-Math. Karsten Runge.
Vorkurs Mathematik 17.08.-28.08.15 Dozent: Dipl.-Math. Karsten Runge E-mail: [email protected] www.hs-bochum.de\imt > Mathematik-Vorkurs > Mathematik-Werkstatt Die Mathematik-Werkstatt bietet
Mathematik: Mag. Wolfgang Schmid Arbeitsblatt 7 4. Semester ARBEITSBLATT 7 RECHNEN MIT LOGARITHMEN
Mathematik: Mag. Wolfgang Schmid Arbeitsblatt 7. Semester ARBEITSBLATT 7 RECHNEN MIT LOGARITHMEN Für das Rechnen mit Logarithmen gibt es nun natürlich eigene Rechengesetze, welche wir uns nun anschauen
4 Potenzen Wachstumsprozesse Exponentialfunktionen
4 Potenzen Wachstumsprozesse Exponentialfunktionen 4.1 Potenzieren Radizieren 4.1.1 Potenzen mit natürlichen Exponenten Exponentielle Wachstumsvorgänge 4.1.1.1 Wiederholung zum Potenzieren ist eine Potenz
Übersicht über wichtige und häufig benötigte mathematische Operationen
Bruchrechnung Übersicht über wichtige und häufig benötigte mathematische Operationen Addition/Subtraktion von (ungleichnamigen) Brüchen: Brüche erweitern, sodass die Nenner gleichnamig sind, indem Zähler
Potenzen mit rationalem Exponenten Seite 1
Potenzen mit rationalem Exponenten Seite 1 Kapitel mit 1271 Aufgaben Seite WIKI Regeln und Formeln 0 Level 1 Grundlagen Aufgabenblatt 1 (176 Aufgaben) 05 Lösungen zum Aufgabenblatt 1 08 Aufgabenblatt 2
Mathematik 1 -Arbeitsblatt 1-8: Rechnen mit Potenzen. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB. Potenzen mit negativer Basis
Schule Thema Personen Bundesgymnasium für Berufstätige Salzburg Mathematik -Arbeitsblatt -8: Rechnen mit Potenzen F Wintersemester 0/0 Unterlagen: LehrerInnenteam GFB ) Potenzen mit negativer Basis Zur
2 RECHENGESETZE 2 auch dieses Rechengesetz gilt, wenn einmal bewiesen, natürlich vorwärts wie rückwärts, also gilt dann ebenfalls: Es folgt wieder der
1 DEFINITION DER POTENZIERUNG 1 Potenzgesetze 1 Definition der Potenzierung Wir definieren für eine rationale Zahl a und eine natürliche Zahl n die Potenzierung wie folgt: a n := a a a ::: a Diese Art
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 1. Semester ARBEITSBLATT 8 RECHNEN MIT POTENZEN. 1) Potenzen mit negativer Basis
ARBEITSBLATT 8 RECHNEN MIT POTENZEN ) Potenzen mit negativer Basis Zur Erinnerung: = = 6 Der Eponent gibt also an, wie oft die Basis mit sich selbst multipliziert werden muss. Die Basis muss natürlich
Mathematik. für das Ingenieurstudium. 1 Grundlagen. Jürgen Koch Martin Stämpfle.
1 Grundlagen www.mathematik-fuer-ingenieure.de 2010 und, Esslingen Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung des Werkes,
Die komplexen Zahlen
Die komplexen Zahlen Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.de 1 Die nicht lösbaren quadratischen Gleichungen Seite 1 2 Das
lwww.mathematik-training.de Algebra 7, 29 7, Navigation Aufgaben mit Musterlösungen: Termvereinfachung Wurzeln Aufgabe 0001 Aufgabe 0002
Aufgaben mit Musterlösungen: Aufgabe 0001 Aufgabe 0002 2 1 1 2 10 + 2 2 10 3 27 Aufgabe 0003 3 9 4 3 3 4 Aufgabe 0004 Aufgabe 0005 Aufgabe 0006 Aufgabe 0007 Aufgabe 0008 Aufgabe 0009 7, 29 100 3 ( 3 7,
Lernskript Potenzrechnung 2³ = 8
Lernskript Potenzrechnung 2³ = 8 Inhaltsverzeichnis Erklärungen...2 Potenz...2 Basis...3 Exponent...4 Hoch null...5 Punkt- vor Strichrechnung mit Potenzen...5 Potenzen mit gleicher Basis...6 Potenzen mit
Wirtschaftsmathematik: Mathematische Grundlagen
Wirtschaftsmathematik: Mathematische Grundlagen 1. Zahlen 2. Potenzen und Wurzeln 3. Rechenregeln und Vereinfachungen 4. Ungleichungen 5. Intervalle 6. Beträge 7. Lösen von Gleichungen 8. Logarithmen 9.
Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen:
2. Zahlbereiche Besonderheiten und Rechengesetze Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2.1. Die natürlichen Zahlen * + besitzt abzählbar unendlich viele Elemente
Aufgabensammlung Klasse 8
Aufgabensammlung Klasse 8 Inhaltsverzeichnis 1 Potenzen mit natürlichen Hochzahlen 3 1.1 Rechenregeln für das Rechnen mit Potenzen..................... 3 1.1.1 Addition und Subtraktion von Potenzen...................
n: Exponent (= Hochzahl. Zeigt an, wie oft die Basis mit sich selber multipliziert wird.)
10. Potenzen 10.1 Definition Potenz (Repetition)Begriffe Potenz: n gleiche Faktoren a a n = a a a a a a a a a n n: Exponent (= Hochzahl. Zeigt an, wie oft die Basis mit sich selber multipliziert wird.)
3 Zahlen und Arithmetik
In diesem Kapitel werden Zahlen und einzelne Elemente aus dem Bereich der Arithmetik rekapituliert. Insbesondere werden die reellen Zahlen eingeführt und einige Rechenregeln wie Potenzrechnung und Logarithmieren
Mathematik. Subtraktion (Minuend Subtrahend = Differenz) Division (Dividend / Divisor = Quotient)
Inhalt: Mathematik 2.2003 2003 by Reto Da Forno Termumformungen - Operationsstufen Seite 1 - Gesetze Seite 1 - Addition + Subtraktion Seite 2 - Potenzen Seite 2 - Polynomdivision Seite 3 - Ausklammern
Mathematik - Ein Lehr- und Übungsbuch
Die wichtigsten Lehrbücher bei HD Mathematik - Ein Lehr- und Übungsbuch Band : Arithmetik, Algebra, Mengen- und Funktionenlehre Bearbeitet von Carsten Gellrich, Regina Gellrich 4., korr. Aufl. 006. Buch.
Mathematikvorkurs. Fachbereich I. Sommersemester Elizaveta Buch
Mathematikvorkurs Fachbereich I Sommersemester 2017 Elizaveta Buch Themenüberblick Montag Grundrechenarten und -regeln Bruchrechnen Binomische Formeln Dienstag Potenzen, Wurzeln und Logarithmus Summen-
Mathematik-Dossier Potenzen und Wurzeln Stoffsicherung und repetition.
Name: Mathematik-Dossier Potenzen und Wurzeln Stoffsicherung und repetition. Inhalt: Potenzen Die zweite Wurzel (Quadratwurzel) Verwendung: Dieses Dossier dient der Repetition und Festigung innerhalb der
Reelle Zahlen, Termumformungen, Gleichungen und Ungleichungen
2. Vorlesung im Brückenkurs Mathematik 2018 Reelle Zahlen, Termumformungen, Gleichungen und Ungleichungen Dr. Markus Herrich Markus Herrich Reelle Zahlen, Gleichungen und Ungleichungen 1 Die Menge der
RECHNEN MIT VARIABLEN UND BINOMISCHE FORMELN
RECHNEN MIT VARIABLEN UND BINOMISCHE FORMELN Addition und Subtraktion mit Variablen Es dürfen nur Ausdrücke mit gleichen Variablen addiert oder subtrahiert werden. a und a² sind auch unterschiedliche Variablen.
