Spieltheorie Gemischte Strategien
|
|
|
- Walther Hertz
- vor 9 Jahren
- Abrufe
Transkript
1 Spieltheorie Gemischte Strategien Emanuel Kitzelmann Kognitive Systeme Universität Bamberg Übung KogSys I, WS 06/07 E. Kitzelmann (Universität Bamberg) Gemischte Strategien Übung KogSys I, WS 06/07 1 / 15
2 Gliederung 1 Game Trees Game Trees 2 Gemischte Strategien Gemischte Strategien E. Kitzelmann (Universität Bamberg) Gemischte Strategien Übung KogSys I, WS 06/07 2 / 15
3 Problemstellung Nullsummenspiel mit zwei Spielern Spieler ziehen abwechselnd der zuerst ziehende Spieler heißt MAX, der Gegner MIN indem der Payoff/Nutzen für MIN durch den von MAX determiniert ist (Nullsummenspiel) genügt es, den Nutzen von MAX zu betrachten Problem: besten Zug/beste Strategie für MAX finden unter der Annahme, dass MIN optimal spielt E. Kitzelmann (Universität Bamberg) Gemischte Strategien Übung KogSys I, WS 06/07 3 / 15
4 Game Trees Spielzustände und Züge der Spieler werden im Game Tree folgendermaßen repräsentiert: Level 0 Wurzelknoten: Initialzustand; ausgehende Kanten: mögliche Züge von MAX Level 1 Knoten: Resultierende Zustände der im Initialzustand möglichen Züge von MAX ; ausgehende Kanten: die jeweils möglichen Züge von MIN Level 2 Knoten: Resultierende Zustände der möglichen Züge von MIN in Level 1; ausgehende Kanten: die jeweils möglichen Züge von MAX Level... usw. Blätter Endzustände E. Kitzelmann (Universität Bamberg) Gemischte Strategien Übung KogSys I, WS 06/07 4 / 15
5 Berechnen der Minimax-Werte MAX nutzt den Game Tree, um seinen besten Zug zu wählen. Dazu wird jeder Knoten mit dem Payoff/Nutzen annotiert, den MAX sich ausgehend vom jeweiligen Knoten nach Spielende maximal erwarten kann (also den Nutzen, den MAX nach Spielende hat, falls er selbst und auch MIN ab dem jeweiligen Zustand optimal spielen) Minimax-Wert. Berechnung der Minimax-Werte Die Minimax-Werte werden ausgehend von den Blättern durch den Baum bis zur Wurzel hochpropagiert: Blätter: Nutzen, den MAX im jeweiligen Endzustand hat Knoten/Zustand, in dem MAX zieht: maximaler Nutzenwert der Nachfolgeknoten (denn MAX spielt den Zug, der seinen möglichen Nutzen maximiert) Knoten/Zustand, in dem MIN zieht: minimaler Nutzenwert der Nachfolgeknoten (denn MIN spielt den Zug, der den möglichen Nutzen von MAX minimiert Nullsummenspiel) E. Kitzelmann (Universität Bamberg) Gemischte Strategien Übung KogSys I, WS 06/07 5 / 15
6 Beispiel: Game Tree Example (Game Tree) MAX 3 A a 1 a 2 a 3 MIN 3 B 2 C 2 D b1 b2 b3 c1 c2 c3 d 1 2 d 3 d Game Tree eines Ein-Zug (d.h., jeder Spieler zieht einmal)-spiels: Die Blätter zeigen den Nutzen für MAX, die anderen Knoten sind mit ihren Minimax-Werten annotiert. MAX spielt a 1, da dieser Zug zum Nachfolgezustand mit dem höchsten Minimax-Wert führt. E. Kitzelmann (Universität Bamberg) Gemischte Strategien Übung KogSys I, WS 06/07 6 / 15
7 Gliederung 1 Game Trees Game Trees 2 Gemischte Strategien Gemischte Strategien E. Kitzelmann (Universität Bamberg) Gemischte Strategien Übung KogSys I, WS 06/07 7 / 15
8 Motivation Es gibt Fälle, wo ein Spiel, das durch eine Payoff-Matrix definiert ist, kein Nash-Equilibrium mit puren Strategien (also Strategien, die eine feste Aktion wählen) hat. Wenn man allerdings gemischte Strategien (engl. mixed strategies) (das sind Strategien, die verschiedene Aktionen mit bestimmten Wahrscheinlichkeiten wählen) zulässt, dann gibt es immer ein Nash-Equilibrium. E. Kitzelmann (Universität Bamberg) Gemischte Strategien Übung KogSys I, WS 06/07 8 / 15
