Versuche: Brownsche Bewegung pneumatisches Feuerzeug Wärmekapazität gleicher Massen von verschiedenen Metallen

Größe: px
Ab Seite anzeigen:

Download "Versuche: Brownsche Bewegung pneumatisches Feuerzeug Wärmekapazität gleicher Massen von verschiedenen Metallen"

Transkript

1 14. Vorlesung EP II. Wärmelehre 1. Temperatur und Stoffmenge 11. Ideale Gasgleichung 1. Gaskinetik 13. Wärmekapazität Versuche: Brownsche Bewegung pneumatisches Feuerzeug Wärmekapazität gleicher Massen von verschiedenen Metallen

2 II) Wärmelehre II) Wärmelehre Thermodynamik - beschreibt Systeme mit sehr vielen (Grössenordnung 1 3 ) Massenpunkten. Folgende zum Teil neue physikalische Grössen kommen ins Spiel: Zustandsgrößen: z.b. Druck, Temperatur, Volumen, Stoffmenge, innere Energie, Entropie,.. sind Mittelwerte (intensiv) oder Gesamtwerte (extensiv) des Systems Prozeßgrößen: mechanische Arbeit, Wärmemenge

3 1. Temperatur und Stoffmenge 1. Temperatur und Stoffmenge (Zwei neue Basisgrössen in der Physik) Temperatur T: Wärme ist verknüpft mit ungeordneter Bewegung der Atome oder Moleküle. Temperatur wird sich als Maß für deren mittlere kinetische Energie herausstellen in der Gaskinetik. Versuch: Brownsche Bewegung der Gasmoleküle Zum Wärmeinhalt trägt nur der Anteil der ungeordneten Bewegung bei, nicht jedoch gleichsinnige, geordnete Bewegungen aller Teilchen (Bewegung der Substanz als Ganzes) Temperatur T ist 4. Basisgröße (mit Zeit, Länge, Masse) Stoffmenge n: Einheit mol : Stoffmenge, die genauso viele Teilchen enthält wie 1 g des 1 C -Kohlenstoff-Isotop.(Atomare Masseneinheit 1/1 der Masse eines 1 C - Atoms.) N A Teilchen 1 mol (Avogadro- oder Loschmidt Zahl) Stoffmenge n ist 5. Basisgröße

4 1. Temperatur und Stoffmenge Soll die Temperatur geändert werden, muß dem System Wärme zugeführt oder entzogen werden (->kinetische Energie der Teilchen) Temperatur ist wie gesagt nur als Mittelwert definiert für einen aus vielen Teilchen bestehenden Stoff. > nicht anwendbar auf Bewegung einzelner Atome oder Moleküle Grundlage jeder Temperatur-Messung (Nullter Hauptsatz der ThD): Bringe Körper in Kontakt, dann nehmen beide (nach einiger Zeit) dieselbe Temperatur an. Celsius-Skala: ϑ [ o ] mit [ o C] Celsius [ o C] : Gefriertemp. von Wasser 1 [ o C] : Siedetemp. von Wasser beides bei Normaldruck 1135 [Pa] (113.5 mbar)

5 Gebräuchliche Temperaturskalen. Bild zeigt Kelvin-, Celsius- und Fahrenheit- Temperatur (Ordinate) als Funktion der Celsius-Temperatur (Abszisse) T[Celsius] T[Kelvin] 73,15

6 1. Temperatur und Stoffmenge Viele gängige Temperatur- Messmethoden beruhen auf der Beobachtung, dass sich Stoffe ausdehnen mit zunehmender - und zusammenziehen mit abnehmender Temperatur. Linearer Zusammenhang zwischen Ausdehnung und Temperatur. Unterschiedliche Proportionalitätskonstanten, Ausdehnungskoeffizienten : Linearer Ausdehnungskoeffizient α relative Längenänderung : definiert durch L/L α T Kubischer Ausdehnungskoeffizient γ definiert durch relative Volumenänderung V/V γ T

7 Lineare Ausdehnungskoeffizienten: α Eisen K -1 α Kupfer K -1 Krümmung ~ T Flüssigkeitsthermometer: Änderung des Volumens einer Flüssigkeit (Alkohol, Quecksilber) in begrenztem Temperaturbereich: 1. Temperatur und Stoffmenge V γ V T V o : Volumen bei Bezugstemperatur T o ; TT-T o, γ: kubischer Ausdehnungskoeffizient Bei bekanntem Querschnitt des Röhrchens: V V(T) V o A L

8 11. Ideale Gasgleichung 11.Ideale Gasgleichung Definition eines idealen Gases: Gasmoleküle sind harte punktförmige Teilchen, die nur elastische Stöße ausführen und kein Eigenvolumen besitzen. Viele Gase zeigen ideales Verhalten bei hohen, aber nicht zu hohen T. Die Zustandsgrößen wie: Druck p [Pa], Temperatur T [K] Volumen V [m 3 ], Stoffmenge n [mol] lassen sich unter dieser Annahme auf Mittelwerte oder Gesamtwerte von Eigenschaften der Moleküle zurückführen.

9 11. Ideale Gasgleichung Variiert man T, V und p bei fester Stoffmenge n, so beobachtet man: pv T pv T const T K, Normdruck p Pa Gesetz von Avogadro: Gleiche Volumina Gas von gleichem Druck und gleicher Temperatur enthalten gleich viele Moleküle, unabhängig von ihrer chemischen Beschaffenheit. Das Volumen eines Mols einer Substanz nennt man molares Volumen V.41 m 3 mol -1 (.41 Liter/mol) Allgemeine Gasgleichung für ideale Gase: pv p V T T R T R allgemeine Gaskonstante 8.3 J/(mol. K) R k. N A p V n R T n: Stoffmenge in [mol] verknüpft Zustandsgrößen eines idealen Gases

10 Zustandsänderungen - Stoffmenge n sei jeweils konstant Isothermen Hyperbeln (a) Isotherme Zustandsänderung (T konst.) p n R T 1 V 1 const V Boyle-Mariotte-Gesetz: p. V p 1. V1 const. Isobaren Geraden (b) Isobare Zustandsänderung (Druck p const.) Gay-Lussac Gesetz: bzw.: V n R p T V T V T 1 1 const

11 (c) Isochore Zustandsänderung (Volumen V const.) n R p T V Isochore Geraden hieraus kann man durch Extrapolation p-> den absoluten Nullpunkt bestimmen Charles-Gesetz: p T p T 1 1 const Anwendung: Gasthermometer p T p ( 1+ γ T ) p p T T 73.15K