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Grundwissen Mathematik - Wurzeln und Potenzen
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Grundwissen Mathematik - Wurzeln und Potenzen Das komplette Material finden Sie hier: School-Scout.de Michael Körner Grundwissen Wurzeln
2 ZAHLEN UND VARIABLE
Zahlen und Variable 2 ZAHLEN UND VARIABLE 2.1 Grundlagen der Mengenlehre Unter einer Menge versteht man die Zusammenfassung von unterscheidbaren Objekten zu einem Ganzen. Diese Objekte bezeichnet man als
J Quadratwurzeln Reelle Zahlen
J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen 1 Quadratwurzeln Ein Quadrat habe einen Flächeninhalt von 64 cm. Will man wissen, wie lang die Seiten des Quadrates sind, so muss man herausfinden,
Michael Körner. Grundwissen Wurzeln und Potenzen Klasse VORSCHAU. Bergedorfer Kopiervorlagen. zur Vollversion
Michael Körner Grundwissen Wurzeln und Potenzen 5.-10. Klasse Bergedorfer Kopiervorlagen Zu diesem Material Zu dieser Mappe Was sind Wurzeln? Wozu benötigt man Potenzen? Wieso gelten die Potenzgesetze
Mathematik Quadratwurzel und reelle Zahlen
Mathematik Quadratwurzel und reelle Zahlen Grundwissen und Übungen a : a a Stefan Gärtner 1999 004 Gr Mathematik elementare Algebra Seite Inhalt Inhaltsverzeichnis Seite Grundwissen Definition Quadratwurzel
M 9.1. Quadratwurzeln. Wie bezeichnet man die Zahl unter der Wurzel? Für welche Zahlen ist die Wurzel definiert? Berechne: Carina Mittermayer (2010)
M 9.1 Quadratwurzeln Wie wird definiert? Wie bezeichnet man die Zahl unter der Wurzel? Für welche Zahlen ist die Wurzel definiert? Berechne: M 9.2 Reelle Zahlen Was sind irrationale Zahlen? Nenne vier
M 9.1. Quadratwurzeln. Wie bezeichnet man die Zahl unter der Wurzel? Für welche Zahlen ist die Wurzel definiert? Berechne: Carina Mittermayer (2010)
M 9.1 Quadratwurzeln Wie wird definiert? Wie bezeichnet man die Zahl unter der Wurzel? Für welche Zahlen ist die Wurzel definiert? Berechne: M 9.2 Reelle Zahlen Was sind irrationale Zahlen? Nenne vier
BRUCHRECHNEN. Erweitern und Kürzen:
BRUCHRECHNEN Jede Bruchzahl läßt sich als Dezimalzahl darstellen 5 5:8 0.65 endlicher Dezimalbruch 8 0,6 unendlicher Dezimalbruch Nachfolgend werden die wesentlichen Zusammenhänge der Bruchrechnung angeführt.
Runden Potenzen und Wurzel Terme. Mathematik W2. Mag. Rainer Sickinger BRP, LMM. v 7 Mag. Rainer Sickinger Mathematik W2 1 / 82
Mathematik W2 Mag. Rainer Sickinger BRP, LMM v 7 Mag. Rainer Sickinger Mathematik W2 1 / 82 Das Stellenwertsystem eins < zehn < hundert < tausend < zehntausend < hunderttausend... v 7 Mag. Rainer Sickinger
Mathematik Runden, Potenzen, Terme
Mathematik Runden, Potenzen, Terme Mag. Rainer Sickinger HTL v 7 Mag. Rainer Sickinger Mathematik Runden, Potenzen, Terme 1 / 81 Das Stellenwertsystem eins < zehn < hundert < tausend < zehntausend < hunderttausend...