9 Zwei-Finger Morra Beim Spiel Zwei-Finger Morra zeigen beide Spieler (Even und Odd) gleichzeitig jeweils ein oder zwei Finger. Ist die Gesamtanzahl der Finger gerade, dann ist der Payoff für Even diese Anzahl und für Odd das Negative. Ist die Gesamtanzahl ungerade, dann ist der Payoff für Odd diese Anzahl und für Even das Negative. Zwei-Finger Morra ist ein Zwei-Spieler Nullsummenspiel. Payoff-Matrix für Zwei-Finger Morra Odd: one Odd: two Even: one Even = 2, Odd = 2 Even = 3, Odd = 3 Even: two Even = 3, Odd = 3 Even = 4, Odd = 4 Zwei Finger-Morra hat kein Nash-Equilibrium mit puren Strategien. E. Kitzelmann (Universität Bamberg) Gemischte Strategien Übung KogSys I, WS 06/07 9 / 15
10 Gemischte Strategie Definition (Gemischte Strategie) Eine gemischte Strategie ist eine Strategie, die nicht eine bestimmte Aktion auswählt, sondern verschiedene Aktionen mit verschiedenen Wahrscheinlichkeiten. Example (Gemischte Strategie) Beim Zwei Finger-Morra wäre eine mögliche gemischte Strategie: Even : [0.3 : one, 0.7 : two] D.h. Spieler Even wählt mit Wahrscheinlichkeit 0.3 die Aktion one und mit Wahrscheinlichkeit 0.7 die Aktion two. E. Kitzelmann (Universität Bamberg) Gemischte Strategien Übung KogSys I, WS 06/07 10 / 15
11 Game Tree für Zwei Finger-Morra Die folgende Folie zeigt den Game Tree für den Fall, dass Even (E) zuerst zieht. Even kann eine gemischte Strategie spielen, d.h. der Game Tree hat unendlich viele von der Wurzel ausgehende Kanten (weil es unendlich viele mögliche Wahrscheinlichkeiten für die Aktionen one und two gibt). Diese werden repräsentiert durch eine mit der Wahrscheinlichkeit p für one parametrisierten Kante (die Wahrscheinlichkeit für two ergibt sich dann als 1 p). Odd spielt anschließend eine pure Strategie, da keine gemischte Strategie einen höheren Payoff liefern kann als eine pure, sofern die (gemischte) Strategie von Even bekannt ist. Die sich an den beiden Blättern ergebenden Payoffs für Even sind auch parametrisiert mit der Wahrscheinlichkeit p. Die beiden Payoffs sind als Geraden in ein Koordinatenfeld eingetragen, wobei die x-achse die Wahrscheinlichkeit p repräsentiert und die y-achse den entsprechenden Payoff. Odd wird one oder two spielen, je nachdem, welcher Payoff bei gegebenem p niedriger ist (die entsprechenden Geradenabschnitte sind fett eingezeichnet). E. Kitzelmann (Universität Bamberg) Gemischte Strategien Übung KogSys I, WS 06/07 11 / 15
12 Game Tree und Payoff-Geraden für Zwei Finger-Morra E. Kitzelmann (Universität Bamberg) Gemischte Strategien Übung KogSys I, WS 06/07 12 / 15
13 Optimale gemischte Strategie für Even Das beste, was Even an der Wurzel machen kann, ist, dasjenige p zu wählen, das die von Odd minimierten Payoffs maximiert, also genau den Schnittpunkt der beiden Geraden. Dazu werden die beiden Payoffs gleichgesetzt und nach p aufgelöst: 2p 3(1 p) = 3p + 4(1 p) 5p 3 = 7p p = 7 p = 7 12 Die optimale gemischte Strategie für Even ist also [ ] 7 12 : one, 5 12 : two E. Kitzelmann (Universität Bamberg) Gemischte Strategien Übung KogSys I, WS 06/07 13 / 15
14 Erwarteter Payoff für Even Den erwarteten Payoff (also den Wert des Schnittpunkts der beiden Geraden) erhält man, indem man das gefundene p in eine der beiden Geradengleichungen einsetzt: 5p 3 einsetzen: p = 7 12 = = 1 12 E. Kitzelmann (Universität Bamberg) Gemischte Strategien Übung KogSys I, WS 06/07 14 / 15
15 Verallgemeinerung auf beliebig viele Aktionen Bei Spielen mit mehr als zwei (k) möglichen Aktionen ist die Kante an der Wurzel des Game Trees nicht mehr nur mit einer Wahrscheinlichkeit p parametrisiert, sondern mit k 1 Wahrscheinlichkeiten p 1,..., p k 1. Die Ausdrücke an den Blättern repräsentieren dann Hyperebenen und man hat nicht zwei Geraden, die man schneidet, sondern k Hyperebenen, die man schneidet. E. Kitzelmann (Universität Bamberg) Gemischte Strategien Übung KogSys I, WS 06/07 15 / 15
2. Vorlesung. 1.3 Beste-Antwort Funktion. Vorlesung: Einführung in die Spieltheorie WS 2006/ Oktober 2006 Guido Schäfer
LETZTE ÄNDERUNG: 15. NOVEMBER 2006 Vorlesung: Einführung in die Spieltheorie WS 2006/2007 2. Vorlesung 24. Oktober 2006 Guido Schäfer 1.3 Beste-Antwort Funktion Notation: Definiere A i := j N\{i} A j.