12 d) adiabatische Zustandsänderung Verhalten eines Systems, das ohne Wärmeaustausch zusammengedrückt oder entspannt wird, mechanische Arbeit wird geleistet adiabatische Kompression Wichtige Voraussetzung: Kompressionszeit <<Zeit für Wärmeaustausch, wie z.b bei Schallausbreitung p κ p V const κ Adiabatenkoeffizient Bild rechts zeigt vier Isothermen und zwei Adiabaten V

13 1. Kinetische Gastheorie: Wärme : ungeordnete Bewegung der Moleküle in einer Substanz. erkennbar an: Brownscher Molekularbewegung von Schwebstoffen Bisher: Verhalten von Gasen mit makroskopischen Variablen (p, V, T) beschrieben. Frage: Wie sind diese mit dem mikroskopischen Zustand des Gases (kinetische Energie, Verteilung im Raum) verknüpft? Gas Flüssigkeit Festkörper Gase: Gasdruck wird verursacht durch Stöße der einzelnen Gasmoleküle mit der Wand. Die Teilchen (Moleküle) im Gas bewegen sich mit verschiedenen Geschwindigkeiten: Maxwellsche Geschwindigkeitsverteilung

14 Ergebnis der kinetischen Gastheorie (s. nächste Seiten für Interessierte): p V 1 3 N v wobei N Zahl der Gasteilchen im Volumen V und v Mittelwert des Quadrats ihrer Geschwindigkeit. Mittels der Gasgleichung (p VnRT) ist somit ein Zusammenhang zwischen der mittleren kinetischen Energie pro Gasteilchen E kin und der Temperatur hergestellt: 1 Nv nrt 3 m v 3 R Ekin ( )T N k Boltzmannkonstante [J/K] : R k NA N A obige Formel gilt nur für kugelsymmetrische Moleküle/Atome. Im allgemeinen Fall tragen auch Rotationsbewegungen zu bei Mittl. Geschw. bei 73 K: H : 17 m/s ; N : 453 m/s ; O : 447 m/s A 3 kt E kin

15 Stoß eines Teilchens mit Wand (elastisch, m Teilchen << m Wand ): Impulsänderung: Für Interessierte: P P m x v x (siehe Stoßgesetze) - Angenommen, man würde die gesamte kinetische Energie der N Gasteilchen in einem Volumen kennen, dann wäre die mittlere Geschwindigkeit: E N gesamt kin E kin 1 m v 1 m v - Auf jede der drei Raumrichtungen x, y oder z entfällt 1/3 der Energie: 1 1 m v m ( v x + v y + v z )

16 Für Interessierte: Mit diesen Annahmen kann man berechnen, wie viele Moleküle pro Zeit auf eine Wand der Fläche treffen und wie gross die gesamte Impulsänderung pro Zeit ist. Da Impulsänderung pro Zeit eine Kraft ergibt (Newtonsches Axiom) und Kraft pro Fläche ein Druck ist, ergibt sich ein Zusammenhang zwischen Druck und mittlerer kinetischer Energie der Teilchen. Die Masse der Moleküle m spielt dabei eine Rolle, ebenso die Anzahl der Moleküle pro Volumen N/V. Auf der nächsten Seite wird die Herleitung der Zusammenhänge explizit gezeigt. Das Resultat sieht man am Ende der Seite. Es zeigt: Das Produkt pv ist proportinal zur mittleren kinetischen Energie der Moleküle. Der Vergleich mit der allgemeinen Gasgleichung pv nrt liefert eine fundamentale Erklärung der Temperatur.

17 Wieviele Teilchen stoßen nun pro Zeitintervall t auf die Oberfläche A? Von den Molekülen mit P N m v N 1 N vx t A V einer Schicht der Dicke Für Interessierte: x v x erreichen nur die Moleküle aus v x t Damit ist die Gesamtimpulsänderung: mn A v V x in der Zeit t die Wand t Und somit ist der Druck auf die Oberfläche: (1/: Annahme symmetr. Verteilung) p F A 1 A P t mn v V x mn v 3V oder p V mn v 3 n R T

18 f ( v) m 4π πkt Für Interessierte: Einzelne Teilchen (Moleküle) im Gas bewegen sich jedoch mit verschiedenen v Maxwellsche Geschwindigkeitsverteilung, siehe Bild 3 v exp m v kt N(v) N. f(v) v Zahl der Teilchen mit Geschwindigkeitsbetrag zwischen v + v Teilchen stoßen untereinander Änderung von v und der Richtung (Brownsche Molekularbewegung!) Mit der Maxwellschen Geschwindigkeitsverteilung lassen sich mittlere Geschwindigkeit und mittleres Geschwindigkeitsquadrat berechnen: v vf (v)dv ; v v f (v)dv v 8kT πm ; v 3kT m

19 Für Interessierte: Bisherige Bewegungsformen der Teilchen (Moleküle etc.) im Gas: -> nur Translation in den 3 Raumrichtungen: 3 Freiheitsgrade Thermische Energie pro Freiheitsgrad: Formel gilt auch für zusätzliche Freiheitsgrade (z.b. Rotation) der Moleküle im Gas: Bei i Freiheitsgraden gilt: E kin, FG 1 kt E kin, gesamt 1 i k T (Gleichverteilungssatz) kugelsymmetrische Teilchen (z.b. Argon-Atome): kein Rotationsfreiheitsgrad hantelförmige Moleküle (z.b. N, O ): Rotationsfreiheitsgrade kompliziertere Moleküle (z.b. H O): 3 Rotationsfreiheitsgrade

20 Prozessgrösse Wärmemenge 13. Wärmekapazität Historisch: 1 cal (1 Kalorie) Wärmemenge, die nötig ist, um 1g Wasser von 14.5 auf 15.5 C zu erwärmen. Später fand man Äquivalenz von Energie und Wärmemenge, siehe Hauptsatz, weiter unten. Wärme ist eine Form von Energie. Die Gaskinetik lieferte einen direkten Zusammenhang zwischen der kinetischen Energie der Teilchen und der Temperatur, siehe oben. Neue Einheit der Wärmemenge ist die Energieeinheit Joule J: Umrechnung: 1 cal Joule

21 Wärmekapazität: Wird einer Substanz Energie in Form von Wärme Q.zugeführt, steigt die Temperatur, ausser bei Phasenübergang,s. unten Wärmezufuhr Temperaturänderung T Q c masse m T c Mol J J [ c mol ] oder [ c ] Masse mol K kg K n T C T C: Wärmekapazität eines bestimmten Körpers [J/K] c: Spezifische Wärmekapazität (bezogen auf Masse, Stoffmenge) c mol c Masse M mit M molare Masse [kg/mol] Wärmekapazität hängt davon ab, unter welchen Bedingungen das Experiment durchgeführt wird. Man definiert zwei Wärmekapazitäten: c P spezifische Wärme bei konstantem Druck (Volumenarbeit p. V) c V spezifische Wärme bei konstantem Volumen (isochor, p. V ) c p > c V : bei isobarer Erwärmung wird zusätzlich Volumenarbeit geleistet

22 Prozessgrösse Volumenarbeit: - mit Volumenänderung um V ist mechanische Arbeit W verbunden - Kolben-Fläche A F p A (p const. für isobaren Prozess) - Beim Verschieben um s wird von aussen Volumenarbeit geleistet: T W Vol F s p V W vo l Das negative Vorzeichen ist eine Folge der Definition: Bei Volumenverkleinerung, V negativ, wird positive Arbeit von aussen am System geleistet. In diesem Fall soll die Volumenarbeit am System positiv gerechnet werden Die Energie des Systems erhöht sich.