Zahlen und elementares Rechnen
und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3
2018, MNZ. Jürgen Schmidt. Vorkurs. Mathematik RECHNEN. Tag. Wintersemester 2018/19
208, MNZ. Jürgen Schmidt Vorkurs Mathematik. RECHNEN Wintersemester 208/9 Tag Kontaktdaten Dr.-Ing. Jürgen Schmidt Raum 5.2.09 (036) 6700 975 [email protected] Sprechzeit: im WS208/9 (Vorlesungszeit)
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Teil 1 Wintersemester 2016/17 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Mengen
b n = b In der darauffolgenden Prüfung zu diesem Thema mussten die Schülerinnen und Schüler die Aufgabe
Aufgabenblatt Aufgaben zum Thema Potenzgesetze 1. Unterhaltsame Potenzgesetze Im Unterricht wurden die folgenden 5 Potenzgesetze behandelt: 1. Gesetz: 2. Gesetz: 3. Gesetz: 4. Gesetz: 5. Gesetz: a n a
Mathematischer Vorbereitungskurs für Ökonomen
Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Ungleichungen Inhalt: 1. Grundlegendes 2. Lineare Ungleichungen 3. Ungleichungen mit
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Teil 1 Wintersemester 2016/17 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Mengen
MATHEMATIK Leitprogramm technische Mathematik Rechenregeln
M..04.0_ INHALT: 8. ADDITION UND SUBTRAKTION 44 9. MULTIPLIKATION UND DIVISION 49 0. BRÜCHE ERWEITERN UND KÜRZEN 6. RECHNEN MIT POTENZEN 69. RADIZIEREN 79 Information Wie Sie im ersten Kapitel gelernt
Über das Rechteck weißt du, dass der Umfang 32 cm beträgt. Die Formel für den Umfang eines Rechtecks lautet 2 2.
Aufgabe 1 Schritt 1: Skizze und Ansatz Über das Rechteck weißt du, dass der Umfang 32 cm beträgt. Die Formel für den Umfang eines Rechtecks lautet 2 2. Da du außerdem das Verhältnis der Seitenlängen kennst,
Demo-Text für Quadratwurzeln ALGEBRA. Teil 1. Einführung und Grundeigenschaften. (Klasse 8 / 9) Friedrich W.
Teil 1 Einführung und Grundeigenschaften (Klasse 8 / 9) Datei Nr. 101 Friedrich W. Buckel Stand: 1. Mai 014 ALGEBRA Quadratwurzeln INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Vorwort Die Einführung des 1-jährigen
A4 Potenzen und Potenzfunktionen
A4 Potenzen und Potenzfunktionen A4 Potenzen und Potenzfunktionen Potenzen mit natürlichen Exponenten Für Potenzen mit natürlichen Exponenten gilt folgende Def.: Die Potenz a n mit a R, n N\ 1, ist durch
Grundwissen Wurzeln und Potenzen
Michael Körner Grundwissen Wurzeln und Potenzen 5.-10. Klasse Bergedorfer Kopiervorlagen Zu diesem Material Zu dieser Mappe Was sind Wurzeln? Wozu benötigt man Potenzen? Wieso gelten die Potenzgesetze
Mathematik. FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli Kontakt und weitere Infos:
FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli 2004 Kontakt und weitere Infos: www.schule.barmetler.de Inhaltsverzeichnis 1 Wiederholung 5 1.1 Bruchrechnen.............................
Die Kanten der Grundfläche mit je 7 cm sind die Katheten a und b des rechtwinkligen Dreiecks, die Hypotenuse c ist die gesuchte Bodendiagonale c.
Aufgabe 1 Schritt 1: Ansatz und Skizze Bei einem Würfel, bei dem ja alle Kantenlängen gleich sind, kannst du mit einer Raumdiagonale, einer senkrechten Kante und einer Decken oder Bodendiagonalen ein rechtwinkliges
Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014
egelsammlung mb2014 THM Friedberg von 6 16.08.2014 15:04 Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014 Sammlung von Rechenregeln, extrahiert aus dem Lehrbuch: Erhard Cramer, Johanna Neslehová: Vorkurs
4 Wurzeln, Dezimalzahlen und eine neue Menge die reellen Zahlen
4 Wurzeln, Dezimalzahlen und eine neue Menge die reellen Zahlen Tom und Sara werden jeden Tag von einem Schülerlotsen über einen Zebrastreifen vor der Schule geleitet. Sara hat ihn beobachtet und ihr ist
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Teil 1 Wintersemester 2017/18 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Mengen
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Teil 1 Wintersemester 2018/19 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2018 Steven Köhler Wintersemester 2018/19 Inhaltsverzeichnis Teil 1 Mengen
ZAHLBEREICHE UND RECHENOPERATIONEN
Zahlbereiche und Rechenoperationen ZAHLBEREICHE UND RECHENOPERATIONEN. Einführung Welche Bezeichnungen werden bei den Grundrechnungsarten verwendet? Die folgende Tabelle ist anhand von Zahlenbeispielen
Einführung und Grundeigenschaften (Klasse 8 / 9)
ALGEBRA Quadratwurzeln Teil 1 Einführung und Grundeigenschaften (Klasse 8 / 9) Datei Nr. 101 Friedrich W. Buckel Stand: 10. Januar 018 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Vorwort Die Einführung des
Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:
M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: ; ; ; ; M 9.2 Reelle Zahlen
Wichtig! Bei jeder Wurzelaufgabe soll versucht werde den Wert so weit wie möglich zu vereinfachen und es darf kein Wurzelausdruck im Nenner stehen.