NICHTKOOPERATIVE SPIELTHEORIE EINFÜHRUNG. Minimaxlösungen & Gleichgewichte
NICHTKOOPERATIVE SPIELTHEORIE EINFÜHRUNG Minimaxlösungen & Gleichgewichte Spieltheorie Einführungsbeispiel Gefangenendilemma (Prisoner s Dilemma) Nicht kooperierende Spielteilnehmer Spieler Gefangener
Der Alpha-Beta-Algorithmus
Der Alpha-Beta-Algorithmus Maria Hartmann 19. Mai 2017 1 Einführung Wir wollen für bestimmte Spiele algorithmisch die optimale Spielstrategie finden, also die Strategie, die für den betrachteten Spieler
Geraden. Somit scheiden die Gerade im Punkt N(-b/m; 0) die x-achse.
Geraden Eine Gerade wird durch eine Gleichung der Form y = mÿx + b bzw. f(x) = mÿx + b beschrieben. Die Schreibweise f(x) = wird teils erst in der Oberstufe verwendet. b ist der y- Achsenabschnitt, d.h.
Der Bestimmtheitssatz
2. Spielbäume und Intelligente Spiele Der Minimax-Algorithmus Der Bestimmtheitssatz Satz 2.1. Gegeben sei ein Spiel, das die folgenden Eigenschaften hat: 1. Das Spiel wird von zwei Personen gespielt. 2.
Spieltheorie Teil 4. Tone Arnold. Universität des Saarlandes. 20. März 2008
Spieltheorie Teil 4 Tone Arnold Universität des Saarlandes 20. März 2008 Tone Arnold (Universität des Saarlandes) Spieltheorie Teil 4 20. März 2008 1 / 64 Verfeinerungen des Nash GGs Das Perfekte Bayesianische
Natürliche Bäume. (Algorithmen und Datenstrukturen I) Prof. Dr. Oliver Braun. Letzte Änderung: :16. Natürliche Bäume 1/16
Natürliche Bäume (Algorithmen und Datenstrukturen I) Prof. Dr. Oliver Braun Letzte Änderung: 18.03.2018 18:16 Natürliche Bäume 1/16 Bäume Begriffe (1/2) Bäume sind verallgemeinerte Listenstrukturen ein
MATHEMATIK G10. (1) Bestimme die Gleichung der Geraden durch die beiden Punkte
(c) A( 1 1 ) geht. 1 MATHEMATIK G10 GERADEN (1) Bestimme die Gleichung der Geraden durch die beiden Punkte P und Q: a) P ( 5), Q(4 7) b) P (3 11), Q(3, 1) c) P (3 5), Q( 1 7) d) P ( 0), Q(0 3) e) P (3
Kombinatorische Spiele mit Zufallselementen
Kombinatorische Spiele mit Zufallselementen Die Realität ist nicht so streng determiniert wie rein kombinatorische Spiele. In vielen Situationen spielt der Zufall (Risko) eine nicht zu vernachlässigende
Algorithmische Geometrie: Delaunay Triangulierung (Teil 1)
Algorithmische Geometrie: Delaunay Triangulierung (Teil 1) Nico Düvelmeyer WS 2009/2010, 26.1.2010 Überblick 1 Motivation Interpolation von Höhendaten 2 Triangulierungen von ebenen Punktmengen 3 Delaunay
Lösungen von Übungsblatt 12
Lösungen von Übungsblatt 12 Algorithmen (WS 2018, Ulrike von Luxburg) Lösungen zu Aufgabe 1 Eine (kanonische) Möglichkeit, die Branch-Schritte auszuführen ergibt sich wie folgt: Das ursprüngliche Problem
Übersicht: 6.1 Einleitung 6.2 Klassische Theorie nichtkooperativer Spiele 6.3 Egoistisches Routing 6.4 Mechanismen-Entwurf 6.