23 13.Wärmekapazität Spezifische Wärmekapazitäten c p und c v beim idealen Gas: c v (isochore Wärmezufuhr, V): W vol p V Wärmezufuhr führt allein zur Erwärmung (oder Phasenübergang) c p (isobare Wärmezufuhr): System-Erwärmung und zusätzliche vom System nach außen abgegebene mechanische Volumenarbeit in Höhe von W vol p V n R T (. folgt aus allg Gasgl. bei gegebenem T) Q n c p T n c V T + p V n c V T + n R T Daraus folgt: c p cv R

24 13. Wärmekapazität Wärmemenge zur Erwärmung von 1Mol ideales Gas mit i Freiheitsgraden: Q mol E kin, mol i R T isochor: isobar: Q Q mol mol c V c p T T c v c p i R ( i + 1) R c v c p i 1-atomig 3/ R 5/ R 3 Translation -atomig 5/ R 7/ R 3 Translation, Rotation 3-atomig, nicht linear 6/ R 8/ R 3 Translation, 3 Rotation Bei höheren Temperaturen können noch weitere Freiheitsgrade, von Schwingungen (Vibrationen), wichtig werden (Anstieg von c p und c V ).

25 13. Wärmekapazität Festkörper c c p (Volumenausdehnung klein). Isochore Zustandsänderung wäre aufwändig, weil Kraft zur Konstanthaltung des Volumens groß, siehe Versuch Bolzensprenger. Bei genügend hohen Temperaturen gilt das Dulong-Petit Gesetz: 6 Freiheitsgrade für Schwingungen um Ruhelage (3für E kin, 3 für V pot ) i6 c 3. R 4.9 J/(mol. K) Beispiele: Blei: J c Pb 19 kgk J oder 5.6 molk, M Pb,199 kg/mol J J Aluminium: c Al 896 oder 3.3, M kgk molk Al,6 kg/mol Versuche: Wärmekapazität von Metallen gleicher Masse, gleicher Molzahl

26 13. Wärmekapazität Flüssigkeiten: (Kein einfaches Gesetz) Zahlen-Beispiele: c in Einheiten von J kg K Alkohol 141 J/(kgK) Benzol 17 " CCl 4 86 " Wasser 418 Ammoniak Vergleich mit Kaloriedefinition: c H 1cal /(1 g 1K) 4.18 J /(.1kg 1K)

27 Messung der Wärmekapazität eines Körpers mit Mischungskalorimeter Körper gibt Wärme an das Bad und das Gefäß ab (Nullter Hauptsatz): Q K c K. m K. (T K T M ) Badflüssigkeit nimmt auf: Q B c B. mb. (TM T B ) Kalorimetergefäß nimmt auf: Q KA W KA. (T M T B ) W KA : Wasserwert Wärmekapazität des Kalorimeters (berechnet aus einem Mischexperiment mit bekannten Wärmekapazitäten) Q K Q B + Q KA Q K c K. mk. (TK T M ) c B. mb. (TM T B ) + W KA. (TM T B ) c K ( c B m B m + W K ( T K KA )( T T M M ) 13. Wärmekapazität T B )

Zwei neue Basisgrössen in der Physik

Zwei neue Basisgrössen in der Physik Nachtrag zur orlesung am vergangenen Montag Zwei neue Basisgrössen in der Physik 9. Wärmelehre, kinetische Gastheorie Temperatur T: Wärme ist verknüpft mit ungeordneter Bewegung der Atome oder Moleküle.

Mehr

11. Ideale Gasgleichung

11. Ideale Gasgleichung . Ideale Gasgleichung.Ideale Gasgleichung Definition eines idealen Gases: Gasmoleküle sind harte punktförmige eilchen, die nur elastische Stöße ausführen und kein Eigenvolumen besitzen. iele Gase zeigen

Mehr

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System: Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar

Mehr

Vorlesung Physik für Pharmazeuten PPh Wärmelehre

Vorlesung Physik für Pharmazeuten PPh Wärmelehre Vorlesung Physik für Pharmazeuten PPh - 07 Wärmelehre Aggregatzustände der Materie im atomistischen Bild Beispiel Wasser Eis Wasser Wasserdampf Dynamik an der Wasser-Luft Grenzfläche im atomistischen Bild

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

1. Wärmelehre 1.1. Temperatur Wiederholung

1. Wärmelehre 1.1. Temperatur Wiederholung 1. Wärmelehre 1.1. Temperatur Wiederholung a) Zur Messung der Temperatur verwendet man physikalische Effekte, die von der Temperatur abhängen. Beispiele: Volumen einer Flüssigkeit (Hg-Thermometer), aber

Mehr

1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen

1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen IV. Wärmelehre 1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen Historisch: Wärme als Stoff, der übertragen und in beliebiger Menge erzeugt werden kann. Übertragung: Wärmezufuhr Joulesche

Mehr

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités)

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für die Temperatur Prinzip

Mehr

13.Wärmekapazität. EP Vorlesung 15. II) Wärmelehre

13.Wärmekapazität. EP Vorlesung 15. II) Wärmelehre 13.Wärmekapazität EP Vorlesung 15 II) Wärmelehre 10. Temperatur und Stoffmenge 11. Ideale Gasgleichung 12. Gaskinetik 13. Wärmekapazität 14. Hauptsätze der Wärmelehre Versuche: Wärmekapazität von Festkörpern

Mehr

1. Klausur ist am 5.12.! (für Vets sowie Bonuspunkte für Zahni-Praktikum) Jetzt lernen!

1. Klausur ist am 5.12.! (für Vets sowie Bonuspunkte für Zahni-Praktikum) Jetzt lernen! 1. Klausur ist am 5.12.! (für Vets sowie Bonuspunkte für Zahni-Praktikum) Jetzt lernen! http://www.physik.uni-giessen.de/dueren/ User: duerenvorlesung Password: ****** Druck und Volumen Gesetz von Boyle-Mariotte:

Mehr

O. Sternal, V. Hankele. 5. Thermodynamik

O. Sternal, V. Hankele. 5. Thermodynamik 5. Thermodynamik 5. Thermodynamik 5.1 Temperatur und Wärme Systeme aus vielen Teilchen Quelle: Wikimedia Commons Datei: Translational_motion.gif Versuch: Beschreibe 1 m 3 Luft mit Newton-Mechanik Beschreibe

Mehr

Skript zur Vorlesung

Skript zur Vorlesung Skript zur Vorlesung 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für

Mehr

Allgemeines Gasgesetz. PV = K o T

Allgemeines Gasgesetz. PV = K o T Allgemeines Gasgesetz Die Kombination der beiden Gesetze von Gay-Lussac mit dem Gesetz von Boyle-Mariotte gibt den Zusammenhang der drei Zustandsgrößen Druck, Volumen, und Temperatur eines idealen Gases,

Mehr

ELEMENTE DER WÄRMELEHRE

ELEMENTE DER WÄRMELEHRE ELEMENTE DER WÄRMELEHRE 3. Elemente der Wärmelehre 3.1 Grundlagen 3.2 Die kinetische Gastheorie 3.3 Energieumwandlungen 3.4 Hauptsätze der Thermodynamik 2 t =? 85 ºC t =? 61.7 ºC Warum wird der Kaffe eigentlich

Mehr

11.2 Die absolute Temperatur und die Kelvin-Skala

11.2 Die absolute Temperatur und die Kelvin-Skala 11. Die absolute Temperatur und die Kelvin-Skala p p 0 Druck p = p(t ) bei konstantem olumen 1,0 0,5 100 50 0-50 -100-150 -00-73 T/ C Tripelpunkt des Wassers: T 3 = 73,16 K = 0,01 C T = 73,16 K p 3 p Windchill-Faktor

Mehr

Diese Vorlesung enthält noch einige Nachträge zum Thema 7. Wellen und einige zum Thema 8. Akustik.

Diese Vorlesung enthält noch einige Nachträge zum Thema 7. Wellen und einige zum Thema 8. Akustik. Diese Vorlesung enthält noch einige Nachträge zum Thema 7. Wellen und einige zum Thema 8. Akustik. Danach beginnen wir mit Kapitel 9. Wärmelehre Reflexion: Trifft eine Welle aus Medium 1 kommend auf eine

Mehr

2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme

2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme 2 Wärmelehre Die Thermodynamik ist ein Musterbeispiel an axiomatisch aufgebauten Wissenschaft. Im Gegensatz zur klassischen Mechanik hat sie die Quantenrevolution überstanden, ohne in ihren Grundlagen

Mehr

Grundlagen der statistischen Physik und Thermodynamik

Grundlagen der statistischen Physik und Thermodynamik Grundlagen der statistischen Physik und Thermodynamik "Feuer und Eis" von Guy Respaud 6/14/2013 S.Alexandrova FDIBA 1 Grundlagen der statistischen Physik und Thermodynamik Die statistische Physik und die

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Einführung in die Wärmelehre - Prof. Dr. Ulrich Hahn WS 2008/09 Entwicklung der Wärmelehre Sinnesempfindung: Objekte warm kalt Beschreibung der thermische Eigenschaften

Mehr

(VIII) Wärmlehre. Wärmelehre Karim Kouz WS 2014/ Semester Biophysik

(VIII) Wärmlehre. Wärmelehre Karim Kouz WS 2014/ Semester Biophysik Quelle: http://www.pro-physik.de/details/news/1666619/neues_bauprinzip_fuer_ultrapraezise_nuklearuhr.html (VIII) Wärmlehre Karim Kouz WS 2014/2015 1. Semester Biophysik Wärmelehre Ein zentraler Begriff

Mehr

E2: Wärmelehre und Elektromagnetismus 3. Vorlesung

E2: Wärmelehre und Elektromagnetismus 3. Vorlesung E2: Wärmelehre und Elektromagnetismus 3. Vorlesung 16.04.2018 https://xkcd.com/1978/ Heute: - Gleichverteilungssatz - 1. Hauptsatz - Volumenarbeit - Wärmekapazität - Wärmekapazität des idealen Gases -

Mehr

II) WÄRMELEHRE 10. Temperatur und Stoffmenge

II) WÄRMELEHRE 10. Temperatur und Stoffmenge EP Vorlesung 13: Diese Vorlesung enthält noch einige Nachträge zu I) MECHANIK 8. Wellen 9. Akustik Danach beginnen wir mit II) WÄRMELEHRE 10. Temperatur und Stoffmenge Versuche: Wellen-Reflexion -Brechung

Mehr

d) Das ideale Gas makroskopisch

d) Das ideale Gas makroskopisch d) Das ideale Gas makroskopisch Beschreibung mit Zustandsgrößen p, V, T Brauchen trotzdem n, R dazu Immer auch Mikroskopische Argumente dazunehmen Annahmen aus mikroskopischer Betrachtung: Moleküle sind

Mehr

Physik für Pharmazeuten WÄRME I. Wärmeenergie und Temperatur Beschreibung des Zustands von Gasen Wärmekapazität

Physik für Pharmazeuten WÄRME I. Wärmeenergie und Temperatur Beschreibung des Zustands von Gasen Wärmekapazität Physik für Pharmazeuten WÄRME I Wärmeenergie und Temperatur Beschreibung des Zustands von Gasen Wärmekapazität wozu Wärmelehre? Temperatur bin ich mittags größer als am morgen? wieso wird Sodaflasche kalt,

Mehr

WÄRME I. Wärmeenergie und Temperatur Beschreibung des Zustands von Gasen Wärmekapazität

WÄRME I. Wärmeenergie und Temperatur Beschreibung des Zustands von Gasen Wärmekapazität Physik für Pharmazeuten WÄRME I Wärmeenergie und Temperatur Beschreibung des Zustands von Gasen Wärmekapazität wozu Wärmelehre? Temperatur bin ich mittags größer als am morgen? wieso wird Sodaflasche kalt,

Mehr

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert.

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert. Grundbegriffe der Thermodynamik Die Thermodynamik beschäftigt sich mit der Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur. Die Thermodynamik kann voraussagen,

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti.

Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti. (c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 14. 05. 2007 Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik Universität Ulm (c) Ulm University p.