7 WURZELRECHNEN, RADIZIEREN Die Wurzelausdrücke Berechnen Se den Wurzelwert ohne Taschenrechner! 1 3 6 Wichtige Erkenntnisse beim rechnen mit Wurzelausdrücken: 4 Der Wurzelindex wird nicht geschrieben.
Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:
M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: ; ; ; ; M 9.2 Reelle Zahlen
2.6 Potenzen (Thema aus dem Bereichen Algebra)
2.6 Potenzen Thema aus dem Bereichen Algebra) Inhaltsverzeichnis 1 Einführung in den Begriff der Potenz 2 2 Repetition: Potenzen mit natürlichen Exponenten 2 Potenzen mit ganzzahligen Exponenten 4 4 Potenzen
Wiederholung der Algebra Klassen 7-10
PKG Oberstufe 0.07.0 Wiederholung der Algebra Klassen 7-0 06rr5 4. (a) Kürze so weit wie möglich: 4998 (b) Schreibe das Ergebnis als gemischte Zahl und als Dezimalbruch: (c) Schreibe das Ergebnis als Bruch:
a heißt Radikand Das (Quadrat-)Wurzelziehen ist die Umkehrung des Quadrierens. Das Quadrieren ist die Umkehrung des (Quadrat-)Wurzelziehens.
1 Reelle Zahlen - Quadratwurzeln Wir kennen den Flächeninhalt A = 49 m 2 eines Quadrats und möchten seine Seitenlänge x berechnen Es ist also jene Zahl x zu ermitteln, die mit sich selbst multipliziert
Quadratwurzeln. Reelle Zahlen
M 9. Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: = Quadratwurzeln sind nur für positive Zahlen definiert: 0 25 = 5; 8 = 9; 0,25 = =
U. Rausch, 2010 Potenzrechnung 1
U. Rausch, 2010 Potenzrechnung 1 Potenzrechnung 1 Schreibweise und Potenzrechenregeln Unter einer Potenz versteht man ein Symbol der Form a x, gesprochen a hoch x, wobei a und x (reelle) Zahlen sind. Dabei
Terme und Gleichungen
Terme und Gleichungen Rainer Hauser November 00 Terme. Rekursive Definition der Terme Welche Objekte Terme genannt werden, wird rekursiv definiert. Die rekursive Definition legt zuerst als Basis fest,
Der Nenner eines Bruchs darf nie gleich 0 sein! Der Zähler eines Bruchs kann dagegen auch 0 sein. Dies besagt, dass kein Teil zu nehmen ist.
Bruchteile Bruchteile von Ganzen lassen sich mit Hilfe von Brüchen angeben. Der Nenner gibt an, in wie viele gleiche Teile ein Ganzes zerlegt wird. Der Zähler gibt an, wie viele dieser gleichen Teile zu
Fachbereich I Management, Controlling, Health Care. Mathematikvorkurs. Wintersemester 2017/2018. Elizaveta Buch
Fachbereich I Management, Controlling, Health Care Mathematikvorkurs Wintersemester 2017/2018 Elizaveta Buch Themenüberblick Montag Grundrechenarten und -regeln Bruchrechnen Prozentrechnung Dienstag Binomische
1 Potenzen und Polynome
1 Potenzen und Polynome Für eine reelle Zahl x R und eine natürliche Zahl n N definieren wir x n := x x x... x }{{} n-mal Einschub über die bisher aufgetretenen mathematischen Symbole: Definition mittels
Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand:
M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: 0 25 5; 81 9; 0,25 0,5; 0,0081
Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: zweier ganzer Zahlen p und q schreiben kann.