6. Algorithmische Spieltheorie Übersicht: 6.1 Einleitung 6.2 Klassische Theorie nichtkooperativer Spiele 6.3 Egoistisches Routing 6.4 Mechanismen-Entwurf 6.5 Auktionen 561 6.1 Einleitung Übliche Modelle:
Seminar: Randomisierte Algorithmen Auswerten von Spielbäumen Nele Küsener
Seminar: Randomisierte Algorithmen Auswerten von Sielbäumen Nele Küsener In diesem Vortrag wird die Laufzeit von Las-Vegas-Algorithmen analysiert. Das Ergebnis ist eine obere und eine untere Schranke für
Vorlesung: Nicht-kooperative Spieltheorie. Teil 4: 2-Personen-Nullsummenspiele
Vorlesung: Nicht-kooperative Spieltheorie Teil 4: 2-Personen-Nullsummenspiele Dr. Thomas Krieger Wintertrimester 2009 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie 1 Definition 2-Personen-Nullsummenspiele
Datenstrukturen und Algorithmen (SS 2013)
Datenstrukturen und Algorithmen (SS 2013) Übungsblatt 10 Abgabe: Montag, 08.07.2013, 14:00 Uhr Die Übungen sollen in Gruppen von zwei bis drei Personen bearbeitet werden. Schreiben Sie die Namen jedes
Lernmodul 7 Algorithmus von Dijkstra
Folie 1 von 30 Lernmodul 7 Algorithmus von Dijkstra Quelle: http://www.map24.de Folie 2 von 30 Algorithmus von Dijkstra Übersicht Kürzester Weg von A nach B in einem Graphen Problemstellung: Suche einer
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung
Maschinelles Lernen: Symbolische Ansätze
Maschinelles Lernen: Symbolische Ansätze Wintersemester 2009/2010 Musterlösung für das 9. Übungsblatt Aufgabe 1: Decision Trees Gegeben sei folgende Beispielmenge: Age Education Married Income Credit?
Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche. Suche in Spielbäumen. KI SS2011: Suche in Spielbäumen 1/20
Suche in Spielbäumen Suche in Spielbäumen KI SS2011: Suche in Spielbäumen 1/20 Spiele in der KI Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche Einschränkung von Spielen auf: 2 Spieler:
Einführung in die Methoden der Künstlichen Intelligenz. Suche bei Spielen
Einführung in die Methoden der Künstlichen Intelligenz Suche bei Spielen Dr. David Sabel WS 2012/13 Stand der Folien: 5. November 2012 Zwei-Spieler-Spiele Ziel dieses Abschnitts Intelligenter Agent für
12. Vorlesung. 19. Dezember 2006 Guido Schäfer
LETZTE ÄNDERUNG: 6. JANUAR 007 Vorlesung: Einführung in die Spieltheorie WS 006/007. Vorlesung 9. Dezember 006 Guido Schäfer 4 Bayesian Games Wir haben bisher immer angenommen, dass jeder Spieler vollständige
Eigentlich löst man n Gleichungen mit n Unbekannten (die. normalerweise eindeutig lösbar sind) am besten mit Hilfe der
Eigentlich löst man n Gleichungen mit n Unbekannten (die normalerweise eindeutig lösbar sind) am besten mit Hilfe der Determinantenmethode (die aber in den Schulen nicht mehr gelernt wird) bzw. am allerschnellsten
Skript zur Vorlesung Mikroökonomik II (WS 2009) Teil 4
Skript zur Vorlesung Mikroökonomik II (WS 09) Teil 4 PR 13: Spieltheorie Weiterentwicklung der ökonomischen Theorie untersucht Situationen strategischen Verhaltens John von Neumann und Oskar Morgenstern
10. Vorlesung. 12. Dezember 2006 Guido Schäfer
LETZTE ÄNDERUNG: 5. JANUAR 2007 Vorlesung: Einführung in die Spieltheorie WS 2006/2007 10. Vorlesung 12. Dezember 2006 Guido Schäfer 3 Spiele in extensiver Form Bisher haben wir uns ausschliesslich mit
Sequentielle Entscheidungsprobleme. Übersicht. MDP (Markov Decision Process) MDP und POMDP. Beispiel für sequentielles Planungsproblem
Übersicht I Künstliche Intelligenz II Problemlösen III Wissen und Schlußfolgern IV Logisch Handeln V Unsicheres Wissen und Schließen 13. Unsicherheiten 14. Probabilistisches Schließen 15. Probabilistisches
5. Geraden und Ebenen im Raum 5.1. Lineare Abhängigkeit und Unabhängigkeit von Vektoren
5 Geraden und Ebenen im Raum 5 Lineare Abhängigkeit und Unabhängigkeit von Vektoren Definition: Die Vektoren a,a,,a n heißen linear abhängig, wenn mindestens einer dieser Vektoren als Linearkombination
Fortgeschrittene Netzwerk- und Graph-Algorithmen
Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester
I y = ai + bx + c. 13. Die quadratische Funktion Normalparabel
3. lässt sich direkt von der abc-normalform der quadratischen Gleichung (vgl. Kapitel 6) ableiten. Die Normalform der quadratischen Funktion ist: I = ai + b + c Der Graph der quadratischen Funktion he
Algorithmen für schwierige Probleme
Algorithmen für schwierige Probleme Britta Dorn Wintersemester 2011/12 24. November 2011 Farbkodierung Beispiel Longest Path Longest Path gegeben: G = (V, E) und k N. Frage: Gibt es einen einfachen Pfad
Übungen zur Linearen und zur Quadratischen Funktion
Übungen zur Linearen und zur Quadratischen Funktion W. Kippels 24. November 2013 Inhaltsverzeichnis 1 Die Aufgabenstellungen 2 1.1 Aufgabe 1:................................... 2 1.2 Aufgabe 2:...................................
Kapitel 1: Motivation / Grundlagen Gliederung
Gliederung 1. Motivation / Grundlagen 2. Sortier- und Selektionsverfahren 3. Paradigmen des Algorithmenentwurfs 4. Ausgewählte Datenstrukturen 5. Algorithmische Geometrie 6. Umgang mit algorithmisch schwierigen
Vorkurs Mathematik für Ingenieure WS 2015/2016 Übung 4. (iii) = 33. (iv)
Prof. Dr. J. Pannek Dynamics in Logistics Vorkurs Mathematik für Ingenieure WS 01/016 Übung Aufgabe 1 : Lineare Gleichungen (a) Für welche x R gilt (i) 31 6(x + 1) = 9 (ii) 11(x ) = ( + 1x) (iii) + = 33
Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 4
Prof. Dr. J. Pannek Dynamics in Logistics Vorkurs Mathematik für Ingenieur Innen WS 017/018 Übung Aufgabe 1 : Äquivalenzumformungen Bestimmen Sie ohne Taschenrechner die Lösungsmengen für folgende Gleichungen/Ungleichungen
Zwei-Spieler-Spiele. Einführung in die Methoden der Künstlichen Intelligenz. Suche bei Spielen. Schach. Schach (2)
Einführung in die Methoden der Künstlichen Intelligenz Suche bei Spielen Prof. Dr. Manfred Schmidt-Schauß Ziel dieses Abschnitts Intelligenter Agent für Zweipersonenspiele Beispiele: Schach, Dame, Mühle,...
1 Kürzeste Pfade in Graphen
Praktikum Algorithmen-Entwurf (Teil 3) 03.11.2011 1 1 Kürzeste Pfade in Graphen Es sei ein gerichteter Graph G = (V, E) mit V = n Knoten, E = m Kanten und Kantengewichten c : E R gegeben. Ein Pfad in G
Baum-Matching in einer Anwendung auf Gefäßsysteme im menschlichen Körper (Andre Bläul)
Baum-Matching in einer Anwendung auf Gefäßsysteme im menschlichen Körper (Andre Bläul) Gliederung 1. Motivation 2. Der Algorithmus 2.1. Schritt 1 2.2. Schritt 2 2.3. Die Kostenfunktionen 3. Evaluation
2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung
2 Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche: Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 24/ 44 Zwei Beispiele a 0
Übungsblatt 7 - Voronoi Diagramme
Karlsruher Institut für Technologie Algorithmische Geometrie Fakultät für Informatik Sommersemester 2012 ITI Wagner Martin Nöllenburg/Andreas Gemsa Übungsblatt 7 - Voronoi Diagramme 1 Voronoi-Zellen Sei
Ganzrationale Funktionen
Eine Dokumentation von Sandro Antoniol Klasse 3f Mai 2003 Inhaltsverzeichnis: 1. Einleitung...3 2. Grundlagen...4 2.1. Symmetrieeigenschaften von Kurven...4 2.1.1. gerade Exponenten...4 2.1.2. ungerade
Fortgeschrittene Netzwerk- und Graph-Algorithmen
Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2010/11
Teil 2: Dynamische Spiele mit vollständigen Informationen
Teil : Dynamische Spiele mit vollständigen Informationen Kapitel 5: Grundsätzliches Literatur: Tadelis Chapter 7 Prof. Dr. Philipp Weinschenk, Lehrstuhl für Mikroökonomik, TU Kaiserslautern Kapitel 5.:
Graphen und Bäume. A.1 Graphen
Algorithmen und Datenstrukturen 96 A Graphen und Bäume A.1 Graphen Ein gerichteter Graph (auch Digraph) G ist ein Paar (V, E), wobei V eine endliche Menge und E eine Relation auf V ist, d.h. E V V. V heißt
Skript Lineare Algebra
Skript Lineare Algebra sehr einfach Erstellt: 2018/19 Von: www.mathe-in-smarties.de Inhaltsverzeichnis Vorwort... 2 1. Vektoren... 3 2. Geraden... 6 3. Ebenen... 8 4. Lagebeziehungen... 10 a) Punkt - Gerade...