Mehr

2 Grundbegriffe der Thermodynamik

2 Grundbegriffe der Thermodynamik 2 Grundbegriffe der Thermodynamik 2.1 Thermodynamische Systeme (TDS) Aufteilung zwischen System und Umgebung (= Rest der Welt) führt zu einer Klassifikation der Systeme nach Art der Aufteilung: Dazu: adiabatisch

Mehr

Experimentalphysik. Vorlesungsergänzung (VE), Wintersemester 2017 Modulnummer PTI 301

Experimentalphysik. Vorlesungsergänzung (VE), Wintersemester 2017 Modulnummer PTI 301 Experimentalphysik Vorlesungsergänzung (VE), Wintersemester 2017 Modulnummer PTI 301 Experimentalphysik, Inhalt VE 2.1: Temperatur und Wärmeausdehnung VE 2.2: Zustandsgleichung idealer Gase VE 2.3: Erster

Mehr

Der Magnus-Effekt. Rotierender Körper in äußerer Strömung: Anwendungen:

Der Magnus-Effekt. Rotierender Körper in äußerer Strömung: Anwendungen: Der Magnus-Effekt Rotierender Körper in äußerer Strömung: Ohne Strömung: Körper führt umgebendes Medium an seinen Oberflächen mit Keine resultierende Gesamtkraft. ω Mit Strömung: Geschwindigkeiten der

Mehr

f) Ideales Gas - mikroskopisch

f) Ideales Gas - mikroskopisch f) Ideales Gas - mikroskopisch i) Annahmen Schon gehabt: Massenpunkte ohne Eigenvolumen Nur elastische Stöße, keine Wechselwirkungen Jetzt dazu: Wände vollkommen elastisch, perfekte Reflektoren Zeitliches

Mehr

WÄRME I. Wärmeenergie und Temperatur Beschreibung des Zustands von Gasen Wärmekapazität

WÄRME I. Wärmeenergie und Temperatur Beschreibung des Zustands von Gasen Wärmekapazität Physik für Pharmazeuten WÄRME I Wärmeenergie und Temperatur Beschreibung des Zustands von Gasen Wärmekapazität wozu Wärmelehre? Temperatur bin ich mittags größer als am morgen? wieso wird Sodaflasche kalt,

Mehr

WÄRME I. Wärmeenergie und Temperatur Beschreibung des Zustands von Gasen Wärmekapazität

WÄRME I. Wärmeenergie und Temperatur Beschreibung des Zustands von Gasen Wärmekapazität Physik für Pharmazeuten WÄRME I Wärmeenergie und Temperatur Beschreibung des Zustands von Gasen Wärmekapazität wozu Wärmelehre? Temperatur bin ich mittags größer als am morgen? wieso wird Sodaflasche kalt,

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik -. Hauptsatz der Thermodynamik - Prof. Dr. Ulrich Hahn WS 2008/09 Energieerhaltung Erweiterung des Energieerhaltungssatzes der Mechanik Erfahrung: verschiedene

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang lektrotechnik - kinetische Gastheorie - Prof. Dr. Ulrich Hahn WS 008/09 Molekularbewegung kleine sichtbare Teilchen in Flüssigkeiten oder Gasen: unregelmäß äßige Zitterbewegung

Mehr

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung.

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Nullter und Erster Hauptsatz der Thermodynamik. Thermodynamische

Mehr

E2: Wärmelehre und Elektromagnetismus 4. Vorlesung

E2: Wärmelehre und Elektromagnetismus 4. Vorlesung E2: Wärmelehre und Elektromagnetismus 4. Vorlesung 19.04.2018 Heute: - Freiheitsgrade realer Gase - Adiabatische Volumenänderungen - Kurze Einführung in die Quantenmechanik - Freiheitsgrade & Wärmekapazität

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 007 Vladimir Dyakonov #7 am 18.01.006 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E143, Tel.

Mehr

Thermodynamik (Wärmelehre) III kinetische Gastheorie

Thermodynamik (Wärmelehre) III kinetische Gastheorie Physik A VL6 (07.1.01) Thermodynamik (Wärmelehre) III kinetische Gastheorie Thermische Bewegung Die kinetische Gastheorie Mikroskopische Betrachtung des Druckes Mawell sche Geschwindigkeitserteilung gdes

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Vorlesung 1 Thermodynamik Andreas Brenneis, Marcus Jung, Ann-Kathrin Straub 13.09.2010 1 Allgemeines und Grundbegriffe Grundlegend für das nun folgende Kapitel Thermodynamik

Mehr

E2: Wärmelehre und Elektromagnetismus 4. Vorlesung

E2: Wärmelehre und Elektromagnetismus 4. Vorlesung E2: Wärmelehre und Elektromagnetismus 4. Vorlesung 19.04.2018 Heute: - Freiheitsgrade realer Gase - Adiabatische Volumenänderungen - Kurze Einführung in die Quantenmechanik - Freiheitsgrade & Wärmekapazität

Mehr

Gesetz von Boyle. Empirisch wurde beobachtet, dass bei konstanter Temperatur gilt: p.v = Konstant bzw V 1 / p bzw p 1 / V.

Gesetz von Boyle. Empirisch wurde beobachtet, dass bei konstanter Temperatur gilt: p.v = Konstant bzw V 1 / p bzw p 1 / V. Gesetz von Boyle Empirisch wurde beobachtet, dass bei konstanter Temperatur gilt: p.v = Konstant bzw V 1 / p bzw p 1 / V Isothermen Gesetz von Gay-Lussac Jacques Charles und Joseph-Louis Gay-Lussac fanden

Mehr

Physik für Nicht-Physikerinnen und Nicht-Physiker

Physik für Nicht-Physikerinnen und Nicht-Physiker RUHR-UNIVERSITÄT BOCHUM FAKULTÄT FÜR PHYSIK UND ASTRONOMIE Physik für Nicht-Physikerinnen und Nicht-Physiker Prof. W. Meyer 5. Juni 2014 Wärmelehre Lernziele Alle Körper haben eine Temperatur Die Temperatur

Mehr

Das Ideale Gas Kinetische Gastheorie (auf atomarer Ebene)

Das Ideale Gas Kinetische Gastheorie (auf atomarer Ebene) Das Ideale Gas Kinetische Gastheorie (auf atomarer Ebene) Wir haben gesehen, dass ein sogenanntes 'ideales Gas' durch die Zustandsgleichung pv = νr T [1] beschrieben wird; wir wollen nun verstehen, welchen

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 11: Wärmelehre Dr. Daniel Bick 13. Dezember 2017 Daniel Bick Physik für Biologen und Zahnmediziner 13. Dezember 2017 1 / 36 Übersicht 1 Wellen 2 Wärmelehre

Mehr

NTB Druckdatum: DWW

NTB Druckdatum: DWW WÄRMELEHRE Der Begriff der Thermisches Gleichgewicht und - Mass für den Wärmezustand eines Körpers - Bewegung der Atome starke Schwingung schwache Schwingung gleichgewicht (Thermisches Gleichgewicht) -

Mehr

1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases. f=5 Translation + Rotation. f=7 Translation + Rotation +Vibration. Wiederholung

1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases. f=5 Translation + Rotation. f=7 Translation + Rotation +Vibration. Wiederholung 1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases Wiederholung Speziische molare Wärmekapazität c m,v = 2 R R = N A k B = 8.315 J mol K =5 Translation + Rotation =7 Translation + Rotation +ibration 1.