1 Grundlagen 1.1 Das Rechnen mit Zahlen Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: N: natürliche Zahlen 1, 2, 3, 4, 5,... Z: ganze Zahlen..., 3, 2, 1, 0, 1, 2, 3,... Q: rationale Zahlen:
Potenzen mit gleichem Exponenten
Potenzen mit gleichem Exponenten Seite 01 Kapitel mit 544 Aufgaben Seite WIKI Regeln und Formeln 03 Level 1 Grundlagen Aufgabenblatt 1 (176 Aufgaben) 04 Lösungen zum Aufgabenblatt 1 06 Aufgabenblatt 2
Wichtig! Bei jeder Wurzelaufgabe soll versucht werde den Wert so weit wie möglich zu vereinfachen und es darf kein Wurzelausdruck im Nenner stehen.
ALGEBRA GRUNDRECHENARTEN 7 WURZELRECHNEN, RADIZIEREN Berechnen Se den Wurzelwert ohne Taschenrechner! 1 3 6 Wichtige Erkenntnisse beim rechnen mit Wurzelausdrücken: 4 Der Wurzelindex wird nicht geschrieben.
Zahlen und elementares Rechnen (Teil 1)
und elementares Rechnen (Teil 1) Dr. Christian Serpé Universität Münster 6. September 2010 Dr. Christian Serpé (Universität Münster) und elementares Rechnen (Teil 1) 6. September 2010 1 / 40 Gliederung
Inhaltsverzeichnis INHALTSVERZEICHNIS
INHALTSVERZEICHNIS Einleitung: Zur Verwendung dieses Buches 12 Kapitel 1 Primzahlen, ggt, kgv, Dreisatz Test 1 Aufgaben 1 20 15 Lösungen und Erklärungen zum Test 1 17 E1 Vielfache, Teiler, Primfaktorzerlegung
Vorwort. Marc Peter, Rainer Hofer Berufsschullehrer und Lehrpersonen für Förderangebote
Vorwort Das mathematische Grundwissen in der Arithmetik dem «Rechnen» kommt in vielen Berufen zur Anwendung. Dieser Band aus der Reihe «Mathematik Basics» bietet Ihnen die Möglichkeit, in Form eines programmierten
Grundwissen 9. Klasse. Mathematik
Grundwissen 9. Klasse Mathematik Philipp Kövener I. Reelle Zahlen 1.1 Quadratwurzel Definition Für a 0 ist die Quadratwurzel diejenige nicht-negative Zahl, deren Quadrat a ergibt. a heißt Radikand und
5. bis 10. Klasse. Schnell-Merk-System. Mathematik. Kompaktwissen Testfragen SMS. Mit Lernquiz fürs Handy
5. bis 10. Klasse SMS Schnell-Merk-System Mathematik Kompaktwissen Testfragen Mit Lernquiz fürs Handy 2 Zahlen und Rechnen Rechnen mit natürlichen Zahlen Multiplikation ist die mehrfache Addition gleicher
Serie 2. Algebra-Training. Potenzen und Wurzeln. Theorie & Aufgaben. VSGYM / Volksschule Gymnasium
Algebra-Training Theorie & Aufgaben Serie 2 Potenzen und Wurzeln Theorie und Aufgaben: Ronald Balestra, Katharina Lapadula VSGYM / Volksschule Gymnasium Liebe Schülerin, lieber Schüler Der Leitspruch «Übung
Grundlagen der Mathematik von Ansgar Schiffler - Seite 1 von 7 -
- Seite von 7 -. Wie lautet die allgemeine Geradengleichung? (Mit Erklärung). Ein Telefontarif kostet 5 Grundgebühr und pro Stunde 8 cent. Wie lautet allgemein die Gleichung für solch einen Tarif? (Mit
Stichwortverzeichnis. Symbole. Stichwortverzeichnis