Bayes-Netze (1) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg
Bayes-Netze (1) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl KI) Bayes-Netze (1) 1 / 22 Gliederung 1 Unsicheres Wissen 2 Schließen
VERHALTENSORIENTIERTE SPIELTHEORIE SS 2012
Fakultät Wirtschaftswissenschaften Professur für Volkswirtschaftslehre, insb. Managerial Economics VERHALTENSORIENTIERTE SPIELTHEORIE SS 2012 Übung 1 Mark Kirstein [email protected] Dresden,
Übungen zur Ingenieur-Mathematik I WS 2017/2018 Blatt Aufgabe 33: Zeigen Sie, dass für die Funktionen
Übungen zur Ingenieur-Mathematik I WS 7/8 Blatt 8..7 Aufgabe : Zeigen Sie, dass für die Funktionen a b gilt: cosh x = (ex + e x und sinh x = (ex e x a (cosh x = sinh x, b (sinh x = cosh x, c cosh x sinh
Lineare Funktion. Wolfgang Kippels 21. März 2011
Lineare Funktion Wolfgang Kippels. März 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................
Dynamische Spiele mit unvollständiger Information. Perfektes Bayesianisches Gleichgewicht
Dynamische Spiele mit unvollständiger Information Perfektes Bayesianisches Gleichgewicht Spieltheorie University of Bonn Dezsö Szalay Dieser Teil basiert auf Kapitel 4 "Gibbons (1992), A primer in Game
Einführung in die Methoden der Künstlichen Intelligenz. Suche bei Spielen
Einführung in die Methoden der Künstlichen Intelligenz Suche bei Spielen Prof. Dr. Manfred Schmidt-Schauß SoSe 2016 Stand der Folien: 12. Mai 2016 Zwei-Spieler-Spiele Ziel dieses Abschnitts Intelligenter
Hackenbusch und Spieltheorie
Hackenbusch und Spieltheorie Was sind Spiele? Definition. Ein Spiel besteht für uns aus zwei Spielern, Positionen oder Stellungen, in welchen sich das Spiel befinden kann (insbesondere eine besondere Startposition)
Kapitel 3: Ehrenfeucht-Fraïssé Spiele
Kapitel 3: Ehrenfeucht-Fraïssé Spiele Kapitel 3: Ehrenfeucht-Fraïssé Spiele Abschnitt 3.0: In diesem Kapitel werden Ehrenfeucht-Fraïssé-Spiele (kurz: EF-Spiele) eingeführt. Diese liefern ein Werkzeug,
Algorithmische Geometrie: Delaunay Triangulierung (Teil 2)
Algorithmische Geometrie: Delaunay Triangulierung (Teil 2) Nico Düvelmeyer WS 2009/2010, 2.2.2010 Überblick 1 Delaunay Triangulierungen 2 Berechnung der Delaunay Triangulierung Randomisiert inkrementeller
Gleichsetzungsverfahren
Funktion Eine Funktion ist eine Zuordnung, bei der zu jeder Größe eines ersten Bereichs (Ein gabegröße) genau eine Größe eines zweiten Bereichs (Ausgabegröße) gehört. Eine Funktion wird durch eine Funktionsvorschrift
2. Grundzüge der Mikroökonomik Einführung in die Spieltheorie. Allgemeine Volkswirtschaftslehre. WiMa und andere (AVWL I) WS 2007/08
2. Grundzüge der Mikroökonomik 2.10 Einführung in die Spieltheorie 1 Spieltheorie befasst sich mit strategischen Entscheidungssituationen, in denen die Ergebnisse von den Entscheidungen mehrerer Entscheidungsträger
Geometrische Algorithmen Segmentschnitt
Folie 1 von 36 Geometrische Algorithmen Segmentschnitt Folie 2 von 36 Segmentschnitt Übersicht Zwei Segmente Lage zweier Segmente Prüfung auf Schnittfreiheit Formeln zum Geradenschnitt Feststellen des
Geometrische Algorithmen Segmentschnitt
Folie 1 von 36 Geometrische Algorithmen Segmentschnitt Folie 2 von 36 Segmentschnitt Übersicht Zwei Segmente! Lage zweier Segmente! Prüfung auf Schnittfreiheit! Formeln zum Geradenschnitt! Feststellen
Thema 1: Geraden zeichnen Punkte berechnen. Ein Lese- und Übungsheft. 7 Seiten Einführung und Theorie. 22 Seiten Aufgaben mit Lösungen