Mehr

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007 Versuch 2 Physik für (Zahn-)Mediziner c Claus Pegel 13. November 2007 1 Wärmemenge 1 Wärme oder Wärmemenge ist eine makroskopische Größe zur Beschreibung der ungeordneten Bewegung von Molekülen ( Schwingungen,

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und hermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - heorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften 1.5 Maßsysteme 1.6 Messfehler und Messgenauigkeit

Mehr

Physik 1 für Chemiker und Biologen 13. Vorlesung

Physik 1 für Chemiker und Biologen 13. Vorlesung Physik 1 für Chemiker und Biologen 13. Vorlesung 30.01.2017 Diese Woche (30.1.-3.2.): Vorlesung heute: o Thermodynamik & statistische Physik o Kurzer Ausblick: Spezielle Relativitätstheorie Übungen: Besprechung

Mehr

Musterlösung zur Abschlussklausur PC I Übungen (27. Juni 2018)

Musterlösung zur Abschlussklausur PC I Übungen (27. Juni 2018) 1. Abkühlung (100 Punkte) Ein ideales Gas (genau 3 mol) durchläuft hintereinander zwei (reversible) Zustandsänderungen: Zuerst expandiert es isobar, wobei die Temperatur von 50 K auf 500 K steigt und sich

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 12: Wärmelehre Dr. Daniel Bick 09. Dezember 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. Dezember 2016 1 / 35 Übersicht 1 Wellen 2 Wärmelehre

Mehr

Verbundstudium TBW Teil 1 Wärmelehre 1 3. Semester

Verbundstudium TBW Teil 1 Wärmelehre 1 3. Semester Verbundstudium TBW Teil 1 Wärmelehre 1 3. Semester 1. Temperaturmessung Definition der Temperaturskala durch ein reproduzierbares thermodynam. Phänomen, dem Thermometer Tripelpunkt: Eis Wasser - Dampf

Mehr

Vorlesung Physik für Pharmazeuten PPh Mechanische Wellen Akustik Wärmelehre

Vorlesung Physik für Pharmazeuten PPh Mechanische Wellen Akustik Wärmelehre Vorlesung Physik für Pharmazeuten PPh - 07 Mechanische Wellen Akustik Wärmelehre 11.06.2007 Ausbreitung von Störungen A( x = 0, t) = A0 sin(2π f t) Am Ort x=0 führt das Seil eine harmonische Schwingung

Mehr

Temperatur. Temperaturmessung. Grundgleichung der Kalorik. 2 ² 3 2 T - absolute Temperatur / ºC T / K

Temperatur. Temperaturmessung. Grundgleichung der Kalorik. 2 ² 3 2 T - absolute Temperatur / ºC T / K Temperatur Temperatur ist ein Maß für die mittlere kinetische Energie der Teilchen 2 ² 3 2 T - absolute Temperatur [ T ] = 1 K = 1 Kelvin k- Boltzmann-Konst. k = 1,38 10-23 J/K Kelvin- und Celsiusskala

Mehr

PC-Übung Nr.3 vom

PC-Übung Nr.3 vom PC-Übung Nr.3 vom 31.10.08 Sebastian Meiss 25. November 2008 1. Die Säulen der Thermodynamik Beantworten Sie folgende Fragen a) Welche Größen legen den Zustand eines Gases eindeutig fest? b) Welche physikalischen

Mehr

Thermodynamik Thermodynamische Systeme

Thermodynamik Thermodynamische Systeme Thermodynamik Thermodynamische Systeme p... Druck V... Volumen T... Temperatur (in Kelvin) U... innere Energie Q... Wärme W... Arbeit Idealisierung; für die Betrachtung spielt die Temperatur eine entscheidende

Mehr

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 6

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 6 Physik I TU Dortmund WS07/8 Gudrun Hiller Shaukat Khan Kapitel 6 Zustandsdiagramm Zustandsgrößen eines Gases sind z.b. Druck p, Temperatur T, Volumen V und Molzahl n (Stoffmenge). Thermodynamische Prozesse

Mehr

Ideale Gase. Abb.1: Versuchsanordnung von Torricelli

Ideale Gase. Abb.1: Versuchsanordnung von Torricelli Ideale Gase 1 Empirische Gasgesetze, Einblick in die Geschichte der Naturwissenschaften. Wie hängt das Volumen eines Gases von Druck, Temperatur und Stoffmenge ab? Definition Volumen V: Das Volumen V ist

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #10 30/10/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Thermisches Gleichgewicht Soll die Temperatur geändert werden, so muss dem System Wärme (kinetische

Mehr

6.2 Temperatur und Boltzmann Verteilung

6.2 Temperatur und Boltzmann Verteilung 222 KAPITEL 6. THERMODYNAMIK UND WÄRMELEHRE 6.2 Temperatur und Boltzmann Verteilung Im letzten Abschnitt haben wir gesehen, dass eine statistische Verteilung von Atomen eines idealen Gases in einem Volumen

Mehr

Physik 1 für Chemiker und Biologen 13. Vorlesung

Physik 1 für Chemiker und Biologen 13. Vorlesung Physik 1 für Chemiker und Biologen 13. Vorlesung 04.02.2019 Vorlesung heute: o Thermodynamik & statistische Physik o Kurzer Ausblick: Spezielle Relativitätstheorie 15.2.2019, 13-15 Uhr, Wieland HS Fragestunde

Mehr

9. Akustik. IMechanik 9.Akustik II Wärmelehre 10. Temperatur und Stoffmenge. 12. Vorlesung EP

9. Akustik. IMechanik 9.Akustik II Wärmelehre 10. Temperatur und Stoffmenge. 12. Vorlesung EP 12. Vorlesung EP IMechanik 9.Akustik II Wärmelehre 10. Temperatur und Stoffmenge Versuche: Pfeife Echolot und Schallgeschwindigkeit in Luft Heliumstimme Fourier-Analyse Brownsche Bewegung (Wiederholung):

Mehr

Teilchenmodell: * Alle Stoffe bestehen aus Teilchen (Atomen, Molekülen). * Die Teilchen befinden sich in ständiger Bewegung.