Stichwortverzeichnis Stichwortverzeichnis Symbole ( ) (Runde Klammern) 32, 66 (Betragszeichen) 32 (Multiplikations-Zeichen) 31 + (Plus-Zeichen) 31, 69 - (Minus-Zeichen) 31, 69 < (Kleiner-als-Zeichen) 33,
Der lange Weg zu den Potenz- und Logarithmengesetzen
Der lange Weg zu den Potenz- und Logarithmengesetzen. Schritt: x n, n N, also eine natürliche Zahl ungleich Null). Wie jeder weiß gilt: 0 6 0 3 = } 0 0 0 {{ 0 0 0} 0 } 0 {{ 0} = } 0 0 0 0 0 {{ 0 0 0 0}
Examen GF Mathematik (PAM) Kurzfragen 2017
Examen GF Mathematik (PAM) Kurzfragen 2017 Die mit einem + gekennzeichneten Fragen sind längere Kurzfragen. Kurzfrage 1+ Was ist ein Vektor? Ein Vektor ist die Menge aller gerichteten Strecken ( Pfeile
DOWNLOAD. Potenzgesetze für ganzzahlige Exponenten. Michael Körner. Downloadauszug aus dem Originaltitel: Grundwissen Wurzeln und Potenzen
DOWNLOAD Michael Körner Potenzgesetze für ganzzahlige Exponenten Michael Körner Grundwissen Wurzeln und Potenzen. 0. Klasse Bergedorfer Kopiervorlagen Downloadauszug aus dem Originaltitel: Definition von
Reelle Zahlen, Gleichungen und Ungleichungen
9 2. Vorlesung Reelle Zahlen, Gleichungen und Ungleichungen 4 Zahlenmengen und der Körper der reellen Zahlen 4.1 Zahlenmengen * Die Menge der natürlichen Zahlen N = {0,1,2,3,...}. * Die Menge der ganzen
Eine Menge ist die Zusammenfassung von bestimmten unterschiedenen Objekten zu einem Ganzen.
1. Grundlagen Damit wir uns im Gebiet der Zahlen orientieren können, müssen wir uns einer gemeinsam festgelegten Sprache bedienen. In diesem ersten Kapitel erhalten Sie einen kurzen Abriss über die gängigsten
Logarithmen. Gesetzmäßigkeiten
Logarithmen Gesetzmäßigkeiten Einführung Als erstes muss geklärt werden, für was ein Logarithmus gebraucht wird. Dazu sollte folgendes einführendes Beispiel gemacht werden. Beispiel 1: 2 x = 8 Wie an diesem
1 Zahlen. 1.1 Kürzen ( ) ( ) ( ) 1.2 Addieren und Subtrahieren. 1.3 Multiplizieren und Dividieren Beispiele: Grundwissen Mathematik 8
Zahlen x+ a+b Bruchterme sind z.b.: ; ; x a. Kürzen In Faktoren zerlegen: x x Gemeinsame Faktoren kürzen: 4a x + 5 ( x+ ) x x x x ( x+ ). Addieren und Subtrahieren Bsp.:,5 + D QI \{0; } x x Hauptnenner
Sätze über ganzrationale Funktionen
Sätze über ganzrationale Funktionen 1. Sind alle Koeffizienten a i ganzzahlig und ist x 0 eine ganzzahlige Nullstelle, so ist x 0 ein Teiler von a 0. 2. Haben alle Koeffizienten dasselbe Vorzeichen, so
Die Menge C der komplexen Zahlen wird im Kapitel Weitere Themen behandelt.
1 1 Funktionen 1.1 Grundlegende Zahlenmengen Georg Cantor (1845-1918) hat den Begriff der Menge eingeführt. Man versteht darunter die Zusammenfassung einzelner Dinge, welche Elemente genannt werden, zu
Zahlen. Grundwissenskatalog G8-Lehrplanstandard
GRUNDWISSEN MATHEMATIK Zahlen Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S -