Geradengleichungen Thema : Geraden zeichnen Punkte berechnen Ein Lese- und Übungsheft 7 Seiten Einführung und Theorie Seiten Aufgaben mit Lösungen Datei Nr. 000 Stand. Februar 09 INTERNETBIBLIOTHEK FÜR
Kapitel 8: Bipartite Graphen Gliederung der Vorlesung
Gliederung der Vorlesung 1. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege 4. Minimale spannende Bäume 5. Färbungen und Cliquen 6. Traveling Salesman Problem 7. Flüsse in Netzwerken
Definition 77 Sei n N. Der Median (das mittlere Element) einer total geordneten Menge von n Elementen ist deren i-kleinstes Element, wobei n i =.
2. Der Blum-Floyd-Pratt-Rivest-Tarjan Selektions-Algorithmus Definition 77 Sei n N. Der Median (das mittlere Element) einer total geordneten Menge von n Elementen ist deren i-kleinstes Element, wobei n
1 Gegeben sind die Ebene E: x= 1 0
8..003 Klausur Kurs 3 Ma 3 Mathematik Lk Lösung Gegeben sind die Ebene E: x= 0 und die Geradenschar g a : x= t a Bei allen Aufgabenteilen müssen die Rechnungen oder die Überlegungen klar erkennbar dokumentiert
fuzzy-entscheidungsbäume
fuzzy-entscheidungsbäume klassische Entscheidungsbaumverfahren fuzzy Entscheidungsbaumverfahren Entscheidungsbäume Was ist ein guter Mietwagen für einen Familienurlaub auf Kreta? 27. März 23 Sebastian
Aufgaben zur Veranstaltung Grundzüge der Spieltheorie von Prof. Dr. Stefan Winter, Ruhr-Universität Bochum.
Aufgaben zur Veranstaltung Grundzüge der Spieltheorie von Prof. Dr. Stefan Winter, Ruhr-Universität Bochum. Fassung vom 1. Dezember 1 Weitere Materialien sind erhältlich unter: http://www.rub.de/spieltheorie
Künstliche Intelligenz - Optimierungsprobleme - Suche in Spielbäumen
Künstliche Intelligenz - Optimierungsprobleme - Suche in Spielbäumen Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Optimierungsprobleme
Regel Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind.
Funktionen Station 1 Bestimmung der Steigung einer Geraden durch zwei Punkte Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind. m = f(x 2 ) f(x 1 )
Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis
Lineare Funktion Wolfgang Kippels. November 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................
Lineare Gleichungssysteme mit 2 Variablen
Lineare Gleichungssysteme mit 2 Variablen Lineare Gleichungssysteme mit 2 Variablen Einzelne lineare Gleichungen mit zwei Variablen Bis jetzt haben wir nur lineare Gleichungen mit einer Unbekannten (x)
Euler und Hamiltonkreise
Euler und Hamiltonkreise 1. Königsberger Brücken 2. Eulerwege und Kreise Definition, Algorithmus mit Tiefensuche 3. Hamiltonwege und Kreise Definition 4. Problem des Handlungsreisenden Enumeration und
Geometrische Algorithmen Einige einfache Definitionen: Ist ein Punkt in einem Polygon? Punkt-in-Polygon-Problem. Das Punkt-in-Polygon-Problem
Geometrische Algorithmen Einige einfache Definitionen: Punkt: im n-dimensionalen Raum ist ein n-tupel (n Koordinaten) Gerade: definiert durch zwei beliebige Punkte auf ihr Strecke: definiert durch ihre
Übungsblatt 5 Lösungsvorschläge
Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 5 Lösungsvorschläge Vorlesung Algorithmentechnik im WS 09/10 Problem 1: Lineare Weihnachtsalgebra Kreisbasen [vgl. Kapitel
Lösungen G1. c) Die Steigung m wird als Bruch angegeben: m Å. Der y-achsenabschnitt ist der Wert auf der y-achse, bei dem die Gerade durchgeht.