Teilchenmodell: * Alle Stoffe bestehen aus Teilchen (Atomen, Molekülen). * Die Teilchen befinden sich in ständiger Bewegung. Teilchenmodell Teilchenmodell: * Alle Stoffe bestehen aus Teilchen (Atomen, Molekülen). * Die Teilchen befinden sich in ständiger Bewegung. *Zwischen den Teilchen wirken anziehende bzw. abstoßende Kräfte.

Mehr

Ferienkurs - Experimentalphysik 2

Ferienkurs - Experimentalphysik 2 Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 Wärmelehre Qi Li 22/08/2012 Inhaltsverzeichnis Inhaltsverzeichnis 1 Wärmelehre 1 2 Das ideale Gas 1 3 Nullter Hauptsatz

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti.

Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti. (c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 10. 05. 2007 Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik Universität Ulm (c) Ulm University p.

Mehr

8.1. Kinetische Theorie der Wärme

8.1. Kinetische Theorie der Wärme 8.1. Kinetische Theorie der Wärme Deinition: Ein ideales Gas ist ein System von harten Massenpunkten, die untereinander und mit den Wänden elastische Stöße durchühren und keiner anderen Wechselwirkung

Mehr

Musterlösung Thermodynamik 3 Besprechung in der Woche vom bis

Musterlösung Thermodynamik 3 Besprechung in der Woche vom bis E2-E2p: Experimentalphysik 2 Prof. J. Lipfert SS 2018 Musterlösung 3 Musterlösung Thermodynamik 3 Besprechung in der Woche vom 30.04.18 bis 04.05.18 Anmerkung: Es wird jede Aufgabe bepunktet, nicht jede

Mehr

E2: Wärmelehre und Elektromagnetismus 2. Vorlesung

E2: Wärmelehre und Elektromagnetismus 2. Vorlesung E2: Wärmelehre und Elektromagnetismus 2. Vorlesung 12.04.2018 Heute: - Längen- und Volumenausdehnung - Temperaturskalen: Celsius, Fahrenheit, Kelvin - Ideales Gas - Kinetische Gastheorie - Gleichverteilungssatz

Mehr

Modelle zur Beschreibung von Gasen und deren Eigenschaften

Modelle zur Beschreibung von Gasen und deren Eigenschaften Prof. Dr. Norbert Hampp 1/7 1. Das Ideale Gas Modelle zur Beschreibung von Gasen und deren Eigenschaften Modelle = vereinfachende mathematische Darstellungen der Realität Für Gase wollen wir drei Modelle

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Ferienkurs Experimentalphysik II Thermodynamik Grundlagen

Ferienkurs Experimentalphysik II Thermodynamik Grundlagen Ferienkurs Experimentalphysik II Thermodynamik Grundlagen Lennart Schmidt 08.09.2011 Inhaltsverzeichnis 1 Grundlagen 3 1.1 Temperatur und Wärme............................ 3 1.2 0. und 1. Hauptsatz..............................

Mehr

Höhere Experimentalphysik 1

Höhere Experimentalphysik 1 Höhere Experimentalphysik 1 Institut für Angewandte Physik Goethe-Universität Frankfurt am Main 9. Vorlesung 20.01.2017 Was bisher geschah Thermodynamik Thermodynamische Systeme und Zustandsgrößen Gleichgewichtszustand

Mehr

Hochschule Düsseldorf University of Applied Sciences. 20. April 2016 HSD. Energiespeicher Wärme

Hochschule Düsseldorf University of Applied Sciences. 20. April 2016 HSD. Energiespeicher Wärme Energiespeicher 02 - Wärme Wiederholung Energiearten Primärenergie Physikalische Energie Kernenergie Chemische Energie Potentielle Energie Kinetische Energie Innere Energie Quelle: Innere Energie Innere

Mehr

Festkörper - System steht unter Atmosphärendruck gemessenen Wärmen erhalten Index p : - isoliert

Festkörper - System steht unter Atmosphärendruck gemessenen Wärmen erhalten Index p : - isoliert Kalorimetrie Mit Hilfe der Kalorimetrie können die spezifischen Wärmekapazitäten für Festkörper, Flüssigkeiten und Gase bestimmt werden. Kalorische Grundgleichung: ΔQ = c m ΔT Festkörper - System steht

Mehr

2.4 Kinetische Gastheorie - Druck und Temperatur im Teilchenmodell

2.4 Kinetische Gastheorie - Druck und Temperatur im Teilchenmodell 2.4 Kinetische Gastheorie - Druck und Temperatur im Teilchenmodell Mit den drei Zustandsgrößen Druck, Temperatur und Volumen konnte der Zustand von Gasen makroskopisch beschrieben werden. So kann zum Beispiel

Mehr

Spezifische Wärme fester Körper

Spezifische Wärme fester Körper 1 Spezifische ärme fester Körper Die spezifische, sowie die molare ärme von Kupfer und Aluminium sollen bestimmt werden. Anhand der molaren ärme von Kupfer bei der Temperatur von flüssigem Stickstoff soll

Mehr

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen 26.1.2007 Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Musterlösung Übung 3

Musterlösung Übung 3 Musterlösung Übung 3 Aufgabe 1: Der 1. Hautsatz der Thermodynamik a) Für ein geschlossenes System folgt aus der Energieerhaltung (Gleichung (94) im Skrit) du = dw + dq, (1.1) da ausser Arbeit und Wärme

Mehr

Musso: Physik I Teil 17 Temperatur Seite 1

Musso: Physik I Teil 17 Temperatur Seite 1 Musso: Physik I Teil 17 Temperatur Seite 1 Tipler-Mosca THERMODYNAMIK 17. Temperatur und kinetische Gastheorie (Temperature and the kinetic theory of gases) 17.1 Thermisches Gleichgewicht und Temperatur

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas Thermodynamik Teilgebiet der klassischen Physik. Wir betrachten statistisch viele Teilchen. Informationen über einzelne Teilchen werden nicht gewonnen bzw.

Mehr

3.2 Gasthermometer 203

3.2 Gasthermometer 203 3.2 Gasthermometer 203 3.2. Gasthermometer Ziel Verifizierung von Zusammenhängen, die durch die ideale Gasgleichung beschrieben werden (isotherme und isochore Zustandsänderung), Bestimmung des absoluten

Mehr

Versuch 6: Spezifische Wärme der Luft und Gasthermometer

Versuch 6: Spezifische Wärme der Luft und Gasthermometer Versuch 6: Spezifische Wärme der Luft und Gasthermometer Inhaltsverzeichnis 1 Einführung 3 2 Theorie 3 2.1 Temperatur................................... 3 2.2 Die Allgemeine Gasgleichung..........................

Mehr

Der 1. Hauptsatz. Energieerhaltung:

Der 1. Hauptsatz. Energieerhaltung: Der 1. Hauptsatz Energieerhaltung: Bei einer Zustandsänderung tauscht das betrachtete System Energie ( W, Q mit seiner Umgebung aus (oft ein Wärmereservoir bei konstantem. Für die Energiebilanz gilt: U

Mehr

Thermodynamik (Wärmelehre) I Die Temperatur

Thermodynamik (Wärmelehre) I Die Temperatur Physik A VL24 (04.12.2012) hermodynamik (Wärmelehre) I Die emperatur emperatur thermische Ausdehnung Festkörper und Flüssigkeiten Gase Das ideale Gas 1 Die emperatur Der Wärmezustand ist nicht mit bisherigen

Mehr

Erster und Zweiter Hauptsatz

Erster und Zweiter Hauptsatz PN 1 Einführung in die alphysik für Chemiker und Biologen 26.1.2007 Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Kapitel IV Wärmelehre und Thermodynamik

Kapitel IV Wärmelehre und Thermodynamik Kapitel IV Wärmelehre und Thermodynamik a) Definitionen b) Wärme und Wärmekapazität c) Das ideale Gas - makroskopisch d) Das reale Gas / Phasenübergänge e) Das ideale Gas mikroskopisch f) Hauptsätze und

Mehr

Diese sind in Oktaven gegliedert, wobei sich die Frequenzen des tiefsten und höchsten Tons einer Oktave um den Faktor zwei unterscheiden.

Diese sind in Oktaven gegliedert, wobei sich die Frequenzen des tiefsten und höchsten Tons einer Oktave um den Faktor zwei unterscheiden. Diese sind in Oktaven gegliedert, wobei sich die Frequenzen des tiefsten und höchsten Tons einer Oktave um den Faktor zwei unterscheiden. Innerhalb der Oktave unterteilt man die Töne in 12 Halbtonschritte,

Mehr

Versuch Nr.53. Messung kalorischer Größen (Spezifische Wärmen)

Versuch Nr.53. Messung kalorischer Größen (Spezifische Wärmen) Versuch Nr.53 Messung kalorischer Größen (Spezifische Wärmen) Stichworte: Wärme, innere Energie und Enthalpie als Zustandsfunktion, Wärmekapazität, spezifische Wärme, Molwärme, Regel von Dulong-Petit,

Mehr

Temperatur. Gebräuchliche Thermometer

Temperatur. Gebräuchliche Thermometer Temperatur Wärme ist Form von mechanischer Energie Umwandlung Wärme mechanische Energie ist möglich! Thermometer Messung der absoluten Temperatur ist aufwendig Menschliche Sinnesorgane sind schlechte "Thermometer"!

Mehr

Klausur Wärmelehre E2/E2p SoSe 2016 Braun. Formelsammlung Thermodynamik

Klausur Wärmelehre E2/E2p SoSe 2016 Braun. Formelsammlung Thermodynamik Klausur Wärmelehre E2/E2p SoSe 2016 Braun Name: Matrikelnummer: O E2 O E2p (bitte ankreuzen) Die mit Stern (*) gekennzeichneten Aufgaben sind für E2-Kandidaten vorgesehen - E2p-Kandidaten dürfen diese

Mehr

Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen

Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Wärmekapazitäten isochore/isobare Zustandsänderungen Standardbildungsenthalpien Heizwert/Brennwert adiabatische Flammentemperatur WS 2013/14

Mehr

Thermodynamik der Atmosphäre II

Thermodynamik der Atmosphäre II Einführung in die Meteorologie Teil I Thermodynamik der Atmosphäre II Der erste Hauptsatz der Thermodynamik Die Gesamtenergie in einem geschlossenen System bleibt erhalten. geschlossen steht hier für thermisch

Mehr

Hydrodynamik: bewegte Flüssigkeiten

Hydrodynamik: bewegte Flüssigkeiten Hydrodynamik: bewegte Flüssigkeiten Wir betrachten eine stationäre Strömung, d.h. die Geschwindigkeit der Strömung an einem gegebenen Punkt bleibt konstant im Laufe der Zeit. Außerdem betrachten wir zunächst

Mehr

Aufgaben zur Wärmelehre

Aufgaben zur Wärmelehre Aufgaben zur Wärmelehre 1. Ein falsch kalibriertes Quecksilberthermometer zeigt -5 C eingetaucht im schmelzenden Eis und 103 C im kochenden Wasser. Welche ist die richtige Temperatur, wenn das Thermometer

Mehr

3 Der 1. Hauptsatz der Thermodynamik

3 Der 1. Hauptsatz der Thermodynamik 3 Der 1. Hauptsatz der Thermodynamik 3.1 Der Begriff der inneren Energie Wir betrachten zunächst ein isoliertes System, d. h. es können weder Teilchen noch Energie mit der Umgebung ausgetauscht werden.

Mehr

2. Fluide Phasen. 2.1 Die thermischen Zustandsgrößen Masse m [m] = kg

2. Fluide Phasen. 2.1 Die thermischen Zustandsgrößen Masse m [m] = kg 2. Fluide Phasen 2.1 Die thermischen Zustandsgrößen 2.1.1 Masse m [m] = kg bestimmbar aus: Newtonscher Bewegungsgleichung (träge Masse): Kraft = träge Masse x Beschleunigung oder (schwere Masse) Gewichtskraft

Mehr

Lebensmittelphysik. Kinetische Gastheorie.

Lebensmittelphysik. Kinetische Gastheorie. 2 Lebensmittelphysik. Kinetische Gastheorie. SS 19 2. Sem. B.Sc. Lebensmittelwissenschaften Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nichtkommerziell Weitergabe unter

Mehr

E2: Wärmelehre und Elektromagnetismus 2. Vorlesung

E2: Wärmelehre und Elektromagnetismus 2. Vorlesung E2: Wärmelehre und Elektromagnetismus 2. Vorlesung 12.04.2018 Heute: - Längen- und Volumenausdehnung - Temperaturskalen: Celsius, Fahrenheit, Kelvin - Ideales Gas - Kinetische Gastheorie https://xkcd.com/1606/

Mehr

TEMPERATUR UND WÄRMEKAPAZITÄT... 2 KALORIMETRIE I... 3 KALORIMETRIE II... 5 PHASENUMWANDLUNGEN... 6

TEMPERATUR UND WÄRMEKAPAZITÄT... 2 KALORIMETRIE I... 3 KALORIMETRIE II... 5 PHASENUMWANDLUNGEN... 6 E-Mail: Homepage: info@schroeder-doms.de schroeder-doms.de München den 11. Mai 2009 W1 Kalorimetrie (Skript zur Vorbereitung) TEMPERATUR UND WÄRMEKAPAZITÄT... 2 Wärme und Temperatur, Kelvin-Skala:... 2

Mehr