Lösungen G. Aufgabe a) Die Gerade g ist eine fallende Gerade, sie kommt von links oben und geht nach rechts unten. Die Gerade g ist eine steigende Gerade, sie kommt von links unten und geht nach rechts
Lineare Funktionen. Die lineare Funktion
1 Die lineare Funktion Für alle m, t, aus der Zahlenmenge Q heißt die Funktion f: x m x + t lineare Funktion. Die Definitionsmenge ist Q (oder je nach Zusammenhang ein Teil davon). Der Graph der linearen
Praktikum Algorithmen-Entwurf (Teil 7)
Praktikum Algorithmen-Entwurf (Teil 7) 28.11.2005 1 1 Vier gewinnt Die Spielregeln von Vier Gewinnt sind sehr einfach: Das Spielfeld besteht aus 7 Spalten und 6 Reihen. Jeder Spieler erhält zu Beginn des
2. Spiele. Arten von Spielen. Kombinatorik. Spieler haben festgelegte Handlungsmöglichkeiten, die durch die Spielregeln definiert werden.
. Spiele Arten von Spielen. Spiele. Spiele Arten von Spielen Kombinatorik Spieler haben festgelegte Handlungsmöglichkeiten, die durch die Spielregeln definiert werden. Kombinatorische Spiele als Suchproblem
Nash-Gleichgewichte in 2-Spieler Systemen. Katharina Klost Freie Universität Berlin
Nash-Gleichgewichte in 2-Spieler Systemen Katharina Klost Freie Universität Berlin Seminar über Algorithmen, 29.10.2013 Grundlegende Definitionen A Gewinnmatrix für Spieler 1, B Gewinnmatrix für Spieler
Binärbäume: Beispiel
Binärbäume Als Beispiel für eine interessantere dynamische Datenstruktur sehen wir uns jetzt Binärbäume an Ein Binärbaum wird rekursiv definiert: Er ist leer oder besteht aus einem Knoten (die Wurzel des
Maturitätsprüfung 2012 Mathematik Teil 1
Maturitätsprüfung 2012 Mathematik Teil 1 Klasse: 4NP Lehrer: Fi Dauer: 90 Min. Die im Unterricht verwendete Formelsammlung ist als einziges Hilfsmittel zugelassen. Alle Lösungen müssen ordentlich und nachvollziehbar
Wiederholte Spiele. Grundlegende Konzepte. Zwei wichtige Gründe, wiederholte Spiele zu betrachten: 1. Wiederholte Interaktionen in der Realität.
Spieltheorie Sommersemester 2007 1 Wiederholte Spiele Grundlegende Konzepte Zwei wichtige Gründe, wiederholte Spiele zu betrachten: 1. Wiederholte Interaktionen in der Realität. 2. Wichtige Phänomene sind
Durch Eliminieren der Wurzel erhalten wir die bekannte Kreisgleichung:
Fixieren wir ein Seil der Länge r an einem Punkt M, nehmen das lose Ende in die Hand und bewegen uns so um den Punkt M herum, dass das Seil stets gespannt bleibt, erhalten wir, wie in nebenstehender Abbildung
Bäume und Wälder. Definition 1
Bäume und Wälder Definition 1 Ein Baum ist ein zusammenhängender, kreisfreier Graph. Ein Wald ist ein Graph, dessen Zusammenhangskomponenten Bäume sind. Ein Knoten v eines Baums mit Grad deg(v) = 1 heißt
Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.
Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m
Operations Research II: Fortgeschrittene Methoden der Wirtschaftsinformatik
Operations Research II: Fortgeschrittene Methoden der Wirtschaftsinformatik Michael H. Breitner, Frank Köller und Hans-Jörg v. Mettenheim 18. Juli 2007 Hans-Jörg von Mettenheim Operations Research II 1
Übungen zur Linearen und zur Quadratischen Funktion
Übungen zur Linearen und zur Quadratischen Funktion W. Kippels 26. Oktober 2018 Inhaltsverzeichnis 1 Vorwort 2 2 Die Aufgabenstellungen 3 2.1 Aufgabe 1:................................... 3 2.2 Aufgabe
4. Lernen von Entscheidungsbäumen
4. Lernen von Entscheidungsbäumen Entscheidungsbäume 4. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse
